Skip to Page Content  |  Text OnlyGovernor | General Assembly | Courts | Elected Officials | State Agencies
 Photo: Featured Delaware Photo
 Phone Numbers Mobile Help Size Print Email

Delaware General AssemblyDelaware RegulationsMonthly Register of RegulationsSeptember 2013

Table of Contents Previous Next

Authenticated PDF Version

19 DE Admin. Code 1342
A public meeting was held on July 29, 2013, by the Department of Labor to receive public comments relating to revised sections of the Fee Schedule Instructions and Guidelines ("Fee Schedule Instructions"), Forms, Provider Certification, and Utilization Review, as well as revise the Health Care Practice Guidelines to reduce the frequency of some treatment, services, or procedures and clean up language inadvertently left in the original guidelines. Pursuant to 29 Del.C. §10118(a), August 13, 2013, marks the deadline (15 days after the public meeting) to receive written public comments on the above revisions. This addendum lists the additional public comments received. The members of the Health Care Advisory Panel (HCAP) members present at the July 29, 2013, and whose electronic signatures appear below, reaffirm their recommendation that the Secretary of Labor adopt this proposal as it was published in the Register of Regulations, Volume 17, Issue 1 (July 2013), with the properly noted subsequent technical revisions to the anesthesia methodology and revenue neutral language.
The proposed Fee Schedule Instructions and Guidelines; Forms; Provider Certification, Utilization Review; and Health Care Practice Guidelines notice appeared in the Register of Regulations, Volume 17, Issue 1 (July 1, 2013). The Fee Schedule Instructions and Guidelines ("Fee Schedule Instructions"), Forms, Provider Certification, Utilization Review, and Health Care Practice Guidelines are available from the Department of Labor, Division of lndustrial Affairs, Office of Workers' Compensation or on the department's website:
Pursuant to 19 Del.C. §2322C, health care practice guidelines have been adopted and recommended by the Health Care Advisory Panel to guide utilization of health care treatments in workers' compensation including, but not limited to, care provided for the treatment of employees by or under the supervision of a licensed health care provider, prescription drug utilization, inpatient hospitalization and length of stay, diagnostic testing, physical therapy, chiropractic care and palliative care. The health care practice guidelines apply to all treatments provided after the effective date of the regulation adopted by the Department of Labor, May 23, 2008, and regardless of the date of injury.
Services rendered by any health care provider certified pursuant to 19 Del.C. §2322D(a) to provide treatment or services for injured employees shall be presumed, in the absence of contrary evidence, to be reasonable and necessary if such treatment and/or services conform to the most current version of the Delaware health care practice guidelines.
Services provided by any health care provider that is not certified pursuant to 19 Del.C. §2322D(a) shall not be presumed reasonable and necessary unless such services are pre-authorized by the employer or insurance carrier, subject to the exception set forth in 19 Del.C. §2322D(b).
2.1 EDUCATION of the patient and family, as well as the employer, insurer, policy makers and the community should be emphasized in the treatment of CTD and disability. Practitioners may develop and implement an effective strategy and skills to educate patients, employers, insurance systems, policy makers and the community as a whole.
2.2 TREATMENT PARAMATER Time frames for specific interventions commence once treatments have been initiated, not on the date of injury. Obviously, duration will be impacted by patient compliance, comorbities and availability of services. Clinical judgment may substantiate the need to modify the total number of visits discussed in this document. The majority of injured workers with Cumulative Trauma Disorders often will achieve resolution of their condition within 6 to 36 visits (Guide To Physical Therapy Practice – Second Edition). It is anticipated that most injured workers will not require the maximum number of visits described in these guidelines. They are designed to be a ceiling and care extending beyond the maximum allowed visits may warrant utilization review.
2.3 ACTIVE INTERVENTIONS emphasizing patient responsibility, such as therapeutic exercise and/or functional treatment, are generally emphasized over passive modalities, especially as treatment progresses. Generally, passive interventions are viewed as a means to facilitate progress in an active rehabilitation program with concomitant attainment of objective functional gains. All rehabilitation programs must incorporate “Active Interventions” no later than three weeks after the onset of treatment. Reimbursement for passive modalities only after the first three weeks of treatment without clear evidence of Active Interventions will require supportive documentation.
2.4 ACTIVE THERAPEUTIC EXERCISE PROGRAM Exercise program goals should incorporate patient strength, endurance, flexibility, coordination, and education. This includes functional application in vocational or community settings
2.5 POSITIVE PATIENT RESPONSE results are defined primarily as functional gains that can be objectively measured. Objective functional gains include, but are not limited to, positional tolerances, range of motion, strength, endurance, activities of daily living, cognition, psychological behavior, and efficiency/velocity measures that can be quantified. Subjective reports of pain and function should be considered and given relative weight when the pain has anatomic and physiologic correlation. Anatomic correlation must be based on objective findings.
2.6 RE-EVALUATE TREATMENT EVERY 3 TO 4 WEEKS If a given treatment or modality is not producing positive results within 3 to 4 weeks, the treatment should be either modified or discontinued. Reconsideration of diagnosis should also occur in the event of poor response to a seemingly rational intervention.
2.7 SURGICAL INTERVENTIONS Surgery should be contemplated within the context of expected functional outcome and not purely for the purpose of pain relief. All operative interventions must be based upon positive correlation of clinical findings, clinical course, and diagnostic tests. A comprehensive assimilation of these factors must lead to a specific diagnosis with positive identification of pathologic conditions.
2.8 SIX-MONTH TIME FRAME The prognosis drops precipitously for returning an injured worker to work once he/she has been temporarily totally disabled for more than six months. The emphasis within these guidelines is to move patients along a continuum of care and return-to-work within a six-month time frame, whenever possible. It is important to note that time frames may not be pertinent to injuries that do not involve work-time loss or are not occupationally related.
2.9 RETURN-TO-WORK is therapeutic, assuming the work is not likely to aggravate the basic problem or increase long-term pain. The practitioner must provide specific physical limitations per the Physician’s Report form. The following physical limitations should be considered and modified as recommended: lifting, pushing, pulling, crouching, walking, using stairs, bending at the waist, awkward and/or sustained postures, tolerance for sitting or standing, hot and cold environments, data entry and other repetitive motion tasks, sustained grip, tool usage and vibration factors. Even if there is residual chronic pain, return-to-work is not necessarily contraindicated.
2.10 DELAYED RECOVERY Strongly consider a psychological evaluation, if not previously provided, as well as initiating interdisciplinary rehabilitation treatment and vocational goal setting, for those patients who are failing to make expected progress 6 to 12 weeks after an injury. The Division recognizes that 3 to 10% of all industrially injured patients will not recover within the time lines outlined in this document despite optimal care. Such individuals may require treatments beyond the limits discussed within this document, but such treatment will require clear documentation by the authorized treating practitioner focusing on objective functional gains afforded by further treatment and impact upon prognosis.
2.11 GUIDELINE RECOMMENDATIONS AND INCLUSION OF MEDICAL EVIDENCE are recommendations based on available evidence and/or consensus recommendations. When possible, guideline recommendations will note the level of evidence supporting the treatment recommendation.
2.12 CARE BEYOND MAXIMUM MEDICAL IMPROVEMENT (MMI) should be declared when a patient’s condition has plateaued to the point where the authorized treating physician no longer believes further medical intervention is likely to result in improved function. However, some patients may require treatment after MMI has been declared in order to maintain their functional state. The recommendations in this guideline are for pre-MMI care and are not intended to limit post-MMI treatment.
The terms “cumulative trauma disorder”, “repetitive motion syndrome”, “repetitive strain injury” and other similar nomenclatures are umbrella terms that are not acceptable diagnoses. The health care provider must provide specific diagnoses in order to appropriately educate, evaluate, and treat the patient. Examples include DeQuervain’s tendonitis, cubital tunnel syndrome, lateral/medial epicondylitis, olecranon bursitis, and hand-arm vibration syndrome. Many patients present with more than one diagnosis, which requires thorough upper extremity and cervical evaluation by the health care provider. Furthermore, there must be a causal relationship between work activities and the diagnosis (see Initial Diagnostic Procedures). The mere presence of a diagnosis that may be associated with cumulative trauma does not presume work-relatedness unless the appropriate work exposure is present.
4.1 HISTORY Should inquire about the following issues, where relevant, and document pertinent positives and negatives where appropriate. In evaluating potential CTDs, the following actions should be taken:
4.1.1 Description of Symptoms:
4.1.2 Identification of Occupational Risk Factors: Job title alone is not sufficient information. The clinician is responsible for documenting specific information regarding repetition, force and other risk factors, as listed in the Risk Factors Associated with Cumulative Trauma Table. A job site evaluation may be required.
4.1.3 Demographics: age, hand dominance, gender, etc.
4.1.4 Past Medical History and Review of Systems:
4.1.5 Activities of Daily Living (ADLs): ADLs include such activities as self care and personal hygiene, communication, ambulation, attaining all normal living postures, travel, non-specialized hand activities, sexual function, sleep, and social and recreational activities. Specific movements in this category include pinching or grasping keys/pens/other small objects, grasping telephone receivers or cups or other similar-sized objects, and opening jars. The quality of these activities is judged by their independence, appropriateness, and effectiveness. Assess not simply the number of restricted activities but the overall degree of restriction or combination of restrictions.
4.1.7 Social History: Exercise habits, alcohol consumption, and psychosocial factors.
4.2 PHYSICAL EXAMINATION The evaluation of any upper extremity complaint should begin at the neck and upper back and then proceed down to the fingers and include the contralateral region. It should include evaluation of vascular and neurologic status, and describe any dystrophic changes or variation in skin color or turgor.
4.4 RISK FACTORS A critical review of epidemiologic literature identifies a number of physical exposures associated with CTDs. Physical exposures considered risk factors include: repetition, force, vibration, pinching and gripping, and cold environment. When workers are exposed to several risk factors simultaneously, there is an increased likelihood of a CTD. Not all risk factors have been extensively studied. Exposure to cold environment, for example, was not examined independently; however, there is good evidence that combined with other risk factors, cold environment increases the likelihood of a CTD. The table at the end of this section entitled, "Risk Factors Associated CTDs," summarizes the results of currently available literature.
5.2.1 Radiographic Imaging: Not generally required for most CTD diagnoses. However, it may be necessary to rule out other pathology in the cervical spine, shoulder, elbow, wrist, or hand. Wrist and elbow radiographs would detect degenerative joint disease, particularly scapholunate dissociation and thumb carpometacarpal abnormalities which occasionally occur with CTD.
5.2.2 MRI: May show increased T2-weighted signal intensity of the common extensor tendon in lateral epicondylitis, but this finding has commonly been found in the asymptomatic contralateral elbow and may not be sufficiently specific to warrant the use of MRI as a diagnostic test for epicondylitis. Its routine use for CTD is not recommended.
5.3.1 Personality/Psychological/Psychosocial Evaluations: are generally accepted and well-established diagnostic procedures with selective use in the CTD population, but have more widespread use in sub-acute and chronic pain populations.
5.3.2 Laboratory Tests: Generally accepted, well-established and widely used procedures. Patients should be carefully screened at the initial exam for signs or symptoms of diabetes, hypothyroidism, arthritis, and related inflammatory diseases. The presence of concurrent disease does not negate work-relatedness of any specific case. In one study of patients with cumulative trauma disorder other than Carpal Tunnel Syndrome, seen by specialists, 3% of patients were diagnosed with diabetes, 6% with hypothyroidism, and 9% with chronic inflammatory disease including spondyloarthropathy, arthritis, and systemic lupus erythematosis. Up to two thirds of the patients were not aware of their concurrent disease. When a patient's history and physical examination suggest infection, metabolic or endocrinologic disorders, tumorous conditions, systemic musculoskeletal disorders (e.g., rheumatoid arthritis or ankylosing spondylitis), or problems potentially related to medication (e.g., renal disease and nonsteroidal anti-inflammatory medications), then laboratory tests, including, but not limited to, the following can provide useful diagnostic information:
5.3.3 Pinch and Grip Strength Measurements: May be accepted as a diagnostic tool for CTD. Strength is defined as the muscle force exerted by a muscle or group of muscles to overcome a resistance under a specific set of circumstances. Pain, the perception of pain secondary to abnormal sensory feedback, and/or the presence of abnormal sensory feedback affecting the sensation of the power used in grip/pinch may cause a decrease in the force exerted. When a bell-shaped curve is present, these measures provide a method for quantifying strength that can be used to follow a patient's progress and to assess response to therapy. In the absence of a bell-shaped curve, clinical reassessment is indicated.
5.3.4 Quantitative Sensory Testing (QST): May be used as a screening tool in clinical settings pre-and post-operatively. Results of tests and measurements of sensory integrity are integrated with the history and review of systems findings and the results of other tests and measures. QST tests the entire sensory pathway, limiting its ability to localize a deficit precisely. It depends on the patient’s report of perception and may not be objective. Cutaneous conditions may alter sensory thresholds.
6.1 ACUPUNCTURE is an accepted and widely used procedure for the relief of pain and inflammation. There is some scientific evidence to support its use. The exact mode of action is only partially understood. Western medicine studies suggest that acupuncture stimulates the nervous system at the level of the brain, promotes deep relaxation, and affects the release of neurotransmitters. Acupuncture is commonly used as an alternative or in addition to traditional Western pharmaceuticals. While it is commonly used when pain medication is reduced or not tolerated, it may be used as an adjunct to physical rehabilitation and/or surgical intervention to hasten the return of functional activity. Acupuncture should be performed by MD, DO[, or] DC with appropriate training[; or a licensed acupuncturist].
6.1.1 Acupuncture: is the insertion and removal of filiform needles to stimulate acupoints (acupuncture points). Needles may be inserted, manipulated and retained for a period of time. Acupuncture can be used to reduce pain and inflammation, and to increase blood flow to an area and increase range of motion. Indications include joint pain, joint stiffness, soft tissue pain and inflammation, paresthesia, post-surgical pain relief, muscle spasm, and scar tissue pain.
6.1.2 Acupuncture with Electrical Stimulation: is the use of electrical current (micro- amperage or milli-amperage) on the needles at the acupuncture site. It is used to increase effectiveness of the needles by continuous stimulation of the acupoint. Physiological effects (depending on location and settings) can include endorphin release for pain relief, reduction of inflammation, increased blood circulation, analgesia through interruption of pain stimulus, and muscle relaxation.
6.1.3 Other Acupuncture Modalities: Acupuncture treatment is based on individual patient needs and therefore treatment may include a combination of procedures to enhance treatment effect. Other procedures may include the use of heat, soft tissue manipulation/massage, and exercise.
6.2 BIOFEEDBACK is a form of behavioral medicine that helps patients learn self-awareness and self-regulation skills for the purpose of gaining greater control of their physiology, such as muscle activity, brain waves, and measures of autonomic nervous system activity. Electronic instrumentation is used to monitor the targeted physiology and then displayed or fed back to the patient visually, auditorially, or tactilely, with coaching by a biofeedback specialist. Biofeedback is provided by clinicians certified in biofeedback and/or who have documented specialized education, advanced training, or direct or supervised experience qualifying them to provide the specialized treatment needed (e.g., surface EMG, EEG, or other).
6.3 INJECTIONS – THERAPEUTIC are generally accepted, well-established procedures that may play a significant role in the treatment of patients with upper extremity pain or pathology. Therapeutic injections involve the delivery of anesthetic and/or anti-inflammatory medications to the painful structure. Therapeutic injections have many potential benefits. Ideally, a therapeutic injection will: (a) reduce inflammation in a specific target area; (b) relieve secondary muscle spasm; and (c) diminish pain and support therapy directed to functional recovery. Diagnostic and therapeutic injections should be used early and selectively to establish a diagnosis and support rehabilitation. If injections are overused or used outside the context of a monitored rehabilitation program, they may be of significantly less value.
6.3.1 Steroid Injections: may provide both diagnostic and therapeutic value in treating a variety of upper extremity cumulative trauma disorders. These include neuropathies, tendonitis or bursitis about the elbow, wrist, or hand. In contrast, there is no evidence to support their therapeutic use in other upper extremity compressive neuropathies; however, it is a widely accepted procedure.
6.3.2 Trigger Point Injections: are generally accepted, although used infrequently in uncomplicated cases. They may, however, be used to relieve myofascial pain and facilitate active therapy and stretching of the affected areas, and as an adjunctive treatment in combination with other treatment modalities, such as functional restoration programs, including stretching therapeutic exercise. Trigger point injections should be utilized primarily for the purpose of facilitating functional progress. The Division does not recommend their routine use in the treatment of upper extremity injuries.
6.4 JOB SITE ALTERATION Early evaluation and training of body mechanics and other ergonomic factors are essential for every injured worker and should be done by a qualified individual. In some cases, this requires a job site evaluation. Some evidence supports alteration of the work site in the early treatment of Cumulative Trauma Disorder. There is no single factor or combination of factors that is proven to prevent or ameliorate CTD, but a combination of ergonomic and psychosocial factors are generally considered to be important. Physical factors that may be considered include use of force, repetition, awkward positions, upper extremity vibration, cold environment, and contact pressure on the nerve. Psychosocial factors to be considered include pacing, degree of control over job duties, perception of job stress, and supervisory support.
6.4.1 Ergonomic changes: should be made to modify the hazards identified. In addition, workers should be counseled to vary tasks throughout the day whenever possible. OSHA suggests that workers who perform repetitive tasks, including keyboarding, take 15-30 second breaks every 10 to 20 minutes, or 5-minute breaks every hour. Mini breaks should include stretching exercises.
6.4.2 Interventions: should consider engineering controls, e.g., mechanizing the task, changing the tool used, or adjusting the job site; or administrative controls, e.g., adjusting the time an individual performs the task.
6.4.3 Seating Description: The following description may aid in evaluating seated work positions: The head should incline only slightly forward, and if a monitor is used, there should be 18-24 inches of viewing distance with no glare. Arms should rest naturally, with forearms parallel to the floor, elbows at the sides, and wrists straight or minimally extended. The back must be properly supported by a chair, which allows change in position and backrest adjustment. There must be good knee and legroom, with the feet resting comfortably on the floor or footrest. Tools should be within easy reach, and twisting or bending should be avoided.
6.4.4 Job Hazard Checklist: The following Table 4 is adopted from Washington State’s job hazard checklist, and may be used as a generally accepted guide for identifying job duties which may pose ergonomic hazards. The fact that an ergonomic hazard exists at a specific job, or is suggested in the table, does not establish a causal relationship between the job and the individual with a musculoskeletal injury. However, when an individual has a work-related injury and ergonomic hazards exist that affect the injury, appropriate job modifications should be made. Proper correction of hazards may prevent future injuries to others, as well as aid in the recovery of the injured worker.
6.5 MEDICATIONS Medication use in the treatment of CTD is appropriate for controlling acute and chronic pain and inflammation. Use of medications will vary widely due to the spectrum of injuries from simple strains to post-surgical analgesia. A thorough medication history, including use of alternative and over the counter medications, should be performed at the time of the initial visit and updated periodically.
6.5.1 Acetaminophen: is an effective analgesic with antipyretic but not anti-inflammatory activity. Acetaminophen is generally well tolerated, causes little or no gastrointestinal irritation and is not associated with ulcer formation. Acetaminophen has been associated with liver toxicity in doses over 10 gm/day or in chronic alcohol use.
6.5.2 Minor Tranquilizer/Muscle Relaxants: are appropriate for muscle spasm, mild pain and sleep disorders.
6.5.3 Narcotics: medications should be prescribed with strict time, quantity and duration guidelines, and with definitive cessation parameters. Adverse effects include respiratory depression, impaired alertness, and the development of physical and psychological dependence.
6.5.4 Nonsteroidal Anti-Inflammatory Drugs (NSAIDs)): are useful for pain and inflammation. In mild cases, they may be the only drugs required for analgesia. There are several classes of NSAIDs, and the response of the individual injured worker to a specific medication is unpredictable. For this reason, a range of NSAIDs may be tried in each case with the most effective preparation being continued. Patients should be closely monitored for adverse reactions. The US Food and Drug Administration advises that many NSAIDs may cause an increased risk of serious cardiovascular thrombotic events, myocardial infraction, and stroke, which can be fatal. Naproxen sodium does not appear to be associated with increased risk of vascular events. Administration of proton pump inhibitors, histamine 2 blockers, or prostaglandin analog misoprostol along with these NSAIDs may reduce the risk of duodenal and gastric ulceration but do not impact possible cardiovascular complications. Due to the cross-reactivity between aspirin and NSAIDs, NSAIDs should not be used in aspirin-sensitive patients, and should be used with caution in all asthma patients. NSAIDs may be associated with abnormal renal function, including renal failure, as well as, abnormal liver function. Certain NSAIDs may have interactions with various other medications. Individuals may have adverse events not listed above. Intervals for metabolic screening are dependent upon the patient's age, general health status and should be within parameters listed for each specific medication. Complete Blood Count (CBC) and liver and renal function should be monitored at least every six months in patients on chronic NSAIDs and initially when indicated.
6.5.5 Psychotropic/Anti-anxiety/Hypnotic Agents: may be useful for treatment of mild and chronic pain, dysesthesias, sleep disorders, and depression. Antidepressant medications, such as tricyclics and Selective Serotonin Reuptake Inhibitors (SSRIs), are useful for affective disorders and chronic pain management. Tricyclic antidepressant agents, in low dose, are useful for chronic pain but have more frequent side effects.
6.5.6 Tramadol: is useful in relief of upper extremity pain and has been shown to provide pain relief equivalent to that of commonly prescribed narcotics. Although Tramadol may cause impaired alertness, it is generally well tolerated, does not cause gastrointestinal ulceration, or exacerbate hypertension or congestive heart failure. Tramadol should be used cautiously in patients who have a history of seizures or who are taking medication that may lower the seizure threshold, such as monoamine oxidase (MAO) inhibiters, SSRIs, and tricyclic antidepressants. This medication has physically addictive properties and withdrawal may follow abrupt discontinuation. It is not recommended for those with prior opioid addiction.
6.5.7 Topical Drug Delivery: may be an alternative treatment for localized musculoskeletal disorders and is an acceptable form of treatment in selected patients although there is no scientific evidence to support its use. It is necessary that all topical agents be used with strict instructions for application as well as maximum number of applications per day to obtain the desired benefit and avoid potential toxicity. As with all medications, patient selection must be rigorous to choose those patients with the highest probability of compliance. Refer to “Iontophoresis” in the Passive Therapy section for information regarding topical iontophoretic agents.
6.6.1 Non-Interdisciplinary: These programs are work-related, outcome-focused, individualized treatment programs. Objectives of the program include, but are not limited to, improvement of cardiopulmonary and neuromusculoskeletal functions (strength, endurance, movement, flexibility, stability, and motor control functions), patient education, and symptom relief. The goal is for patients to gain full or optimal function and return-to-work. The service may include the time-limited use of passive modalities with progression to achieve treatment and/or simulated/real work.
6.7 PATIENT EDUCATION No treatment plan is complete without addressing issues of individual patient and/or group education as a means of prolonging the beneficial effects of treatment, as well as facilitating self-management of symptoms and injury prevention. The patient should take an active role in the establishment of functional outcome goals, and should be educated on his or her specific injury, assessment findings, and plan of treatment. Education and instruction in proper body mechanics and posture, positions to avoid task/tool adaptation, self-care for exacerbation of symptoms, and home exercise/task adaptation should also be addressed.
6.8 RETURN-TO-WORK is therapeutic, assuming the work is not likely to aggravate the basic problem or increase long-term pain. The practitioner must provide specific physical limitations per the Physician’s Form. The following physical limitations should be considered and modified as recommended: lifting, pushing, pulling, crouching, walking, using stairs, bending at the waist, awkward and/or sustained postures, tolerance for sitting or standing, hot and cold environments, data entry and other repetitive motion tasks, sustained grip, tool usage and vibration factors. Even if there is residual chronic pain, return-to-work is not necessarily contraindicated.
6.9 SLEEP DISTURBANCES are a common secondary symptom of CTD. Although primary insomnia may accompany pain as an independent co-morbid condition, it more commonly occurs, secondary to the pain condition itself. Exacerbations of pain often are accompanied by exacerbations of insomnia; the reverse can also occur. Sleep laboratory studies have shown disturbances of sleep architecture in pain patients. Loss of deep slow-wave sleep and increase in light sleep occur and sleep efficiency, the proportion of time in bed spent asleep, is decreased. These changes are associated with patient reports of non-restorative sleep.
6.10 THERAPY–PASSIVE includes those treatment modalities that do not require energy expenditure on the part of the patient. They are principally effective during the early phases of treatment and are directed at controlling symptoms such as pain, inflammation and swelling and to improve the rate of healing soft tissue injuries. They should be used in adjunct with active therapies to help control swelling, pain and inflammation during the rehabilitation process. They may be used intermittently as a therapist deems appropriate or regularly if there are specific goals with objectively measured functional improvements during treatment.
6.10.1 Electrical Stimulation (Unattended and Attended): once applied, requires minimal on-site supervision by the physician or non-physician provider. Indications include pain, inflammation, muscle spasm, atrophy, and decreased circulation.
6.10.2 Extracorporeal shock wave treatment: Consists of the application of pulses of high pressure sound to soft tissues, similar to lithotriptors. It has been investigated for its effectiveness in the treatment of lateral epicondylitis. It has not been shown to have an advantage over other conservative treatments and remains investigational. It is not recommended.
6.10.3 Iontophoresis: is the transfer of medication, including, but not limited to, steroidal anti-inflammatories and anesthetics, through the use of electrical stimulation. Indications include pain (Lidocaine), inflammation (hydrocortisone, salicylate), edema (mecholyl, hyaluronidase, salicylate), ischemia (magnesium, mecholyl, iodine), muscle spasm (magnesium, calcium), calcific deposits (acetate), scars and keloids (chlorine, iodine, acetate).
6.10.4 Laser irradiation: Consists of the external application of an array of visible and infrared wavelengths to soft tissues. Time and frequency dependent on severity and chronicity of problem.
6.10.5 Manual Therapy Techniques: are passive interventions in which the providers use his or her hands to administer skilled movements designed to modulate pain; increase joint range of motion; reduce/eliminate soft tissue swelling, inflammation, or restriction; induce relaxation; and improve contractile and non-contractile tissue extensibility. These techniques are applied only after a thorough examination is performed to identify those for whom manual therapy would be contraindicated or for whom manual therapy must be applied with caution. Manipulation: is generally accepted, well-established and widely used therapeutic intervention for low back pain. Manipulative Treatment (not therapy) is defined as the therapeutic application of manually guided forces by an operator to improve physiologic function and/or support homeostasis that has been altered by the injury or occupational disease, and has associated clinical significance. Mobilization (Joint) /Manipulation Mobilization (Soft Tissue)
Nerve Gliding: consist of a series of flexion and extension movements of the hand, wrist, elbow, shoulder, and neck that produce tension and longitudinal movement along the length of the median and other nerves of the upper extremity. These exercises are based on the principle that the tissues of the peripheral nervous system are designed for movement, and that tension and glide (excursion) of nerves may have an effect on neurophysiology through alterations in vascular and axoplasmic flow. Biomechanical principles have been more thoroughly studied than clinical outcomes. Nerve gliding performed on a patient by the clinician should be reinforced by patient performance of similar techniques as part of a home exercise program at least twice per day.
6.10.6 Massage: Manual or Mechanical - Massage is manipulation of soft tissue with broad ranging relaxation and circulatory benefits. This may include stimulation of acupuncture points and acupuncture channels (acupressure), application of suction cups and techniques that include pressing, lifting, rubbing, pinching of soft tissues by or with the practitioners’ hands. Indications include edema, muscle spasm, adhesions, the need to improve peripheral circulation and range of motion, or to increase muscle relaxation and flexibility prior to exercise.
6.10.7 Orthotics/Immobilization with Splinting: is a generally accepted, well-established and widely used therapeutic procedure. Splints may be effective when worn at night or during portions of the day, depending on activities. Splints should be loose and soft enough to maintain comfort while supporting the involved joint in a relatively neutral position. Splint comfort is critical and may affect compliance. Although off-the-shelf splints are usually sufficient, custom thermoplastic splints may provide better fit for certain patients.
6.10.8 Superficial Heat and Cold Therapy: are thermal agents applied in various manners that lowers or raises the body tissue temperature for the reduction of pain, inflammation, and/or effusion resulting from injury or induced by exercise. Includes application of heat just above the surface of the skin at acupuncture points. Indications include acute pain, edema and hemorrhage, need to increase pain threshold, reduce muscle spasm and promote stretching/flexibility. Cold and heat packs can be used at home as an extension of therapy in the clinic setting.
Maximum duration: 18 12 visits with maximum visit 1 per day. If symptoms persist, consideration should be given to further diagnostic studies or other treatment options.
6.10.9 Ultrasound: uses sonic generators to deliver acoustic energy for therapeutic thermal and/or nonthermal soft tissue effects. Indications include scar tissue, adhesions, collagen fiber and muscle spasm, and to improve muscle tissue extensibility and soft tissue healing. Ultrasound with electrical stimulation is concurrent delivery of electrical energy that involves dispersive electrode placement. Indications include muscle spasm, scar tissue, pain modulation and muscle facilitation. Phonophoresis is the transfer of medication to the target tissue to control inflammation and pain through the use of sonic generators. These topical medications include, but are not limited to, steroidal anti-inflammatory and anesthetics.
6.11 THERAPY–ACTIVE therapies are based on the philosophy that therapeutic exercise and/or activity are beneficial for restoring flexibility, strength, endurance, function, range of motion, and alleviating discomfort. Active therapy requires an internal effort by the individual to complete a specific exercise or task, and thus assists in developing skills promoting independence to allow self-care after discharge. This form of therapy requires supervision from a therapist or medical provider such as verbal, visual, and/or tactile instructions. At times a provider may help stabilize the patient or guide the movement pattern but the energy required to complete the task is predominately executed by the patient.
6.11.1 Activities of Daily Living: Supervised instruction, active-assisted training, and/or adaptation of activities or equipment to improve a person’s capacity in normal daily living activities such as self-care, work re-integration training, homemaking, and driving.
6.11.2 Aquatic Therapy: is a well-accepted treatment which consists of the therapeutic use of aquatic immersion for therapeutic exercise to promote strengthening, core stabilization, endurance, range of motion, flexibility, body mechanics, and pain management. Aquatic therapy includes the implementation of active therapeutic procedures in a swimming or therapeutic pool. The water provides a buoyancy force that lessens the amount of force gravity applies to the body. The decreased gravity effect allows the patient to have a mechanical advantage and more likely have a successful trial of therapeutic exercise. The therapy may be indicated for individuals who:
6.11.3 Functional Activities: are the use of therapeutic activity to enhance mobility, body mechanics, employability, coordination, and sensory motor integration.
6.11.4 Neuromuscular Re-education: is the skilled application of exercise with manual, mechanical, or electrical facilitation to enhance strength, movement patterns, neuromuscular response, proprioception, kinesthetic sense, coordination education of movement, balance, and posture. Indications include the need to promote neuromuscular responses through carefully timed proprioceptive stimuli, to elicit and improve motor activity in patterns similar to normal neurologically developed sequences, and improve neuromotor response with independent control.
6.11.5 Proper Work Techniques: Please refer to the “Job Site Evaluation” and “Job Site Alteration” sections of these guidelines.
6.11.6 Therapeutic Exercise: with or without mechanical assistance or resistance may include isoinertial, isotonic, isometric and isokinetic types of exercises. Indications include the need for cardiovascular fitness, reduced edema, improved muscle strength, improved connective tissue strength and integrity, increased bone density, promotion of circulation to enhance soft tissue healing, improvement of muscle recruitment, increased range of motion, and are used to promote normal movement patterns. Can also include complementary/alternative exercise movement therapy.
6.12 RESTRICTION OF ACTIVITIES Continuation of normal daily activities is the recommendation for Cumulative Trauma Disorders with or without neurologic symptoms. Complete work cessation should be avoided, if possible, since it often further aggravates the pain presentation. Modified return-to-work is almost always more efficacious and rarely contraindicated in the vast majority of injured workers with CTD.
6.13 VOCATIONAL REHABILITATION is a generally accepted intervention. Initiation of vocational rehabilitation requires adequate evaluation of patients for quantification of highest functional level, motivation, and achievement of maximum medical improvement. Vocational rehabilitation may be as simple as returning to the original job or as complicated as being retrained for a new occupation.
7.1 PERIPHERAL NERVE DECOMPRESSION Surgery may be considered when findings on history and physical exam correlate specifically with the diagnosis being considered. Subjective complaints should be localized and appropriate to the diagnosis, neurologic complaints should be consistent with the nerve distribution in question, and physical exam findings should correlate with the history. Surgery may be considered as an initial therapy in situations where there is clinical and/or electrodiagnostic evidence of severe or progressive neuropathy. Objective evidence should be present in all cases in which surgery is contemplated. Objective evidence may include: electrodiagnostic (EDX) studies, diagnostic peripheral nerve block which eradicates the majority of the patient’s symptoms, or a motor deficit commensurate with the suspected neurologic lesion. Refer to Physical Examination Findings (section D.2, physical examination) for objective diagnostic findings. Job modification should be considered prior to surgery. Refer to the “Job Site Alteration” section for additional information on job modification.
7.1.1 Median Nerve Decompression at the Wrist (carpal tunnel release): Please refer to the Division’s, Carpal Tunnel Syndrome Medical Treatment Guidelines.
7.1.2 Median Nerve Decompression in the Forearm (pronator teres or flexor digitorum superficialis release): Please refer to Physical Examination Findings Table (section D.2, physical examination) Electrodiagnostic (EDX) studies may show delayed median nerve conduction in the forearm. If nerve conduction velocity is normal with suggestive clinical findings, the study may be repeated after a 3-6 month period of continued conservative treatment. If the study is still normal, the decision on treatment is made on the consistency of clinical findings and the factors noted above.
7.1.3 Ulnar Nerve Decompression at the Wrist (ulnar tunnel release or Guyon’s canal release) Please refer to Physical Examination Findings Reference Table (section D.2, physical examination) Electrodiagnostic testing may confirm the diagnosis and differentiate from ulnar entrapment neuropathy at the elbow.
7.1.4 Ulnar Nerve Decompression/Transposition at the Elbow: Please refer to Physical Examination Findings Reference Table (section D.2, physical examination) Electrodiagnostic studies (EDX) may indicate an ulnar neuropathy at the elbow. In general, patients with minimal symptoms or without objective findings of weakness tend to respond better to conservative treatment than patients with measurable pinch or grip strength weakness. If objective findings persist despite conservative treatment, surgical options include: simple decompression, medial epicondylectomy with decompression, anterior subcutaneous transfer, and submuscular or intramuscular transfer.
7.1.5 Sensory Nerve Decompression at the Wrist: Please refer to Physical Examination Findings Reference Table (section D.2, physical examination) of these guidelines. Electrodiagnostic (EDX) studies can be useful in establishing a diagnosis but negative studies do not exclude the diagnosis
7.1.6 Radial Nerve Decompression at the Elbow: Please refer to Physical Examination Findings Reference Table (section D.2, physical examination) Electrodiagnostic (EDX) studies are helpful when positive, but negative studies do not exclude the diagnosis.
7.1.7 Thoracic Outlet Syndrome: Please refer to the Division’s Thoracic Outlet Syndrome Medical Treatment Guidelines.
7.2 TENDON DECOMPRESSION OR DEBRIDEMENT Surgery may be considered when several months of appropriate treatment have failed, and findings on history and physical exam correlate specifically with the diagnosis being considered. Subjective complaints should be localized and appropriate to the diagnosis, and physical exam findings should correlate with the history. Refer to the Physical Examination Findings Table (section D.2, physical examination). Job modification should be considered prior to surgery. Refer to Job Site Alteration (Section F.4) for additional information on job modification.
7.2.1 Subacromial Decompression: Please refer to the Division’s Shoulder Injury Medical Treatment Guidelines.
7.2.2 Medial or Lateral Epicondyle Release/Debridement: Please refer to Physical Examination Findings Reference Table (section D.2, physical examination). It is generally accepted that 80% of cases improve with conservative therapy. Intermittent discomfort may recur over six months to one year after initial conservative treatment. Surgery should only be performed to achieve functional gains on those with significant ongoing impaired activities of daily living. X-rays may be normal or demonstrate spur formation over the involved epicondyle.
7.2.3 First Extensor Compartment Release (de Quervain’s Tenosynovitis): Please refer to Physical Examination Findings Reference Table (section D.2, physical examination). Surgery should be performed to achieve functional gains on those with significant ongoing impaired activities of daily living.
7.2.4 Trigger Finger/Thumb Release: Please refer to Physical Examination Findings Reference Table (section D.2, physical examination). Surgery should be performed to achieve functional gains on those with significant ongoing impaired activities of daily living.
7.3.1 Immobilization: Controlled mobilization, and/or formal physical/occupational therapy should begin as soon as possible following surgery at the discretion of the treating surgeon. Final decisions regarding the need for splinting post-operatively should be left to the discretion of the treating physician based upon his/her understanding of the surgical technique used and the specific conditions of the patient.
7.3.2 Home Program: It is generally accepted that all patients should receive a home therapy protocol involving stretching, ROM, scar care, and resistive exercises. Once they have been cleared for increased activity by the surgeon, patients should be encouraged to use the hand as much as possible for daily activities, allowing pain to guide their level of activity.
7.3.3 Supervised Therapy Program: may be helpful in patients who do not show functional improvements post-operatively or in patients with heavy or repetitive job activities. The therapy program may include some of the generally accepted elements of soft tissue healing and return to function:
Last Updated: December 31 1969 19:00:00.
site map   |   about this site   |    contact us   |    translate   |