STORMWATER MANAGEMENT REPORT

REDEVELOPMENT PROJECT FOULK ROAD BRANDYWINE HUNDRED NEW CASTLE COUNTY, DELAWARE APPLICATION NO. _____

August 2011

Prepared for:

DNREC, Sediment & Stormwater Program 89 Kings Highway Dover, Delaware 19901

Prepared by:

Duffield Associates, Inc. 5400 Limestone Road Wilmington, Delaware 19808

William J. Mather, P.E. Senior Project Manager

Project No. 9151.CA

Preliminary Sediment & Stormwater Management Plan Review Checklist

DATE RE	DATE RECEIVED: PROJECT NUMBER:				
PROJECT NAME: REDEVELOPMENT					
PROJECT	PROJECT NAME:				
General I	nformation:				
1. <u>V/A</u>	Completed application signed by the owner, review fee, one set of plans and reports, and a				
,	completed checklist must be submitted for review. Electronic plan and report program files				
	(i.e., AutoCAD, Microstation, DURMM, HydroCAD, and/or equal/similar) shall be transmitted				
	upon agency request.				
2. <u>N/A</u>	Provide a copy of the notice to DelDOT, a municipality, or a private entity (i.e., neighboring				
	Homeowner's Association) for the intent to discharge or connect to their stormwater system.				
	The notice shall indicate the proposed condition and that any comments regarding the				
	discharge shall be returned within 30 calendar days, and if no comments are received than				
	consent to discharge is assumed. If directly copied on the notice, indicate the date of the				
	notice and the reviewer copied:				
3	Hydraulic and Hydrology computations shall reflect the proposed site conditions.				
4	All plans should be submitted on 24" x 36" (minimum) sheets unless otherwise approved.				
5. <u>N/A</u>	When two (2) or more sheets are used to illustrate the plan view, an index sheet is required,				
	illustrating the entire project on one (1) 24" x 36" (minimum) sheet.				
6. <u>√</u>	Provide a north arrow on all plans.				
7. <u>J</u>	Provide all plan views to a defined scale with a scale bar.				
	Provide names of adjacent property owners on all plans.				
9/_	Provide existing and proposed contours (if provided) based on NAVD 88 vertical datum at one				
	(1) foot intervals (2 foot intervals can be provided for offsite drainage information based on the				
40 4/4	latest Lidar information).				
10. <u>14/14</u>	For small projects less than ½ acre of disturbance, provide existing and proposed spot elevations based on NAVD 88 vertical datum on a fifty-foot grid system. Include high and low				
	points.				
11. J					
12. 🗸	Provide the contact information for the person or entity responsible for preparing the plans and				
12	report, including name, company, address and telephone number. Locate on both the plans				
	and report.				
13 N/A	Provide the seal of a Licensed Professional in the State of Delaware on all submitted plans				
10	and reports.				
14. 🗸	Provide the Preliminary Sediment and Stormwater Management plans in the following order				
	and title. The sheet list is to appear on the Coversheet, and on each plan sheet shall be				
	respectively titled (include the title of the plan within the title block or lower righthand corner of				
	the sheet):				
	a. J Coversheet				
	b. NA Schematic Pre-Construction Site Stormwater Management Plan				
	c. <u>MA</u> Schematic Construction Site Stormwater Management Plan				
	d. <u>N/A</u> Contributing Drainage Area Plan				
	e Pre-Limit of Disturbance Drainage Area Plan				
	f Post Limit of Disturbance Drainage Area Plan				

Covershe	
15. <u> </u>	= * ,
	a Project Name (and Phase, if applicable).
	b Title of Plan Set: Preliminary Sediment and Stormwater Management Plans
	c. $\sqrt{}$ Project Location (including watershed, hundred, town, county, etc., as applicable).
	d Project tax map identification number(s).
16. 🔟	Legend indicating plan symbols and lines, including but not limited to, soils, drainage area
	information, grading and site information.
17. <u> </u>	Provide a vicinity map with a scale either at 1" = ½ mile or 1" = 1 mile, depending on project
	size, and indicate the site boundary within the map. The map shall be no smaller than 4"x4" in
	size.
18. <u>√</u>	Project Notes:
	a. Parcel Data:
	i Tax Map Number(s)
	ii. <u>v/A</u> PLUS Number (if applicable)
	iii DNREC Sediment and Stormwater Program [or relevant Delegated
	Agency] Number
	iv Site Address (or Nearest Intersecting Street and Distance between)
	v Latitude and Longitude State Plane coordinates, with approximate
	geographical location (ie, Benchmark #1, Northeast Site Corner, etc).
	Provide in degree decimal format. STATE PLANE IS IN FEET
	vi Existing Site Area
	vii Proposed Site Area
	viii √_ Existing Wetland Area √ôN E
	ix Proposed Discharge Location(s)
	x√_ Proposed Total Limit of Disturbance per Discharge Location
	b. Contact Data:
	i. Owner's Name, Title: N/A Owner N/A Land Developer V/A Designer
1	/ Owner Land Developer Designer
<u> </u>	iii. Full Street Address: Owner Land Developer Designer
i i i i i i i i i i i i i i i i i i i	iv. Phone Number: Owner Land Developer✓ Designer
,	v. Fax Number: Owner Land Developer Designer
19. 🗸	Include a Site Designer Certification that states "I hereby certify that this plan has been
	prepared under my supervision and to the best of my knowledge complies with the applicable
	state and local regulations and ordinances." This shall be signed in ink or an original
,	<u>-reproducible.</u>
20	Provide a list of all sheets and their corresponding sheet number for all Preliminary Sediment
	and Stormwater Management Plans.

Schematic Construction Site Stormwater Management Plans:

The purpose of the Schematic Construction Site Stormwater Management Plan is to provide a preliminary design of the site's phasing in relation to the site's existing conditions and it's construction and stormwater facility locations. It will eventually be further developed into the Pre-Construction and Construction Site Stormwater Management Plan for the full plan submittal.

21. N//	<u></u> Sci	nematic Pre-Construction Site Stormwater Management Plan (if required, as determined at
•		SAS review meeting):
	a.	Include the entire site boundary in an existing conditions plan view (i.e., site
		boundary, existing contours, wetlands, treelines, existing structures/utilities to
		remain or to be removed, etc).
	b.	Indicate the approximate limit of disturbance per phase of construction. Provide a
		legend indicating the total disturbed acreage per limit of construction.
	C.	Indicate the location of all perimeter controls, stockpile locations, sediment
		trapping facilities, and other construction stormwater management controls
		needed for demolition and bulk grading (i.e., silt fence, stabilized construction
		entrances, temporary swales, sediment basins, etc).
	d.	Proposed contours are not required.
	e.	Provide a legend indicating the lines and symbols used to define the site and
		construction stormwater controls.
22. <u>N/A</u>	<u></u> Sch	nematic Construction Site Stormwater Management Plan:
	a.	Include the entire site boundary in an existing conditions plan view (i.e., site
		boundary, existing contours, wetlands, treelines, existing structures to remain,
		etc).
	b.	Include a preliminary site plan view overlaid with the existing conditions. Include
		all lot and/or building outlines; right-of-ways and/or paved areas (whichever is less
		constrictive); and proposed stormwater locations including facilities, structures and
		pipes.
	c.	Indicate the approximate limit of disturbance per phase of construction. Provide a
		legend indicating the total disturbed acreage per limit of construction.
	d.	Indicate the location of all construction site stormwater controls, including
		perimeter controls, sediment controls, water controls, and pollution prevention
		controls. (i.e., silt fence, stabilized construction entrances, temporary swales,
•		sediment basins, etc).
	e.	Proposed contours are not required, but should be included when available. If not
		flow arrows showing the drainage intent can suffice.
	f.	Provide a legend indicating the lines and symbols used to define the site and
		construction stormwater controls.

Drainage Area Plans:

The drainage area plans shall provide a graphic portrayal of the information that is contained with the DURMM worksheets. Any additional hydraulic or hydrologic computations that are required to show compliance with the *Delaware Sediment and Stormwater Regulations* may require additional drainage area or watershed plans (i.e., to satisfy the Cv and Fv requirements). These plans are not prescribed below, but shall follow similar guidelines, clearly indicate the parameters used within the calculations, and be contained within the plan Sediment and Stormwater Management Plan set.

23. MA Contributing Drainage Area Plan W/A- Provide a plan correlating to the Contributing Area RCN worksheet (post development model for the entire drainage area) for each subarea (subareas may be combined onto the same sheet, so long as they are clearly distinguishable). Provide soils mapping on the plan, using the latest NRCS soil information, with a b. general description of each soil. Indicate the LOD and the OLOD contributing areas, separated per their respective C. land cover and soil type classification. Provide the area of each designation. d. Provide a legend indicating the various landuse covers (a hatch shall be provided for each type of landuse). Provide a summary table indicating the sub-areas and their respective point of e. analysis, total area, and RCN. Show the Tc path for the area outside the LOD as used in the OLOD worksheet. f. Show the Tc path for any other areas that require further analysis using other H&H g. software. Pre-Limit of Disturbance Drainage Area Plan Provide a plan correlating to the Pre LOD information requested in the LOD worksheet (location of woods and meadow condition within the LOD per sub-area prior to disturbance) for each subarea (subareas may be combined onto the same sheet, so long as they are clearly distinguishable). Provide soils mapping on the plan, using the latest NRCS soil information, with a b. general description of each soil. <u>MA</u> Indicate the areas of woods and/or meadow condition per soil type classification. Provide the area of each designation. Now E ✓ Provide a legend indicating the various landuse covers (a hatch shall be provided for each type of landuse). Provide a summary table indicating the sub-areas and their respective point of analysis, total area, and RCN. Post Limit of Disturbance Drainage Area Plan Provide a plan correlating to the Post LOD information requested in the LOD worksheet (location of all impervious areas). This should only be done if the LOD and OLOD cannot be shown on the Contributing Area Plan due to sizing. Provide soils mapping on plan, using the latest NRCS soil information, with a general description of each soil. Indicate the impervious area with the subarea. Provide the area of each designation. Provide a legend indicating the various landuse covers (a hatch shall be provided for each type of landuse). Provide a summary table indicating the sub-areas and their respective point of

Appendix 3.02.2.1 Last Revised 05.11

analysis, total area, and RCN.

Sto	rmwa	ter Management Report:
26.		Provide information in the report in the following order:
	•	a. <u> </u>
		bTable of Contents
		c Site Narrative:
		a Introduction
		b Existing Conditions describing the drainage patterns, landuse(s), and
		existing features. Include 2007 site aerial, photos of site conditions and at all
		discharge locations.
		c Existing Soils description per the NRCS Web Soil Survey including the
		hydrologic soil group; and soil testing results from on-site soil testing.
		d Post Development Conditions, including summary of the proposed
		development, the proposed drainage system, indication of why the standards or
		performance approach was utilized, methods for RPv, Cv, and Fv compliance,
		requests for waivers and/or offsets, etc.
		e Construction Site Conditions, describing methods to prevent sediment and
		pollution discharge and illicit transportation.
		f Conclusion
		 d√_ DURMM computations e√_ Additional hydraulic and hydrologic computations, such as pond and discharge
		e Additional hydraulic and hydrologic computations, such as pond and discharge pipe/swale routings.
		f. <u>N/A</u> Supplementary Construction Site computations (i.e., temporary sediment basin
		design worksheet, anti-seep collar sizing, forebay sizing, etc).
		g/A_ Soil report(s) including boring locations and log reports.
		h. <u>N/A</u> Appendix containing any supplemental information (information previously
		included within the Stormwater Assessment Study report does not need to be
		duplicated).
27.	1	Provide drainage calculations for the RPv, Cv, and Fv events using the latest DURMM model
		and other approved H&H software as required.
28.	<u> </u>	_ All inputted data must be supported by surveys, Lidar information, photos, aerials, maps, etc.
	The same of the sa	and shall be referenced in the report and/or drainage area plans. Information previously
		included within the Stormwater Assessment Study submittal is acceptable and does not need
		to be duplicated.
29.		_ All hydrologic computations shall be accomplished using the most recent version of USDA,
		Soil Conservation Service TR-20 or TR-55. The storm duration for computational purposes
		shall be the 24-hour rainfall event. For projects south of the Chesapeake and Delaware (C&D
	,	Canal, the Delmarva Unit Hydrograph shall be used.
30.		_ The pre-development condition shall be based off of the 2007 aerial photography provided by
		the State of Delaware, through the Delaware DataMIL and online GIS mapping. This may not
		directly correlate to current site conditions if the landuse has changed; however, the 2007
_	,	landuse shall be used regardless if more or less conservative than the current landuse.
31.	<u> </u>	The pre-development peak discharge rate shall be computed assuming that all land uses in
		the site to be developed are in good hydrologic conditions.

TABLE OF CONTENTS

SECTION	DESCRIPTION	<u>PAGE</u>
I. PUF	RPOSE	1
II. NAI	RRATIVE	2
A.	LOCATION	2
В.	PRE-DEVELOPMENT CONDITION	2
C.	POST-DEVELOPMENT CONDITION	3
D.	METHODOLOGY	7
E.	INSPECTION AND MAINTENANCE	9
F.	CONSTRUCTION SITE CONDITIONS	10
G.	CONCLUSION	10
	APPENDICES	
Appendix A	A Site Information Site Location Sketch Soil Survey Sketch	
Appendix B	•	
Appendix C	Pre-Development Calculations	
Appendix D		
Appendix E	Pre-Development and Post-Development Drainage Plans	

I. PURPOSE

This report summarizes the stormwater management design for the proposed Redevelopment Plan for Foulk Road – Branch Drive-In Bank, New Castle County Application No. ______. This land development application is proposed as a redevelopment project under the provisions of Section 40.08.130 of the New Castle County Unified Development Code (UDC) and Section 5.6 of the Final Draft Delaware Sediment and Stormwater Regulations: June 2011 (DSSR).

The site consists of two (2) existing properties located at the intersection of Foulk Road and Silverside Road. There is an existing, abandoned Getty Service Station and an existing Retail Store located on the two (2) properties. This application proposes to remove both existing buildings, along with the station appurtenances (gasoline pumps, canopy, underground fuel tanks, etc.).

Proposed construction includes a 3,934-square-foot branch drive-in bank building with new parking and drive-in banking facilities, along with reutilization of the existing site entrances on the approximate 1.00-acre site.

Duffield Associates, Inc. (Duffield Associates) has identified the applicable stormwater management requirements of the DSSR for this project as follows:

- Redeveloped areas within the project limit of disturbance shall employ runoff reduction practices to achieve a 50% reduction in the effective imperviousness based on the existing condition;
- No increase to the rate, volume or duration of flow to a new or existing point of discharge during the Conveyance Event; and
- No increase to the rate, volume or duration of flow to a new or existing point of discharge during the Flooding Event.

The entire system has been modeled to reflect the currently acceptable rainfall intensities. The current regulatory storm events are published by the State of Delaware, Department of Natural Resources and Environmental Control (DNREC) in the table "Rainfall Depths for Delaware," Ref: NOAA Atlas 14 Volume 2, Version 3; effective date January 1, 2007. The 1-, 10-, and 100-year frequency storm events for New Castle County are 2.7 inches, 4.8 inches, and 8.0 inches, respectively.

II. NARRATIVE

A. LOCATION

The site is situated at the southeast corner of the intersection of Foulk Road (Delaware Route 261) and Silverside Road, in Brandywine Hundred, New Castle County, Delaware. The property is bound to the west by Foulk Road and to the north by Silverside Road. The existing Chatham residential development adjoins the property to the east. The site is located within the Shellpot Creek Watershed. Please refer to Appendix A for the Site Location Sketch.

B. PRE-DEVELOPMENT CONDITION

The property is currently developed with an existing, abandoned Getty Service Station on the first parcel and an existing Retail Store on the second parcel. The land cover in the 2007 aerial photograph appears similar to the surveyed condition. The first parcel, situated on the corner of Foulk Road and Silverside Road, is paved to the right-of-way lines. There is an area of lawn cover located behind the service station building, and a tree row located along the rear property line adjoining Chatham. Most of the second parcel of land cover is either building or existing pavement. No stormwater quantity or quality management facilities currently exist on the subject site. There is a current drainage issue at the back of the second parcel, where water ponds across a large area of the pavement surface behind the existing building. Please refer to Appendix A for the Location Sketch and Aerial Photograph Sketch.

The underlying soil types, according to the Soil Survey for New Castle County, are NtB - Neshaminy-Talleyville Urban Land Complex, a hydrologic soil group 'B' classified soil. Please refer to Appendix A for the Soil Survey Sketch detailing the location of the parcel.

The site generally drains from middle of the property to the street line or to the back of the site, with most of the Retail Store parcel draining toward the back of the site. Three (3) point-of-interests (POIs) have been identified for stormwater management. The first POI consists of surface runoff toward Foulk Road. The second POI consists of surface runoff toward Silverside Road. Under current conditions, runoff from the site drains in sheet flow into the public street and is intercepted by existing road storm inlets.

The third POI consists of surface runoff toward the rear of the property. Drainage from this area is routed toward two (2) existing inlets; one located within the paved area on 1708 Foulk Road near the rear property line, and a second located near the common property corner with Tax Parcel Nos. 06-054.00-072 and 06-054.00-073. Reportedly, the area around the first inlet is frequently ponded.

Appendix C contains computations detailing the hydrologic and hydraulic model of the existing site contributing surface runoff to each POI.

C. POST-DEVELOPMENT CONDITION

The proposed development includes the demolition of the existing service station building and appurtenances (gasoline pumps, canopy, underground fuel tanks, etc.). Demolition activities will be conducted under the State Brownfield Program. Redevelopment of the property includes construction of a 3,934-square-foot branch bank building with three (3) drive-in banking teller lanes, associated parking, and sidewalk pedestrian access facilities. The three (3) POIs remain the same as in the pre-development condition. However, the first inlet at POI 3 is proposed to be removed.

The total proposed impervious coverage under post-development conditions is approximately 0.686 acre. Existing impervious cover is approximately 0.748 acre, so the proposed development of the property will reduce the impervious cover by approximately 8.3%, which will result in a reduction of the rate and quantity of stormwater runoff from the site for all design storm events. Therefore, no adverse impact is anticipated to the downstream conveyance.

Runoff reduction practices to reduce the effective imperviousness to 50% in the Runoff Protection Volume (RPv) include a treatment train of grass filter strips flowing as sheet flow to turf open space.

Quality Management

Appendix B contains Delaware Urban Runoff Management Model (DURMM) 2.0 computations for RPv runoff reduction and DURMM 1.0 computations for sizing of the filter strips.

Each BMP treats an area where the land use cover changes from building to pavement/sidewalk or from lawn to impervious, as well as additional "non-change" impervious surface. Table 1 summarizes the land cover changes and total impervious treated by each BMP, demonstrating Water Quality Management is provided in accordance with DSSR requirements.

Table 1
Water Quality Management Cover Changes and Treatment

Point of Interest	Cover Change	Area
Area 1 (FS1)	Building to Pavement/Sidewalk	1,408 sf
	Lawn to Building/Impervious	0 sf
	Total Change	1,408 sf
	Total Impervious Treated	6,145 sf > 1,408
Area 2 (FS 2)	Building to Pavement/Sidewalk	1,418 sf
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Lawn to Building	314 sf
	Lawn to Impervious	637 sf
	Total Change	2,369 sf
	Total Impervious Treated	5,820 sf > 2,369
Area 3 (FS 3/4)	Building to Pavement/Sidewalk	610 sf
	Lawn to Building	653 sf
	Lawn to Impervious	4,051 sf
	Total Change	5,314 sf
	Total Impervious Treated	5,846 sf > 5,314

Quantity Management

Appendix D contains computations detailing the hydrologic and hydraulic model of the post-development condition contributing surface runoff to the POIs. Table 2 summarizes peak discharge rates and runoff volumes to each POI in the pre-development and post-development conditions. The combined runoff to the DelDOT drainage system (POI # 1 & 2)

Table 2
Peak Discharge Rates and Runoff Volumes

Storm	Storm Event	Peak Discharge at POI # 1		
Storm	Event	Pre-Development	Post Development *	
Cv (10	-Year)	1.82 cfs	1.48 cfs	
Fv (100)-Year)	3.05 cfs	2.85 cfs	

Storm Event	Peak Discharge at POI # 2		
Storm Event	Pre-Development	Post Development *	
Cv (10-Year)	1.85 cfs	1.77 cfs	
Fv (100-Year)	3.16 cfs	3.22 cfs	

Negligible increase for POI 2 at 100-year event, effectively 3.2 cfs each

Storm Event	Peak Discharge at POI # 1 & 2		
Storm Event	Pre-Development	Post Development *	
Cv (10-Year)	3.67 cfs	3.25 cfs	
Fv (100-Year)	6.20 cfs	6.07 cfs	

Storm Event	Peak Discharge at POI No. 3 (On-Site)		
Storm Event	Pre-Development	Post Development *	
Cv (10-Year)	2.76 cfs	2.64 cfs	
Fv (100-Year)	5.30 cfs	5.15 cfs	

	Storm Event	Peak Discharge at POI No. 3 (On- and Off-Site)		
	Storm Event	Pre-Development	Post Development *	
•	Cv (10-Year)	4.52 cfs	4.43 cfs	
	Fv (100-Year)	10.65 cfs	10.51 cfs	

As depicted in the table above, the post-development stormwater runoff peak rates have been attenuated to be equal to, or less than, the pre-development rates, in accordance with the DSSR and New Castle County Drainage Code, with the Flooding event at POI No. 2 rounded to the nearest 0.1 cfs at 3.2 cfs pre and post. When POI Nos. 1 and 2 are combined at the common inlet located within Foulk Road, all peak rates are attenuated.

The post-development runoff volumes have been attenuated to be equal to, or less than, the pre-development rates. Therefore, the proposed site stormwater discharges are not expected to adversely impact the drainage conditions on or adjacent to the site.

Analysis Point #3 is an existing BDWM Type 1 Inlet located within a shallow sump on the adjoining residential properties. Both On-Site and Off-Site contributory areas draining to the inlet have been delineated and incorporated into the HydroCAD model. Analysis results provided in Table 1 show a reduction in both peak discharge and runoff volume to the inlet for each design storm event, corresponding to a post-development ponding elevation that matches or is slightly reduced from the pre-development elevation. The ponding area is situated at least 10 feet away from the existing dwellings located on the adjacent properties and from the proposed bank building. Therefore, the requirements of Section 12.04.001.E.1 of the New Castle County Drainage Code are met.

D. METHODOLOGY

Peak Discharge Management

HydroCAD Stormwater Modeling System, Version 8.00, was used to complete the hydrologic computations, including calculation of composite CNs (unless noted otherwise), Tc, sub-area hydrographs, and hydraulic analysis by routing sub-area

hydrographs through associated reaches and pond reservoirs. HydroCAD is DNREC-approved software that uses U.S. Department of Agriculture (USDA) — Natural Resource Conservation Service (NRCS) methodology to model a drainage area and compute the amount of run-off given a specific rainfall event. Rainfall Depths for Delaware, published by DNREC, effective date January 1, 2007, were taken from NOAA Atlas 14, Volume 2, Version 3. The HydroCAD input and output data is provided in Appendix C for pre-development and in Appendix D for post-development conditions.

Quality Management

The proposed parking areas are designed to flow across grass filter strips to provide stormwater quality management through Green Technology BMPs, in accordance with the DSSR. The design and modeling of each filter strip was performed based on the DNREC publication "Green Technology: The Delaware Urban Runoff Management Approach — A Technical Manual for Designing Nonstructural BMPs To Minimize Stormwater Impacts From Land Development," dated January 2004.

The DURMM 1.0 spreadsheet was used to design the stormwater quality management for the proposed filter strips based on a minimum 80% TSS removal rate.

The hydrologic and hydraulic data for each of the sub-drainage areas was input into a separate DURMM spreadsheet for each sub-drainage area. Hydrologic data used includes the individual areas of land cover (impervious surfaces and pervious areas) and segments of the Tc path. The SCS Soil-Cover Complex hydrology method is built into the DURMM. This is used to calculate run-off volumes for the sub-drainage area based on the supplied hydrologic data input. Typical pollutant concentration data for a select group of pollutant constituents of stormwater runoff is also built into the DURMM, yielding a total pollutant loading for the sub-drainage area.

The DURMM model incorporates selected BMP stormwater management devices for pollutant removal. Each BMP has specific removal properties for the selected pollutant constituents. These removal properties may vary, based on relative ratios of facility surface area to sub-drainage area and influent pollutant concentration.

The DURMM Water Quality Computations are provided in Appendix B.

Time of Concentration (Tc) Rationale

The National Engineering Handbook, Chapter 4, defines Tc as "the time it takes for run-off to travel from the hydraulically most distant part of the storm area to the watershed outlet or other point of reference." The DURMM model uses this methodology, but specifies whether runoff originating from impervious or pervious surfaces is most representative of the true Tc. SCS methodology divides Tc path

into three (3) types of surface flow: sheet flow; shallow concentrated flow; and channel flow, as applicable for the actual path in question. The length, slope, and cover type all factor into the calculation of the Tc.

Runoff Curve Number (CN) Rationale

The CN is a run-off factor that takes into account land use and soil types. The CN indicates the run-off potential of a given area of land. The CNs developed for use in the NRCS Technical Release 55 "Urban Hydrology for Small Watersheds" (TR-55) are the values used in most circumstances. However, the values presented in the TR-55 manual do not take into account the disconnection of impervious surfaces resulting from the use of Green Technology BMPs throughout the site.

The "Post-Development" condition for the site provides for the disconnection of impervious surfaces through the use of filter strips and swales. The DURMM model calculates a weighted CN for each drainage area that incorporates a Green Technology BMP. It is Duffield Associates' opinion that it is appropriate to model the post-development runoff with DURMM generated CNs, as these values better represent the low impact development style of the project design. DURMM calculates adjusted CN values for the RPv, Cv and Fv events, which were used in the HydroCAD model.

Off-Site Drainage Areas

The existing site sets higher than the existing grades along the perimeter of the property. Also, while a large part of the Retail Store property drains toward the back of the site, the existing entrance is sloped toward Foulk Road. All drainage flows from the interior of the site toward the property boundaries. Drainage along the existing street frontages is maintained within a gutter line along the curbline and across each existing entrance. Therefore, the site receives no off-site drainage.

E. INSPECTION AND MAINTENANCE.

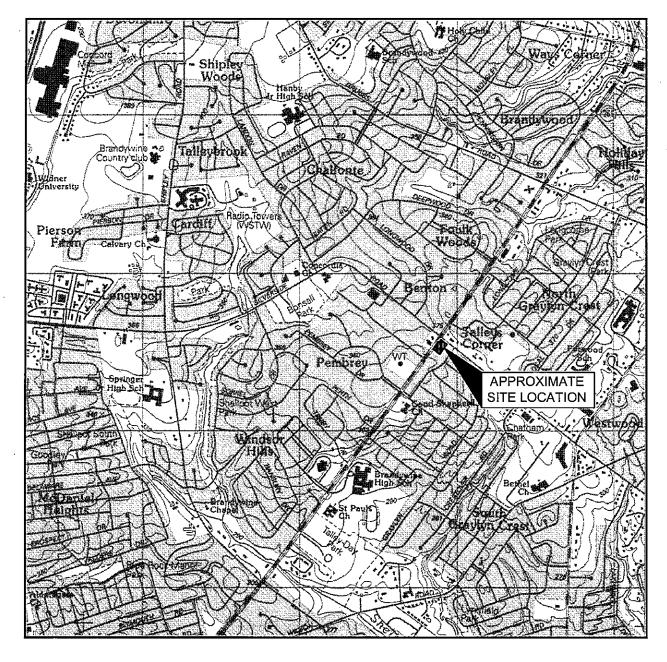
Filter Strip

There should be semi-annual regular inspections of the facility, once before new growth emerges in the spring and once at seed dispersal in the fall. The filter strip should also be inspected after severe storm events. Visible accumulations of sediment at the lip of the filter strip should be removed with a flat shovel every spring and after large storms. Filter strips should be mowed regularly to maintain a dense stand. A mulching mower should be used to ensure that nutrients are recycled and that excessive clippings do not build up. Mow no lower than 3 inches to promote a healthy dense turf. For warm season grasses, cut down standing stalks to no lower than 12 inches in spring, just before new growth emerges. During the peak growing season, the grass filter strip should be mowed once a week. The soil

should be tested annually to ensure proper pH and fertility. For more information, see Chapter 2.3 of the DNREC Green Technology Guidance Manual.

F. CONSTRUCTION SITE CONDITIONS

Erosion and sediment control measures are designed to capture any sediment-laden runoff, prior to it leaving the site, and are in accordance with the DSSR and the DNREC Erosion and Sediment Control Handbook. A Pre-Bulk and Post-Bulk phasing is proposed. Super silt fence, stabilized construction entrances, temporary seeding and mulching, and permanent vegetative cover are the key elements of the erosion and sedimentation control practices for this project.


G. CONCLUSION

Runoff reduction practices include a treatment train of grass filter strips flowing as sheet flow to turf open space. The effective imperviousness is less than 50% in the Runoff Protection Volume (RPv) and the overall reduction in imperviousness will result in a reduction of the rate and quantity of stormwater runoff from the site for all design storm events. Therefore, no adverse impact is anticipated on this redevelopment project.

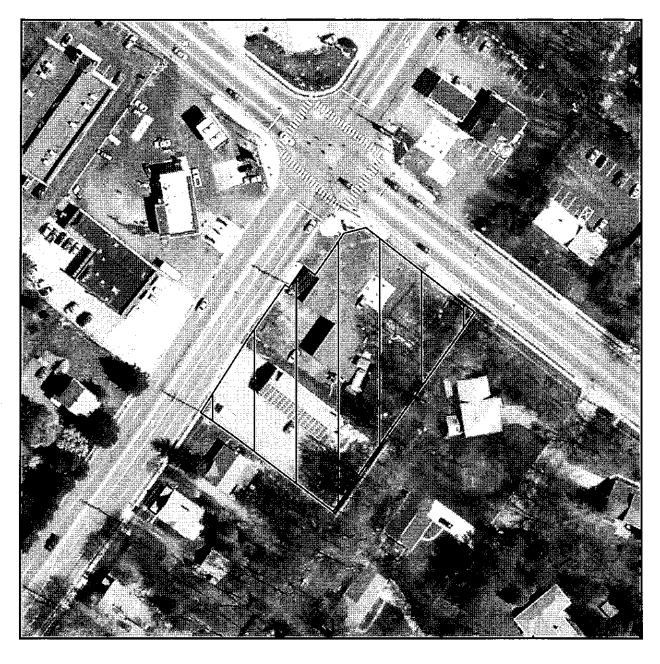
\9151CA.0830-SWM-R0.RPT

APPENDIX A

SITE INFORMATION SITE LOCATION SKETCH SOIL SURVEY SKETCH

NOTE:

THIS LOCATION SKETCH IS ADAPTED FROM THE U.S.G.S. TOPOGRAPHIC MAP, 7.5 MINUTE SERIES, FOR WILMINGTON NORTH, DELAWARE, 1993.


DATE: 1 JULY 2009	SITE LOCATION SKETCH	DESIGNED BY: MFP	DUFFIELD
SCALE: 1"=2000'	REDEVELOPMENT PROJECT	DRAWN BY: MFP	ASSOCIATES Countents in the Generators 5400 LIMISTONE ROAD
PROJECT NO. 9151.CA	FOULK ROAD	CHECKED BY: CMK	WILMINGTON, DE 19608-1232 TEE (302)239-6634 FAX (302)239-6485 OFFICES IN DELAWARE MARYLAND
SHEET;	WILMINGTON ~ NEW CASTLE COUNTY ~ DELAWARE	FILE: A9151CA-Loc	PENNSYLVANIA AND NEW JERSEY VE April 2016

NOTE:

THIS LOCATION SKETCH IS ADAPTED FROM A SOIL SURVEY FOR NEW CASTLE COUNTY, DELAWARE PUBLISHED BY UNITED STATED DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE ON SHEET 3, 4, 7 AND 8.

DATE: 1 JULY 2009	SOILS SURVEY SKETCH	DESIGNED BY: MFP	DUFFIELD
SCALE: 1" = 2000'	REDEVELOPMENT PROJECT	DRAWN BY: MFP	ASSOCIATES Consultants in the Consciences 3400 LIMESTONE ROAD
PROJECT NO. 9151.CA	FOULK ROAD	CHECKED BY: CMK	WILMINGTON, DE 19808-1222. TEL (302)239-6445 FAX (302)239-6445 OFFICES IN DELAWARE, MARYLAND PENNSYLVANIA AND NEW JERSEY.
SHEET: WI	ILMINGTON ~ NEW CASTLE COUNTY ~ DELAWARE	FILE: A9151CA-Loc	PENNSYLVANIA AND NEW JERSEY PARTIE OF THE PROPERTY OF THE PRO

NOTE:

THIS LOCATION SKETCH IS ADAPTED FROM 2007 AERIAL PHOTOGRAPHY BY STATE OF DELAWARE, USGS, KENT COUNTY, SUSSEX COUNTY, NEW CASTLE COUNTY AND THE CITY OF DOVER, AS PUBLISHED BY THE DELAWARE DATAMIL.

DATE: 1 JULY 2009	2007 AERIAL PHOTO SKETCH	DESIGNED BY: MFP	DUFFIELD
SCALE: 1''=2000'	REDEVELOPMENT PROJECT	DRAWN BY: MFP	ASSOCIATES Completes in the Georgeous 5-400 LIMESTONE ROAD
PROJECT NO. 9151.CA	FOULK ROAD	CHECKED BY: CMK	WILMINGTON, DE 19608-1232 THE (300)239-6634 FAX (302)239-8485 OFFICES IN DELAWARE MARYLAND
SHEET: FIGURE 3	WILMINGTON ~ NEW CASTLE COUNTY ~ DELAWARE	FILE: A9151CA-Loci	PENNSYLVANIA AND NEW JERSEY B-VALL DEVICE PROPERTY OF COMMERCENCY (C April 2016

APPENDIX B

WATER QUALITY CALCULATIONS

PROJECT: **DRAINAGE SUBAREA ID:**

REDEVELOPMENT TEST TMDL Watershed: Shellpot Creek, above Rt. 13

DURMM OUTPUT WORKSHEET

Site Data	
Contributing Area to BMPs (ac.)	
C.A. RCN	
Subarea LOD (ac.)	
Upstream Subarea ID	

Upstream Subarea LOD (ac.) Combined LOD with Upstream Areas (ac.) Combined RCN with Upstream Areas (ac.)

TMDL-TN (lb/ac/yr) TMDL-TP (lb/ac/yr) TMDL-TSS (lb/ac/yr) **BMP Selection**

BMP 1	BMP 2	BMP 3	BMP 4
N/A			
0.43			
6.30			
89.78			
0.18		·	<u> </u>
0.00	0.00	0.00	.0
		0 : 1	
0.18			
90			
0.18			

Sheetflow to

turf open space

DURMM v2.beta.110802

BMP 5

0.00

Resource Protection Event (RPV)

RPv for Contributing Area (in.) Req'd RPv Reduction for Contributing Area (in.) Req'd RPv Reduction for Contributing Area (%) C.A. allowable discharge rate (cfs) Unmanaged Polluant load, TN (lbs/ac/yr)

Unmanaged Polluant load, TP (lbs/ac/yr) Unmanaged Polluant load, TSS (lbs/ac/yr)

BMP Runoff Reduction Performance

RPv runoff volume after all reductions (in.)

Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met?

BMP TMDL Performance

Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr)

Offsets Requirements RPv Offset (cu. ft.)

1874 21	1.93
	0.57
	29%
	0.01
	12.43
	1.68
5499,68	:373

Filter strip

BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
1.61	1.04	N/A	N/A	N/A
0.32	0.89	N/A	N/A	N/A
17%	0.46	N/A	N/A	N/A
No	OK	N/A	N/A	N/A

9,95	5.97	#N/A	#N/A	#N/A
1.34	0.81	#N/A	#N/A	#N/A
298	179	#N/A	#N/A	#N/A

162	N/A	N/A	N/A	N/A

Conveyance Event (Cv)

Cv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Cv runoff volume after all reductions (in.)

組みが	1	3.66			
		0.14			
BMP 1					

BMP 1	BMP 2	BMP3	BMP 4	BMP 5
3.59	3.44	#N/A	#N/A	#N/A

Flooding Event (Fv)

Fv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Fv runoff volume after all reductions (in.)

6.78	
0.41	
BMP 1	

BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
6.78	6.78	#N/A	#Ñ/A	#N/A

Adjusted Subarea Data for Downstream DURMM Modeling

Contributing Area (ac.) C.A. RCN LOD Area (ac.) Weighted Target Runoff (in.) Adjusted CN after all reductions

Adjusted RPv (in.) Adjusted Cv (in.) Adjusted Fv (in.)

	0.18
	90
	0.18
TEAC	1.37
	72.79
	1.04
	~

Adjusted Subarea Data for H&H Modeling

Resource Protection Event, RPv Conveyance Event, Cv Flooding Event, Fv

Rain (in.)	RCN
2.7	N/A
4.8	87.65
8	89.78

PROJECT:

TMDL Watershed:

DRAINAGE SUBAREA ID:

REDEVELOPMENT TEST 2 Shellpot Creek, above Rt. 13

DURMM OUTPUT WORKSHEET

Site Data Contributing Area to BMPs (ac.)

C.A. RCN

Subarea LOD (ac.)

Upstream Subarea ID

Upstream Subarea LOD (ac.)

Combined LOD with Upstream Areas (ac.)

Combined RCN with Upstream Areas (ac.)

TMDL-TN (lb/ac/yr)

TMDL-TP (lb/ac/yr)

TMDL-TSS (lb/ac/yr)

BMP Selection

	•		DURMM v2	2.beta.110802
0.16				
91				
0.16				
vi Agricus is dije qa r o	0	0	0	
0.00	0.00	0.00	0.00	
0.16				
88.75				
6.30				
0.43				
N/A				

BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
Filter strip	Sheetflow to turf open space			

Resource Protection Event (RPV)

RPv for Contributing Area (in.)

Req'd RPv Reduction for Contributing Area (in.)

Req'd RPv Reduction for Contributing Area (%)

C.A. allowable discharge rate (cfs)

Unmanaged Polluant load, TN (lbs/ac/yr)

Unmanaged Polluant load, TP (lbs/ac/yr)

Unmanaged Polluant load, TSS (lbs/ac/yr)

BMP Runoff Reduction Performance

RPv runoff volume after all reductions (in.)

Total RPv runoff reduction (in.)

Total RPv runoff reduction (%)

Reg'd runoff reduction met?

BMP TMDL Performance

Adjusted pollutant load, TN (lb/ac/yr)

Adjusted pollutant load, TP (lb/ac/yr)

Adjusted pollutant load, TSS (lb/ac/yr)

Offsets Requirements

RPv Offset (cu. ft.)

	1.87
	0.51
	27%
	0.01
1	1.94
	1.61
	358

BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
1.56	1.01	N/A	N/A	N/A
0.31	0.87	N/A	N/A	N/A
17%	0.46	N/A	N/A	N/A
No	OK	N/A	N/A	N/A

9.55	5.73	#N/A	#N/A	#N/A
1.29	0.77	#N/A	#N/A	#N/A
287	172	#N/A	#N/A	#N/A

113	N/A	N/A	N/A	N/A

Conveyance Event (Cv)

Cv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Cv runoff volume after all reductions (in.)

BM	P1
	0.12
	3.56

0.12				
BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
3.48	3.34	#N/A	#N/A	#N/A

Flooding Event (Fv)

Fv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Fv runoff volume after all reductions (in.)

ŝ		6.66
		0.36
	BAD	1 1

BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
6.66	6.66	#N/A	#N/A	#N/A

Adjusted Subarea Data for Downstream DURMM Modeling

Contributing Area (ac.)

C.A. RCN

LOD Area (ac.)

Weighted Target Runoff (in.)

Adjusted CN after all reductions

Adjusted RPv (in.)

Adjusted Cv (in.)

Adjusted Fv (in.)

0.16
91
0.16
1.37
 71.96
1.01

Adjusted Subarea Data for H&H Modeling

Resource Protection Event, RPv

Conveyance Event, Cv

Flooding Event, Fv

Rain (in.)	RCN
2.7	N/A
4.8	86.65
8	88,75

PROJECT: REDEVELOPMENT TEST DRAINAGE SUBAREA ID: 3 TMDL Watershed: Shellpot Creek, above Rt. 13

DURMM OUTPUT WORKSHEET

DURMM OUTPUT WORKSHE	ET				4
Site Data				DURMM	v2.beta.11080
Contributing Area to BMPs (ac.)	0.1				
C.A. RCN	91	ĺ			
Subarea LOD (ac.)	0.1	1			
Upstream Subarea ID	E . E E E E E E E E	0	() HARREST BARRES	
Upstream Subarea LOD (ac.)	0.00	0.00	0.00	0.00	5
Combined LOD with Upstream Areas (ac.)	0.10		•		
Combined RCN with Upstream Areas (ac.)	90.60				
TMDL-TN (lb/ac/yr)	6.30				
TMDL-TP (lb/ac/yr)	0.43				
TMDL-TSS (lb/ac/yr)	N/A				
BMP Selection	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
	Filter strip	Sheetflow to turf open space			
esource Protection Event (RPV)			<u> </u>	<u></u>	
RPv for Contributing Area (in.)	1.98				
Req'd RPv Reduction for Contributing Area (in.)	0.62				
Req'd RPv Reduction for Contributing Area (%)	31%				
C.A. allowable discharge rate (cfs)	0.01				
Unmanaged Polluant load, TN (lbs/ac/yr)	12.84				
Unmanaged Polluant load, TP (lbs/ac/yr)	1.73				
Unmanaged Polluant load, TSS (lbs/ac/yr)	385				
BMP Runoff Reduction Performance	BMP 1	BMP 2	ВМР 3	BMP 4	BMP 5
RPv runoff volume after all reductions (in.)	1.66	1.07	N/A	N/A	N/A
Total RPv runoff reduction (in.)	0.33	`0.91	N/A	N/A	N/A
Total RPv runoff reduction (%)	17%	0.46	N/A	N/A	N/A
Req'd runoff reduction met?	No	ОК	N/A	N/A	N/A
BMP TMDL Performance					
	10.27	6,16	#N/A	#N/A	#N/A
Adjusted pollutant load, TN (lb/ac/yr)			4151./6	#N/A	#N/A
Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr)	1.39	0.83	#N/A	# #N/A	HIN/A
	1.39 308	0.83 185	· · · · · · · · · · · · · · · · · · ·	#N/A	#N/A
Adjusted pollutant load, TP (lb/ac/yr)			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u> </u>

Conveyance Event (Cv)

Cv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Cv runoff volume after all reductions (in.)

:::::	1::271	3.75
		0.08
	ВМР	1

BMP 1	BMP 2	BMP 3	BMP4	BMP 5
3.67	3.52	#N/A	#N/A	#N/A

Flooding Event (Fv)

Fv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Fv runoff volume after all reductions (in.)

44.1	`;i.	6.	88
		0.:	23

BMP 1	BMP 2	BMP 3	BMP4	BMP 5
6.88	6.88	#N/A	#N/A	#N/A

Adjusted Subarea Data for Downstream DURMM Modeling

 Contributing Area (ac.)
 0.10

 C.A. RCN
 91

 LOD Area (ac.)
 0.10

 Weighted Target Runoff (in.)
 1.37

 Adjusted CN after all reductions
 73.46

 Adjusted RPv (in.)
 1.07

 Adjusted Cv (in.)
 Adjusted Fv (in.)

Adjusted Subarea Data for H&H Modeling

Resource Protection Event, RPv Conveyance Event, Cv Flooding Event, Fv

Rain (in.)	RCN
2.7	N/A
4.8	88.45
8	90.60

PROJECT: REDEVELOPMENT TEST DRAINAGE SUBAREA ID:

Shellpot Creek, above Rt. 13

1.79

0.43

24%

0.01

11.33

1.53

340

1.49

0.30

17%

9.06

1.22

272

BMP 2

OK

0.96 N/A

0.84 N/A

0.47 N/A

5.44

0.73

163

N/A

BMP 1

No

TMDL Watershed: **DURMM OUTPUT WORKSHEET**

site bata			
Contributing	Area	to RMPs /s	ac l

C.A. RCN

Subarea LOD (ac.)

Upstream Subarea ID

Upstream Subarea LOD (ac.)

Combined LOD with Upstream Areas (ac.)

Combined RCN with Upstream Areas (ac.)

TMDL-TN (lb/ac/yr) TMDL-TP (lb/ac/yr) TMDL-TSS (lb/ac/yr)

BMP Selection

			DURMM v2.beta.110802
0.07			
87			
0.07			
0	0	0	
0.00	0.00	0.00	0.00
0.07			
87.43			
6.30			
0.43			
N/A			

BMP 1 BMP 2 BMP 3 BMP 4 **BMP 5** Sheetflow to Filter strip turf open space

BMP 3

N/A

#N/A

#N/A

#N/A

N/A

BMP 4

N/A

#N/A

#N/A

#N/A

N/A

N/A

N/A

N/A

BMP 5

N/A

#N/A

#N/A

#N/A

N/A

N/A

N/A

N/A

Resource Protection Event (RPV)

RPv for Contributing Area (in.)

Req'd RPv Reduction for Contributing Area (in.) Reg'd RPv Reduction for Contributing Area (%)

C.A. allowable discharge rate (cfs)

Unmanaged Polluant load, TN (lbs/ac/yr)

Unmanaged Polluant load, TP (lbs/ac/yr)

Unmanaged Polluant load, TSS (lbs/ac/yr)

BMP Runoff Reduction Performance

RPv runoff volume after all reductions (in.)

Total RPv runoff reduction (in.)

Total RPv runoff reduction (%) Reg'd runoff reduction met?

BMP TMDL Performance

Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr)

Adjusted pollutant load, TSS (lb/ac/yr)

Offsets Requirements

RPv Offset (cu. ft.)	1444
Conveyance Event (Cv)	
Cv runoff volume (in.)	3.42

Stds-based allowable discharge (cfs)

BMP Performance

Cv runoff volume after all reductions (in.)

3.42	
0.05	
BMP 1	BMP 2

BMP 3 BMP 4 BMP 5 3.35 3.22 #N/A #N/A #N/A

Flooding Event (Fv)

Fv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Fv runoff volume after all reductions (in.)

6.50	
0.16	
RMP 1	RMP 2

BMP1	BMP 2	BMP 3	BMP 4	BMP 5
6.50	6.50	#N/A	#N/A	#N/A

Adjusted Subarea Data for Downstream DURMM Modeling

Contributing Area (ac.)

C.A. RCN

LOD Area (ac.) Weighted Target Runoff (in.)

Adjusted CN after all reductions

Adjusted RPv (in.)

Adjusted Cv (in.)

Adjusted Fv (in.)

0.0)7
	7
0.0	17
1.3	:7
70.8	39
0.9	6

Adjusted Subarea Data for H&H Modeling

Resource Protection Event, RPv

Conveyance Event, Cv.

conveyance event, ev	,
Flooding Event, Fv	

Rain (in.)	RCN
2.7	N/A
4.8	. 85.37
8	87.43

DURMM ANALYS	SIS		POS	ST-DEVELC	PMENT SUE	BAREA				
PROJECT:	1712 Foulk	Road - Drive	In Bank				PREPARED BY			
MUNICIPALITY:			COUNTY:	NEW	CASTLE		Duffield Ass	ociates, Inc.		
SUBAREA:	SILVERSID	E	HYDRO	GRAPH			DA	TE:		
BMP:	FILTER ST	RIP 1 - NEW	PARKING F	RONT	•		February	17, 2010	•	
			[DURMM IN	IPUT DATA	:				
GRADED PERVIOUS	CODE	HSG	AREA	AREA(ac)	IMPER'	VIOUS	LENGTH/AR.	WIDTH/ NO.	AREA(ac)	
LANDSCAPE-GD	9	В	499	0.01	PARKING LOT	21	5,669	1	0.13	
LAWNS-GD	11	В	1,188	0.03	SIDEWALKS	26	476	1	0.01	
		-	-							
·		-	-							
		-	-							
		_	_							
CN & ACRES OF G	RADED PER	VIOUS	60.7	0.04	CN & AC	RES OF IMPE	RVIOUS	99.4	0.14	
NATURAL PERVIOUS	CODE	HSG	AREA	AREA(ac)	TOTA	AL ACREAGE	0.18	% IMPERV.	78%	
							ECTION ADJU		l	
					PERCENT IN	/IPERVIOUS		WETTED	AREAS	
					WETTED	LENGTH		IN SOURCE		
					WETTER	WIDTH		IN BMPs	0.03	
		<u> </u>			% FLOV	V PATH	-	TOTAL	0.03	
CN & ACRES OF N	ATURAL PER	VIOUS			PERVIC	US CN		%IMPERV.	19%	
EVENT	n e	CIP.	NATURAL	GRADED	IMPERV.	TO BMPs	FROM BMPs	REDUCTION	RUNOFF(in.)	
QUALITY		.0	101101010	27	992	1,019	641	37%	0.85	
BANKFULL		.3		81	1,657	1,738	1,413	19%	1.88	
CONVEYANCE		.2		207	2,627	2,834	2,693	5%	3.58	
FLOODING		.3		406	3,702	4,109	4,147	-1%	5.52	
FLOW PATHS		FLOW PARA	METERS	400	•		PARAMETER		0.02	
TEOWIAIIIO	LENGTH	SLOPE	Manning's n	SURFACE	FLOW %	LENGTH	SLOPE	SIDES	воттом	
UPPER	5	0.0083	0.011	1	100%	1	1.0000	1.0	1.0	
LOWER	60	0.0083	0.011	1	100%	1	1.0000	1.0	1.0	
% RUNOFF IMPERV.	97%	Tc Path	IMPERV	<u>'</u>	10070	· · · · · · · · · · · · · · · · · · ·	1.0000	1.0	1.0	
ROUTING	3770	10 Tatil	SHEET	DEPTH	VELOCITY	SWALE	TOTAL	PEAK		
RESULTS:		OK	TIME (hr.)	(ft.)	(fps.)	TIME (hr.)	TIME (min.)	FLOW (cfs)	CURVE NO	
TEOOLIO.	STORAGE	1.62	0.003	0.04	10.79	0.00	1 11012 (111111.)	FLOW (CIS)	<u> </u>	
QUALITY	la/P	0.162	0.003	0.04	10.79	0.00	1.6	0.32	86.1	
QUALITI	la/F		E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
	etopace.						#-DIV/U!	#DIV/0!	#DIV/0!	
DANIZEL (L.)	STORAGE 'a/D	1.70	0.003	0.06	14.24	0.00	1.3	0.70	85.5	
BANKFULL	la/P	0.103	0.019	0.06	14.24 #DIV/01	0.00	#01//01	#5876	#01/101	
	OTODAOT		E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
CONVEYANCE	STORAGE	1.72	0.002	0.07	17.93	0.00	1.0	1.35	85.3	
CONVEYANCE	la/P	0.066	0.015	0.07	17.93	0.00	#DN ('0'		#DN //21	
	07001		E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
FLOODING	STORAGE	1.79	0.002	0.09	20.89	0.00	0.9	2.09	84.8	
FLOODING	la/P	0.049	0.013	0.09	20.89	0.00		l		
		RIOSWAL	E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
· · · · · · · · · · · · · · · · · · ·		<u></u>			ANT LOADI			1	ı	
PARAMETE		TSS	PP	SP	ON	NH3	NO3	Cu	Zn	
IMPERVIOUS I			0.22	0.06	1.22	0.43	0.30	0.030	0.140	
GRADED PERVIOUS I			1.05	0.75	1.79	0.49	0.32	0.014	0.075	
ATURAL PERVIOUS I										
IMPERVIOUS			6.3	1.6	34.4	12.0	8.4	8.0	3.9	
RADED PERVIOUS			0.8	0.6	1.4	0.4	0.2	0.0	0.1	
IATURAL PERVIOUS										
TOTAL SUBAREA	A LOAD	2,011	7	2	36	12	9	0.8	4.0	

8/31/2011

DURMM A					DESIGN D	ATA & RE	SULTS			
		1712 Foulk I	Road - Drive	In Bank				PREPA	RED BY	
ML	JNICIPALITY:			COUNTY:	NEW (CASTLE		Duffield Ass	ociates, Inc.	
		SILVERSIDI			GRAPH				ATE:	
	BMP:	FILTER STE	RIP 1 - NEW	PARKING F	RONT			February	17, 2010	
			POS	STDEVEL	OPMENT	LOAD DAT	ΓΑ			
	PA	RAMETER	TSS	PP	SP	ON	NH3	NO3	Cu	Zn
	CONCENTRA		69.7	0.25	80.0	1.24	0.43	0.30	0.029	0.138
INPUT	MASS LOAD)S (g)	2,011	7	2	36	12	9	1	4
	E IN SUBARE		2,011	7	2	36	12	9	1	4
% PREDE	EVELOPMEN	T LOAD	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
BMP DE	SIGN AND	PERFOR	MANCE		BIO. OK?	ок	AREA OK?	ОК	LOAD OK?	ок
CII TED	CN	61	LENGTH	99	WIDTH	12	SLOPE	1%	COVER#	1.00
FILTER STRIPS	INF	PUT LOAD	2,011	7.1	2.2	35.7	12.4	8.7	0.84	3.99
0111110	OUTP	UT CONC .	10.9	0.16	0.07	0.69	0.23	0.28	0.007	0.017
% FLOW		PUT LOAD	198	2.8	1.3	12.5	4.2	5.0	0.14	0.31
100.0%	PERCENT		90%	60%	39%	65%	66%	42%	84%	92%
1188	INEAR LOA	D (cu.ft./ft.)	10.02	ТО ВМР	1019	FROM BMP	641	RUNOFF R	EDUCTION	37%
	BUFFER		LENGTH	·	WIDTH	1	DEDTU		INF. RATE	
BIO-		PUT LOAD	LENGIA		WIDIN		DEPTH		INF. KATE	
RETENTION		UT CONC .								
% FLOW		PUT LOAD								
	PERCENT I									
	HYDRAULIC	LOAD (ft.)		то вмр		FROM BMP		RUNOFF R	EDUCTION	
•	'	•								<u> </u>
BIOSWALE	CN		LENGTH		SIDES:1		воттом		SWALE OK	#DIV/0!
QUALITY	SLOPE		COVER		#N	I/A	VELOCITY	#DIV/0!	DEPTH	0.00
DESIGN		PUT LOAD								
		UT CONC .								
% FLOW	PERCENT I	PUT LOAD								
	RESIDENCE		#DIV/0!	ТО ВМР		FROM BMP		DI INOEE D	EDUCTION	
		CHECK DA		POND EL.	AREA		EII TED EI		FACE EL.	OUTELO
DIOGMAI E		NO. DAMS		#DIV/0!	#DIV/0!				#DIV/0!	
BIOSWALE CAPACITY,	#DIV/0!	LENGTH (ft)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
STABILITY &	CAPACITY	WIDTH (ft.)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
VOLUMES	DEPTH	STONE (in.)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0.00	HEIGHT	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
INICH 7	% SURFACE		LENGTH:		WIDTH:		DEPTH:		INF. RATE	
INFILT- RATION.	INFILTRAT		LLING ITI:		ANIDIU'		DEFIN.		INI . IVATE	
TRENCH	INFILTRAT		23.8	TO BMP		FROM BMP		RUNOFF RE	IL EDUCTION	
					RING BM	P PERFO	RMANCE			
н.г	DAI	RAMETER	TSS	PP	SP	ON	NH3	NO3	Cu	Zn
OTDID 9 OW										
STRIP & SWA			198	2.8	1.3	12.5	4.2	5.0	0.14	0.31
ALL BI	MPs OUTPU		198	2.8	1.3	12.5	4.2	5.0	0.14	0.31
	PERCENT I		90%	60%	39%	65%	66%	42%	84%	92%
	S	UMMARY	OF SURF	ACE AND	INFILTRA	ATION BM	P PERFO	RMANCE		
01	UTPUT MASS	S LOAD (g)	198	2.8	1.3	12.5	4.2	5.0	0.14	0.31
	PERCENT I	REMOVAL	90%	60%	39%	65%	66%	42%	84%	92%
% PR	REDEVELOPI			N/A			N/A			
,, , , ,			IV/A	IV/A	N/A	N/A	I IN/A	N/A	N/A	N/A

DURMM ANALYS	SIS		POS	ST-DEVELC	PMENT SUE	BAREA			
PROJECT:	1712 Foulk	Road - Drive	In Bank			PREPARED BY			
MUNICIPALITY:			COUNTY:	NEW	CASTLE		Duffield Ass	ociates, Inc.	
SUBAREA:	FOULK		HYDRO	GRAPH			DA	TE:	
BMP:	FILTER STI	RIP 2 - NEW	PARKING F	RONT	•		February	17, 2010	
· · · · · ·		-,		DURMM IN	IPUT DATA	.:			
GRADED PERVIOUS	CODE	HSG	AREA	AREA(ac)	IMPER	VIOUS	LENGTH/AR.	WIDTH/ NO.	AREA(ac)
LANDSCAPE-GD	9	В	443	0.01	PARKING LOT	21	5,124	1	0.12
LAWNS-GD	11	В	765	0.02	SIDEWALKS	26	696	1	0.02
		-	-					-	
		-	-						
		-	-		Ï				
 -		· _	-				İ		
CN & ACRES OF G	RADED PER	VIOUS	60.6	0.03	CN & ACI	RES OF IMPE	RVIOUS	99.3	0.13
NATURAL PERVIOUS	CODE	HSG	AREA	AREA(ac)	TOTA	AL ACREAGE	0.16	% IMPERV.	83%
				(DISCONN	ECTION ADJU	STMENTS	
					PERCENT IN	/PERVIOUS		WETTED	AREAS
					WETTED			IN SOURCE	
					WETTER			IN BMPs	0.02
					% FLOV			TOTAL	0.02
CN & ACRES OF N	ATURAL PER	VIOUS			PERVIC			%IMPERV.	11%
EVENT	1	CIP.	NATURAL	GRADED	IMPERV.	TO BMPs	FROM BMPs	REDUCTION	RUNOFF(in.
QUALITY		.0		19	931	950	704	26%	1.10
BANKFULL		.3		58	1,561	1,619	1,427	12%	2.23
CONVEYANCE	<u> </u>	.2		147	2,478	2,625	2,529	4%	3.95
FLOODING		7.3		290	3,497	3,787	3,794	0%	5.93
FLOW PATHS							PARAMETER		0.00
1201111110	LENGTH	SLOPE	Manning's n	SURFACE	FLOW %	LENGTH	SLOPE	SIDES	воттом
UPPER	5	0.0100	0.011	1	100%	1	1.0000	1.0	1.0
LOWER	40	0.0100	0.011	1	100%	1	1.0000	1.0	1.0
% RUNOFF IMPERV.	98%	Tc Path	IMPERV					1112	
ROUTING			SHEET	DEPTH	VELOCITY	SWALE	TOTAL	PEAK	
RESULTS:		OK	TIME (hr.)	(ft.)	(fps.)	TIME (hr.)	TIME (min.)	FLOW (cfs)	CURVE NO
	STORAGE	1.10	0.003	0.04	11.40	0.00			
QUALITY	la/P	0.110	0.016	0.04	11.40	0.00	1.2	0.37	90.1
			E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	STORAGE	1.16	0.002	0.06	14.63	0.00			_
BANKFULL	la/P	0.070	0.013	0.06	14.63	0.00	0.9	. 0.76	89.6
	1001		E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	STORAGE	1.25	0.002	0.07	17.89	0.00			
CONVEYANCE	la/P	0.048	0.010	0.07	17.89	0.00	0.7	1.34	88.9
33	100/1		E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
1	STORAGE	1.32	0.002	0.00	20.59	0.00			
FLOODING	la/P	0.036	0.002	0.09	20.59	0.00	0.6	2.00	88.4
120001110	1601		E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
		DIOGWAL			<u>' </u>		יייייין אייי	#1010/01	#DIV/0!
PARAMETE	:D	700	1		ANT LOADI		1100		7.
		TSS	PP	SP	ON	NH3	NO3	Cu	Zn
IMPERVIOUS I		74	0.24	0.06	1.24	0.41	0.30	0.029	0.140
GRADED PERVIOUS		82	1.15	0.78	1.78	0.48	0.31	0.013	0.072
ATURAL PERVIOUS				4.5		45.5			
IMPERVIOUS	,,,,		6.2	1.6	32.6	10.9	7.9	0.8	3.7
PRADED PERVIOUS			0.6	0.4	1.0	0.3	0.2	0.0	0.0
IATURAL PERVIOUS			<u> </u>						<u> </u>
TOTAL SUBAREA	A LOAD	2,005	7	2	34	11	8	0.8	3.7

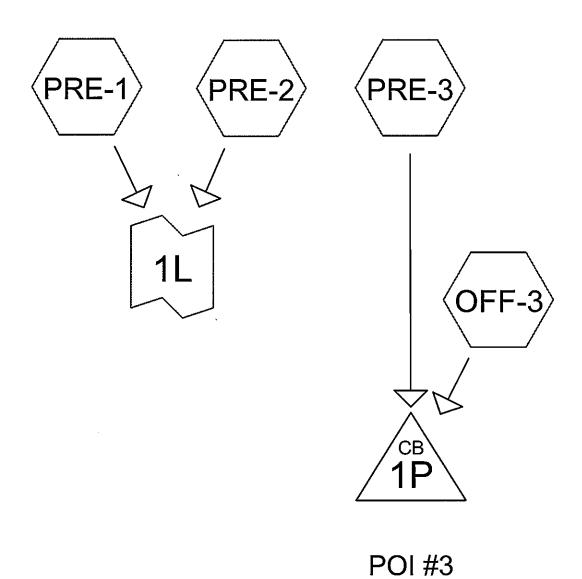
7802.CB-FS2.xls Effective April 2016 8/31/2011

ML	PROJECT:					ATA & RE	00210			
ML	PROJECT: 1712 Foulk Road - Drive In Bank						PREPARED BY			
	JNICIPALITY:	J		COUNTY:	NEW C	CASTLE		Duffield Ass	sociates, Inc.	
	SUBAREA;				GRAPH				NTE:	
	BMP:	FILTER ST	TRIP 2 - NEW PARKING FRONT					February	17, 2010	
			POS	STDEVELO	OPMENT !	LOAD DAT	Ά			
	PA	RAMETER	TSS	PP	SP	ON	NH3	NO3	Си	Zn
INPUT	CONCENTRA	ATION	74.5	0.25	0.08	1.25	0.42	0.30	0.029	0.139
INPUT	MASS LOAD)S (g)	2,005	7	2	34	11	8	1	4
	E IN SUBARE		2,005	7	2	34	11	8	1	4
% PREDI	EVELOPMEN	T LOAD	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
BMP DE	SIGN AND	PERFOR	MANCE		BIO. OK?	ок	AREA OK?	ок	LOAD OK?	ОК
EU TED	CN	61	LENGTH	109	WIDTH	6	SLOPE	1%	COVER#	1.00
FILTER STRIPS	INF	PUT LOAD	2,005	6.8	2.1	33.6	11.2	8.1	0.78	3.73
311(11)	OUTP	UT CONC .	20.5	0.17	0.07	0.78	0.26	0.28	0.011	0.035
% FLOW		PUT LOAD	410	3.4	1.5	15.5	5.1	5.6	0.21	0.70
100.0%	PERCENT		80%	50%	28%	54%	54%	31%	73%	81%
654	LINEAR LOA	D (cu.ft./ft.)	8.54	то вмр	950	FROM BMP	704	RUNOFF R	EDUCTION	26%
	II	1	I					ı	II	
BIO-	BUFFER		LENGTH		WIDTH		DEPTH		INF. RATE	· ·
RETENTION		PUT LOAD								
0/ 51 014/	╣———	UT CONC .								
% FLOW	PERCENT	PUT LOAD								
	HYDRAULIC	-	i	TO DI 10		EDOM DIAD		DUNOCC	EDUCTION	
	PIDRAULIC	LOAD (IL)		ТО ВМР		FROM BMP		RUNOFFR	EDOCTON	
BIOSWALE	CN		LENGTH		SIDES:1		воттом		SWALE OK	#DIV/0!
QUALITY	SLOPE		COVER		#N	I/A	VELOCITY	#DIV/0!	DEPTH	0.00
DESIGN	INF	PUT LOAD								
	OUTP	UT CONC .								
% FLOW		PUT LOAD								
	PERCENT I									
	RESIDENCE			TO BMP		FROM BMP		RUNOFF R	EDUCTION	
		CHECK DA	M DESIGN	POND EL.	AREA			0117771 0141		
							FILTER EL.			
BIOSWALE		NO. DAMS		#DIV/0!	#DIV/0!	#DIV/0!			#DIV/0!	
CAPACITY,	#DIV/0!	NO. DAMS LENGTH (ft)								#DIV/0!
CAPACITY, STABILITY &	#DIV/0!			#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0! #DIV/0!
CAPACITY,	#DIV/0! CAPACITY DEPTH	LENGTH (ft) WIDTH (ft.) STONE (in.)		#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!
CAPACITY, STABILITY &	#DIV/0! CAPACITY	LENGTH (ft) WIDTH (ft.)		#DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0!
CAPACITY, STABILITY & VOLUMES	#DIV/0! CAPACITY DEPTH 0.00	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT	#DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!
CAPACITY, STABILITY & VOLUMES	#DIV/0! CAPACITY DEPTH 0.00	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT		#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!
CAPACITY, STABILITY & VOLUMES INFILT-	#DIV/0! CAPACITY DEPTH 0.00	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT	#DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH:	#DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!
CAPACITY, STABILITY & VOLUMES INFILT- RATION.	#DIV/0! CAPACITY DEPTH 0.00	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME	#DIV/0! LENGTH: 23.9	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH:	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!
CAPACITY, STABILITY & VOLUMES INFILT- RATION.	#DIV/0! CAPACITY DEPTH 0.00 SURFACE INFILTRAT	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME	#DIV/0! LENGTH: 23.9	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! WIDTH:	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH:	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!	#DIV/0! #DIV/0! #DIV/0! #DIV/0!
CAPACITY, STABILITY & VOLUMES INFILT- RATION. TRENCH	#DIV/0! CAPACITY DEPTH 0.00 % SURFACE INFILTRAT INFILTRAT	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME S RAMETER	#DIV/0! LENGTH: 23.9 UMMARY	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP OF FILTE	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! WIDTH:	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! FROM BMP P PERFOR	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH: RMANCE NH3	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! RUNOFF RI	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! INF. RATE EDUCTION	#DIV/0! #DIV/0! #DIV/0! #DIV/0!
CAPACITY, STABILITY & VOLUMES INFILT- RATION. TRENCH STRIP & SW/	#DIV/0! CAPACITY DEPTH 0.00 SURFACE INFILTRAT INFILTRAT	LENGTH (ft.) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME S RAMETER LOAD (g)	#DIV/0! LENGTH: 23.9 UMMARY TSS 410	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP OF FILTE PP 3.4	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! WIDTH: ERING BM SP 1.5	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! FROM BMP P PERFOR	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH: RMANCE NH3	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! RUNOFF RI	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! INF. RATE EDUCTION Cu 0.21	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Zn
CAPACITY, STABILITY & VOLUMES INFILT- RATION. TRENCH STRIP & SW/	#DIV/0! CAPACITY DEPTH 0.00 6 SURFACE INFILTRAT INFILTRAT PAI ALE OUTPUT MPs OUTPUT	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME S RAMETER LOAD (g) T LOAD (g)	#DIV/0! LENGTH: 23.9 UMMARY TSS 410 410	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP OF FILTE PP 3.4 3.4	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! WIDTH: RING BM SP 1.5 1.5	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! FROM BMP P PERFOR ON 15.5 15.5	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH: RMANCE NH3 5.1 5.1	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! RUNOFF RI NO3 5.6 5.6	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! INF. RATE EDUCTION Cu 0.21 0.21	#DIV/0! #DIV/0! #DIV/0! #DIV/0! Zn 0.70
CAPACITY, STABILITY & VOLUMES INFILT- RATION. TRENCH STRIP & SW/	#DIV/0! CAPACITY DEPTH 0.00 SURFACE INFILTRAT INFILTRAT ALE OUTPUT PERCENT I	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME S RAMETER LOAD (g) T LOAD (g) REMOVAL	#DIV/0! LENGTH: 23.9 UMMARY TSS 410 410 80%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP OF FILTE PP 3.4 3.4 50%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! WIDTH: ERING BM SP 1.5 1.5 28%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! FROM BMP P PERFOR ON 15.5 15.5	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH: RMANCE NH3 5.1 5.1 5.4%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! RUNOFF RI NO3 5.6 5.6 31%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! INF. RATE EDUCTION Cu 0.21	#DIV/0! #DIV/0! #DIV/0! #DIV/0! Zn 0.70
CAPACITY, STABILITY & VOLUMES INFILT- RATION. TRENCH	#DIV/0! CAPACITY DEPTH 0.00 SURFACE INFILTRAT INFILTRAT ALE OUTPUT MPS OUTPUT PERCENT I	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME S RAMETER LOAD (g) T LOAD (g) REMOVAL SUMMARY	#DIV/0! LENGTH: 23.9 UMMARY TSS 410 410 80% OF SURF	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP OF FILTE PP 3.4 3.4 50%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! WIDTH: RING BM SP 1.5 1.5 28% INFILTRA	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! FROM BMP P PERFOR ON 15.5 15.5 54% ATION BM	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH: RMANCE NH3 5.1 5.1 54% P PERFOI	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! RUNOFF RI NO3 5.6 5.6 31%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! INF. RATE EDUCTION Cu 0.21 0.21 73%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Zn 0.70
CAPACITY, STABILITY & VOLUMES INFILT- RATION. TRENCH STRIP & SW/	#DIV/0! CAPACITY DEPTH 0.00 SURFACE INFILTRAT INFILTRAT ALE OUTPUT PERCENT I	LENGTH (ft) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME S RAMETER LOAD (g) T LOAD (g) REMOVAL SUMMARY	#DIV/0! LENGTH: 23.9 UMMARY TSS 410 410 80%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP OF FILTE PP 3.4 3.4 50%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! WIDTH: ERING BM SP 1.5 1.5 28%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! FROM BMP P PERFOR ON 15.5 15.5	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH: RMANCE NH3 5.1 5.1 5.4%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! RUNOFF RI NO3 5.6 5.6 31%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! INF. RATE EDUCTION Cu 0.21 0.21	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Zn 0.70
CAPACITY, STABILITY & VOLUMES INFILT- RATION. TRENCH STRIP & SW/	#DIV/0! CAPACITY DEPTH 0.00 SURFACE INFILTRAT INFILTRAT ALE OUTPUT MPS OUTPUT PERCENT I	LENGTH (ft.) WIDTH (ft.) STONE (in.) HEIGHT ED LOAD TION TIME S RAMETER LOAD (g) T LOAD (g) REMOVAL SUMMARY S LOAD (g)	#DIV/0! LENGTH: 23.9 UMMARY TSS 410 410 80% OF SURF	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! TO BMP OF FILTE PP 3.4 3.4 50% ACE AND	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! WIDTH: RING BM SP 1.5 1.5 28% INFILTRA	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! FROM BMP P PERFOR ON 15.5 15.5 54% ATION BM	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! DEPTH: RMANCE NH3 5.1 5.1 54% P PERFOI	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! RUNOFF RI NO3 5.6 5.6 31% RMANCE	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! INF. RATE EDUCTION Cu 0.21 0.21 73%	#DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Zn 0.70 0.70 81%

LANDSCAPE-GD 9 B 120 0.00 PARKING LOT 21 3,498 LAWNS-GD 11 B 944 0.02 SIDEWALKS 26 84 LAWNS-GD -	s, Inc. 210 TH/ NO. A 1 1 9.6 MPERV.	AREA(ac) 0.08 0.00
SUBAREA: DRIVE IN	D10 TH/NO. A 1 1 9.6 MPERV.	0.08
BMP: FILTER STRIP 3 - DRIVE IN February 17, 2	9.6 MPERV.	0.08
DURMM INPUT DATA : GRADED PERVIOUS CODE HSG AREA AREA(ac) IMPERVIOUS LENGTH/AR. WIDTED WIDT	9.6 MPERV.	0.08
GRADED PERVIOUS CODE HSG AREA AREA(ac) IMPERVIOUS LENGTH/AR. WID LANDSCAPE-GD 9 B 120 0.00 PARKING LOT 21 3,498 1 LAWNS-GD 11 B 944 0.02 SIDEWALKS 26 84 1 LAWNS-GD 11 B 944 0.02 SIDEWALKS 26 84 1 LAWNS-GD 11 B 944 0.02 SIDEWALKS 26 84 1 LAWNS-GD 11 B 944 0.02 SIDEWALKS 26 84 1 LAWNS-GD 11 B 944 0.02 CN & ACRES OF IMPERVIOUS 9 1 9 1 9 1 1 9 1	9.6 MPERV.	0.08
LANDSCAPE-GD 9 B 120 0.00 PARKING LOT 21 3,498 LAWNS-GD 111 B 944 0.02 SIDEWALKS 26 84 -	9.6 MPERV.	0.08
LAWNS-GD 11 B 944 0.02 SIDEWALKS 26 84 - <td>9.6 MPERV.</td> <td></td>	9.6 MPERV.	
	9.6 MPERV.	0.00
NATURAL PERVIOUS CODE HSG AREA AREA(ac) TOTAL ACREAGE 0.11 % II DISCONNECTION ADJUSTME PERCENT IMPERVIOUS WETTED LENGTH IN S WETTED WIDTH IN FLOW PATH TO	MPERV.	
NATURAL PERVIOUS CODE HSG AREA AREA(ac) TOTAL ACREAGE 0.11 % II DISCONNECTION ADJUSTME PERCENT IMPERVIOUS WETTED LENGTH IN S WETTED WIDTH IN WETTED WIDTH TO	MPERV.	
NATURAL PERVIOUS CODE HSG AREA AREA(ac) TOTAL ACREAGE 0.11 % II DISCONNECTION ADJUSTME PERCENT IMPERVIOUS WETTED LENGTH IN S WETTED WIDTH IN WETTED WIDTH TO	MPERV.	
NATURAL PERVIOUS CODE HSG AREA AREA(ac) TOTAL ACREAGE 0.11 % II DISCONNECTION ADJUSTME PERCENT IMPERVIOUS WETTED LENGTH IN S WETTED WIDTH IN WETTED WIDTH TO	MPERV.	
NATURAL PERVIOUS CODE HSG AREA AREA(ac) TOTAL ACREAGE 0.11 % II DISCONNECTION ADJUSTME PERCENT IMPERVIOUS W WETTED LENGTH IN S WETTED WIDTH IN WETTED WIDTH IN WETTED WIDTH TO	MPERV.	
DISCONNECTION ADJUSTME PERCENT IMPERVIOUS WETTED LENGTH INS WETTED WIDTH INS FLOW PATH TO	NTS	0.08
PERCENT IMPERVIOUS WETTED LENGTH IN S WETTED WIDTH IN S WETTED WIDTH IN S FLOW PATH TO		77%
WETTED LENGTH INS WETTED WIDTH IN STORMAN SERVICE STREET S		
WETTED WIDTH IN % FLOW PATH TO	ETTED A	REAS
% FLOW PATH TO	DURCE	
	BMPs	0.02
CN & ACRES OF NATURAL PERVIOUS PERVIOUS PERVIOUS ON 100 MIN	TAL	0.02
701W	PERV.	21%
EVENT PRECIP. NATURAL GRADED IMPERV. TO BMPs FROM BMPs REDI	ICTION RU	RUNOFF(in.)
QUALITY 2.0 17 585 602 368 3	9%	0.81
BANKFULL 3.3 52 973 1,024 819 2	0%	1.82
CONVEYANCE 5.2 131 1,537 1,669 1,582	5%	3.51
FLOODING 7.3 258 2,164 2,422 2,451 -	1%	5.43
FLOW PATHS SHEET FLOW PARAMETERS SWALE FLOW PARAMETERS		
LENGTH SLOPE Manning's n SURFACE FLOW % LENGTH SLOPE SI	DES E	воттом
UPPER 47 0.0333 0.011 1 100% 1 1.0000	1.0	1.0
	1.0	1.0
% RUNOFF IMPERV. 97% Tc Path IMPERV		
OK 3/1221	EAK CL	URVE NO
RESULTS: TIME (hr.) (ft.) (fps.) TIME (hr.) TIME (min.) FLO	N (cfs)	
STORAGE 1.71 0.011 0.03 9.05 0.00 0.7 0	.19	85.4
QUALITY 6/P 0.171 0.03 9.05 0.00		
	IV/0! #	#DIV/0!
STORAGE 1.81 0.009 0.04 11.76 0.00 0.5 0	.41	84.6
BANKFULL [12/9 0.110 0.04 11.76 0.00		
BIOSWALE RESULTS 0.00	IV/0! #	#DIV/0!
STORAGE 1.83 0.007 0.06 14.69 0.00 0.4 0	.77	84.5
CONVEYANCE 6/P 0.070 0.06 14.69 0.00		
BIOSWALE RESULTS 0.00 #DIV/0! #DIV/0! #DIV/0! #D	IV/0! #	#DIV/0!
STORAGE 1.90 0.006 0.07 17.03 0.00 0.4 1	.17	84.1
		
FLOODING 18/P 0.052 0.07 17.03 0.00	IV/0! #	#DIV/0!
FLOODING 18/P 0.052 0.07 17.03 0.00		
FLOODING 18/P 0.052 0.07 17.03 0.00		7
BIOSWALE RESULTS 0.00 #DIV/0! #DIV/0! #DIV/0! #D SUBAREA POLLUTANT LOADING	Cu Cu	Zn
BIOSWALE RESULTS 0.00	030	2n 0.140
BIOSWALE RESULTS		
BIOSWALE RESULTS	030	0.140
BIOSWALE RESULTS	030	0.140
BIOSWALE RESULTS	030 014	0.140 0.084
BIOSWALE RESULTS 0.00 #DIV/0!	030	0.140 0.084 2.3

7802.CB-FS3.xls Effective April 2016 8/31/2011

DURMM A	NALYSIS			BMP I	DESIGN D	ATA & RE	SULTS			
	PROJECT:	1712 Foulk	Road - Drive	In Bank				PREPA	RED BY	
ML	JNICIPALITY:			COUNTY:	NEW (CASTLE		Duffield Ass	ociates, Inc.	
	SUBAREA:				GRAPH				TE:	
	BMP:	FILTER ST	RIP 3 - DRIV	E IN				February	17, 2010	
			POS	STDEVEL	OPMENT	LOAD DAT	ΓΑ			
	PA	RAMETER	TSS	PP	SP	ON	NH3	NO3	Cu	Zn
	CONCENTRA		63.7	0.22	0.07	1.22	0.44	0.30	0.029	0.138
	MASS LOAD		1,086	4	1	21	8	5	1	2
	E IN SUBARE		1,086	4	11	21	8	5	1	2
% PREDE	EVELOPMEN	T LOAD	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
BMP DE	SIGN AND	PERFOR	MANCE		BIO. OK?	ОK	AREA OK?	ок	LOAD OK?	ок
	CN	61	LENGTH	96	WIDTH	8	SLOPE	10%	COVER#	1.00
FILTER STRIPS	INF	PUT LOAD	1,086	3.8	1.2	20.9	7.6	5.1	0.50	2.36
	OUTP	UT CONC .	14.1	0.15	0.07	0.72	0.25	0.28	0.009	0.025
% FLOW		PUT LOAD	147	1.6	0.7	7.5	2.6	2.9	0.09	0.26
100.0%	PERCENT		86%	58%	40%	64%	66%	44%	81%	89%
768	INEAR LOA	D (cu.ft./ft.)	6.09	ТО ВМР	602	FROM BMP	368	RUNOFF R	EDUCTION	39%
B10	BUFFER		LENGTH		WIDTH		DEPTH		INF. RATE	
BIO- RETENTION	INF	PUT LOAD								
KETERTION	OUTP	UT CONC .								
% FLOW		PUT LOAD								
	PERCENT I									
	HYDRAULIC	LOAD (ft.)		то вмР		FROM BMP		RUNOFF R	EDUCTION	
BIOSWALE	CN		LENGTH		SIDES:1		воттом	M SWALE O		#DIV/0!
QUALITY	SLOPE		COVER		#1	V/A	VELOCITY	#DIV/0!	DEPTH	0.00
DESIGN	INF	PUT LOAD								
		UT CONC .								
% FLOW		PUT LOAD								
	PERCENT I		#50.401	TO DI40		EDOM DIAD		RUNOFF R	EDUCTION	
-		CHECK DA		TO BMP POND EL.	AREA	FROM BMP	SII TED EI	OUTFLOW		OUTFLOW
BIOSWALE		NO. DAMS	IVI DEGICIV	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
CAPACITY,	#DIV/0!	LENGTH (ft)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
STABILITY &		WIDTH (ft.)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
VOLUMES	DEPTH	STONE (in.)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	0.00	HEIGHT	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
INFILT-	% SURFACE		LENGTH:		WIDTH:		DEPTH:		INF. RATE	
RATION.	INFILTRAT									
TRENCH	INFILTRAT		23.8	TO BMP		FROM BMP		RUNOFF RE	DUCTION	
		S	UMMARY	OF FILTE	RING BM	P PERFO	RMANCE			
	PAI	RAMETER	TSS	PP	SP	ON	NH3	NO3	Cu	Zn
STRIP & SWA	ALE OUTPUT	LOAD (g)	147	1.6	0.7	7.5	2.6	2.9	0.09	0.26
ALL BI	MPs OUTPU	Γ LOAD (g)	147	1.6	0.7	7.5	2.6	2.9	0.09	0.26
	PERCENT I	REMOVAL	86%	58%	40%	64%	66%	44%	81%	89%
	S	UMMARY	OF SURF	ACE AND	INFILTRA	L				
01	UTPUT MASS	S LOAD (g)	147	1.6	0.7	7.5	2.6	2.9	0.09	0.26
	PERCENT I	REMOVAL	86%	58%	40%	64%	66%	44%	81%	89%
% PR	REDEVELOPM	MENT LOAD		N/A	N/A	N/A	N/A	N/A	N/A	N/A


DURMM ANALYS	is		POS	ST-DEVELO	PMENT SUE	BAREA			
	1712 Foulk	Road - Drive	In Bank				PREPA	RED BY	
MUNICIPALITY:			COUNTY:	NEW	CASTLE	,	Duffield Ass	ociates, Inc.	
SUBAREA:	DRIVE IN		HYDRO	GRAPH			DA	NTE:	
BMP:	FILTER ST	RIP 4 - DRIV	EIN				February	17, 2010	
				DURMM IN	IPUT DATA	Ĭ:			_
GRADED PERVIOUS	CODE	HSG	AREA	AREA(ac)	IMPER	VIOUS	LENGTH/AR.	WIDTH/ NO.	AREA(ac)
LANDSCAPE-GD	9	В	204	0.00	PARKING LOT	21	2,039	1	0.05
LAWNS-GD	11	В	467	0.01	SIDEWALKS	26	225	1	0.01
		-	-						
		-	-						
			-						
			-						
CN & ACRES OF G	RADED PER	VIOUS	60.7	0.02	CN & ACI	RES OF IMPE	RVIOUS	99.3	0.05
NATURAL PERVIOUS	CODE	HSG	AREA	AREA(ac)	TOTA	AL ACREAGE	0.07	% IMPERV.	77%
						DISCONN	ECTION ADJU	STMENTS	
			,		PERCENT IN	//PERVIOUS		WETTER	AREAS
					WETTED	LENGTH		IN SOURCE	
					WETTED	WIDTH		IN BMPs	0.01
					% FLOV	V PATH		TOTAL	0.01
CN & ACRES OF N	ATURAL PER	VIOUS			PERVIC	OUS CN		%IMPERV.	19%
EVENT	PRE	CIP.	NATURAL	GRADED	IMPERV.	TO BMPs	FROM BMPs	REDUCTION	RUNOFF(in.)
QUALITY	2	.0		11	364	374	237	37%	0.84
BANKFULL	3	.3		32	609	641	523	19%	1.86
CONVEYANCE	.5	5.2		82	966	1,048	996	5%	3.55
FLOODING	7	7.3		162	1,362	1,524	1,537	-1%	5.48
FLOW PATHS	SHEET	FLOW PARA	METERS		S	SWALE FLOW	PARAMETER	ls	
	LENGTH	SLOPE	Manning's n	SURFACE	FLOW %	LENGTH	SLOPE	SIDES	воттом
UPPER	35	0.0167	0.011	1	100%	1	1.0000	1.0	1.0
LOWER			7	1	100%	1	1.0000	1.0	1.0
% RUNOFF IMPERV.	97%	Tc Path	IMPERV						
ROUTING		ок	SHEET	DEPTH	VELOCITY	SWALE	TOTAL	PEAK	CURVE NO
RESULTS:			TIME (hr.)	(ft.)	(fps.)	TIME (hr.)	TIME (min.)	FLOW (cfs)	
	STORAGE	1.64	0.012	0.03	7.77	0.00	0.7	0.12	85.9
QUALITY	ia/P	0.164		0.03	7.77	0.00			
		BIOSWAL	E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	STORAGE	1.73	0.009	0.04	10.08	0.00	0.6	0.26	85.2
BANKFULL	la/P	0.105		0.04	10.08	0.00		l	
		BIOSWAL	E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	STORAGE	1.77	0.007	0.05	12.57	0.00	0.4	0.49	85.0
CONVEYANCE	la/P	0.068		0.05	12.57	0.00		l	
			E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
	STORAGE	1.84	0.006	0.06	14.56	0.00	0.4	0.75	84.5
FLOODING	la/P	0.050		0.06	14.56	0.00	<i>-</i>	L	
		BIOSWAL	E RESULTS	0.00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
			<u>SUBAREA</u>	POLLUT	ANT LOADI	NG			
PARAMETE		TSS	PP	SP	ON	NH3	NO3	Cu	Zn
IMPERVIOUS E		72	0.23	0.06	1.23	0.42	0.30	0.030	0.140
GRADED PERVIOUS E	<u> </u>	85	1.06	0.75	1.78	0.48	0.32	0.013	0.075
ATURAL PERVIOUS E									
IMPERVIOUS I			2.4	0.6	12.7	4.3	3.1	0.3	1.4
RADED PERVIOUS I			0.3	0.2	0.5	0.1	0.1	0.0	0.0
IATURAL PERVIOUS I									
TOTAL SUBAREA	LOAD	767	3	1	13	4	3	0.3	1.5

7802.CB-FS4.xls Effective April 2016 8/31/2011

DOKININ AI	NALYSIS			BMP I	DESIGN D	ATA & RE	SULTS				
	PROJECT:	1712 Foulk I	Road - Drive	In Bank				PREPA	RED BY		
MU	INICIPALITY:			COUNTY:	NEW (NEW CASTLE		Duffield Associates, Inc.			
	SUBAREA:		HYDROGRAPH				DATE:				
	BMP:	FILTER STE	RIP 4 - DRIVI	P 4 - DRIVE IN				February 17, 2010			
			POS	STDEVEL	OPMENT	LOAD DAT	ΓΑ				
	PAI	RAMETER	TSS	PP _	SP	ON	NH3	NO3	Cu	Zn	
INPUT CONCENTRATION			72.3	0.25	0.08	1.25	0.42	0.30	0.029	0.138	
INPUT MASS LOADS (g)			767	3	1	13	4	3	0	1	
INCREASE IN SUBAREA LOAD			767	3	1	13	4	3	0	1	
% PREDEVELOPMENT LOAD			#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
BMP DE	SIGN AND	PERFORI	MANCE		BIO. OK?	ок	AREA OK?	ОК	LOAD OK?	OK	
FILTER	CN 61		LENGTH	72	WIDTH	6	SLOPE	5%	COVER#	1.00	
STRIPS	INPUT LOAD		767	2.7	0.8	13.2	4.5	3.2	0.31	1.46	
	OUTPUT CONC .		17.6	0.17	80.0	0.75	0.25	0.28	0.010	0.030	
% FLOW		PUT LOAD	118	1.1	0.5	5.0	1.7	1.9	0.07	0.20	
100.0%	PERCENT I		85%	58%	39%	62%	62%	41%	79%	86%	
432	INEAR LOAI	ν (cu.π./π.)	5.05	TO BMP	374	FROM BMP	237	KUNOFF R	EDUCTION	37%	
	BUFFER		LENGTH		WIDTH		DEPTH		INF. RATE		
BIO-	INPUT LOAD				77.12.111				,,,,,,,,,,		
RETENTION	OUTPUT CONC .										
% FLOW		PUT LOAD									
	PERCENT REMOVAL										
	HYDRAULIC	LOAD (ft.)		то вмр		FROM BMP		RUNOFF R	EDUCTION		
DIOCIMAL E	CN		LENGTH		SIDES:1		воттом		SWALE OK	#DIV/0!	
BIOSWALE QUALITY	SLOPE		COVER			I/A	VELOCITY	#DIV/0!	DEPTH	0.00	
DESIGN	INPUT LOAD		JOYLER				VELOCITI	7,51470.	<u> </u>	0.00	
	OUTPUT CONC .										
% FLOW	OUTPUT LOAD									_	
	PERCENT REMOVAL										
	RESIDENCE TIME (min.)			TO BMP		FROM BMP		RUNOFF R			
		CHECK DA		POND EL.	AREA			OUTFLOW		OUTFLOV	
BIOSWALE	#DIV/0!	NO. DAMS		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
CAPACITY, STABILITY &	#DIV/0!	LENGTH (ft)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
VOLUMES	CAPACITY	WIDTH (ft.)		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
	DEPTH 0.00	STONE (in.) HEIGHT	#DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	#DIV/0! #DIV/0!	
	0.00	TIEIOTT	#D1970;	, #DIV/0:	#D14/01	#D1970:	#DIV/U:	#DIV/U:	#DIV/0:	#DIVIU!	
	% SURFACE		LENGTH:		WIDTH:		DEPTH:		INF. RATE		
RATION.	INFILTRAT										
TRENCH	INFILTRATION TIME		23.8	ТО ВМР		FROM BMP		RUNOFF RE	EDUCTION		
			UMMARY	OF FILTE	RING BM	P PERFO	KMANCE				
	PAF	RAMETER	TSS	PP	SP	ON	NH3	NO3	Cu	Zn	
STRIP & SWA	LE OUTPUT	LOAD (g)	118	1.1	0.5	5.0	1.7	1.9	0.07	0.20	
ALL B	MPs OUTPUT	1.1	0.5	5.0	1.7	1.9	0.07	0.20			
	PERCENT F	58%	39%	62%	62%	41%	79%	86%			
	S	UMMARY	85% OF SURF							0070	
۱			118	1.1	0.5	5.0	1.7	1.9	0.07	0.20	
			85%	58%	39%	62%	62%	41%	79%	86%	
0/ 55				N/A	N/A	N/A	N/A	N/A	N/A	N/A	

APPENDIX C

PRE-DEVELOPMENT CALCULATIONS

Drainage Diagram for 7802CB.0310a site
Prepared by {enter your company name here}, Printed 9/1/2011
HydroCAD® 9.00 s/n 02614 © 2009 HydroCAD Software Solutions LLC
Effective April 2016

Prepared by {enter your company name here}
HydroCAD® 9.00 s/n 02614 © 2009 HydroCAD Software Solutions LLC

Printed 9/1/2011 Page 1

Time span=0.00-48.00 hrs, dt=0.04 hrs, 1201 points x 2
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment OFF-3:

Runoff Area=1.476 ac 15.99% Impervious Runoff Depth=1.48"

Flow Length=360' Tc=15.5 min CN=64.40 Runoff=2.64 cfs 0.182 af

Subcatchment PRE-1:

Runoff Area=11,768 sf 100.00% Impervious Runoff Depth=4.56"

Tc=6.0 min CN=98.00 Runoff=1.82 cfs 0.103 af

Subcatchment PRE-2:

Runoff Area=12,369 sf 89.97% Impervious Runoff Depth=4.14"

Tc=6.0 min CN=94.29 Runoff=1.85 cfs 0.098 af

Subcatchment PRE-3:

Runoff Area=23,241 sf 59.68% Impervious Runoff Depth=3.00"

Tc=6.0 min CN=83.08 Runoff=2.76 cfs 0.133 af

Pond 1P: POI #3

Peak Elev=371.56' Inflow=4.52 cfs 0.315 af

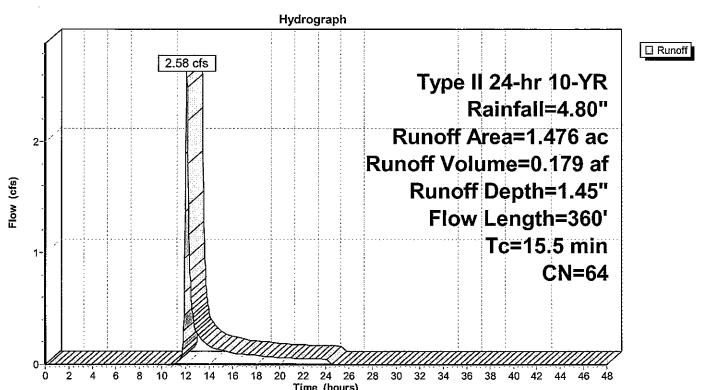
Primary=4.52 cfs 0.315 af Secondary=0.00 cfs 0.000 af Outflow=4.52 cfs 0.315 af

Link 1L: POI#1&2

Inflow=3.67 cfs 0.201 af

Primary=3.67 cfs 0.201 af

Total Runoff Area = 2.564 ac Runoff Volume = 0.516 af Average Runoff Depth = 2.42" 57.87% Pervious = 1.484 ac 42.13% Impervious = 1,080 ac


Summary for Subcatchment OFF-3:

Runoff = 2.58 cfs @ 12.09 hrs, Volume= 0.179 af, Depth= 1.45"

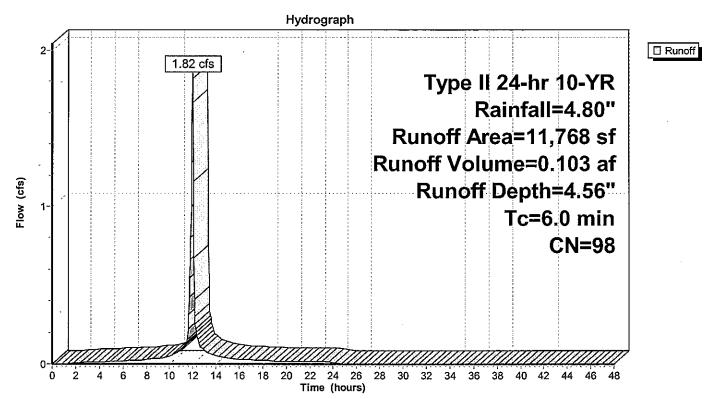
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 10-YR Rainfall=4.80"

	Area	(ac) C	N Desc	cription		
1.240 58 Woods/grass comb., Good						d, HSG B
0.236 98 Paved parking, HSG B					, HSG B	
	1.476 64 Weighted Average					
	1.240 84.01% Pervious Area				us Area	
	0.236 15.99% Impervious Area				ious Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.5	100	0.0230	0.12		Sheet Flow, Offsite-Residential Lawn
						Grass: Dense n= 0.240 P2= 3.20"
	2.0	260	0.0180	2.16		Shallow Concentrated Flow, lawn/draw to inlet
_						Unpaved Kv= 16.1 fps
	15.5	360	Total			

Subcatchment OFF-3:

Summary for Subcatchment PRE-1:

Runoff


1.82 cfs @ 11.96 hrs, Volume=

0.103 af, Depth= 4.56"

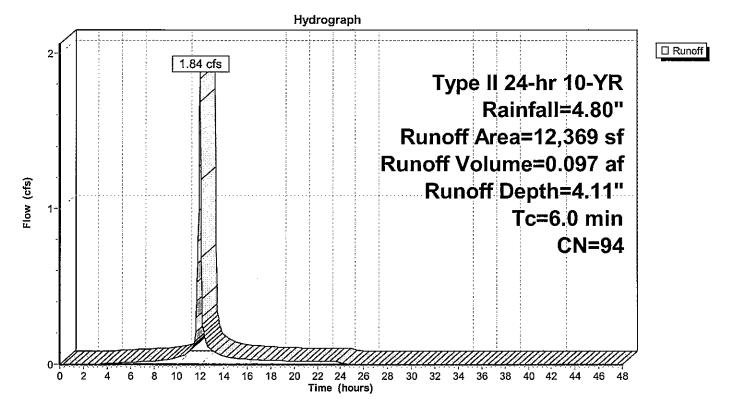
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 10-YR Rainfall=4.80"

Area (sf)	CN	Description
2,266	98	Roofs, HSG B
9,502	98	Paved parking, HSG B
0	61	>75% Grass cover, Good, HSG B
11,768	98	Weighted Average
11,768		100.00% Impervious Area
Tc Length (min) (feet)	Slop (ft/	pe Velocity Capacity Description /ft) (ft/sec) (cfs)
6.0		Direct Entry,

Subcatchment PRE-1:

Summary for Subcatchment PRE-2:

Runoff =


1.84 cfs @ 11.96 hrs, Volume=

0.097 af, Depth= 4.11"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 10-YR Rainfall=4.80"

Area	(sf)	CN	Description						
2,	,922	98	Roofs, HSG	βB					
8,	,207	98	Paved park	ing, HSG B	İ				
1,	,240	61	>75% Gras	s cover, Go	od, HSG B				
12,	369	94	Weighted A	verage					
1,	,240		10.03% Per	vious Area					
11,	,129		89.97% lmp	ervious Ar	ea				
T		01	N. 1. 11	0 "	D ' ''				
	ength	Slope	•	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Subcatchment PRE-2:

Summary for Subcatchment PRE-3:

Runoff

=

2.75 cfs @ 11.97 hrs, Volume=

0.133 af, Depth= 2.99"

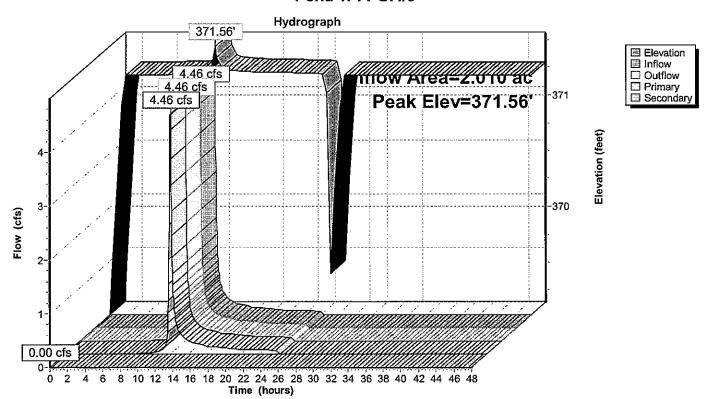
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 10-YR Rainfall=4.80"

	Area (s	sf)	CN E	Description				
	1,3	94	98 F	Roofs, HSG	В			
	12,4	76	98 F	Paved park	ing, HSG B			
	9,3	71	61 >	75% Gras	s cover, Go	od, HSG B		
	23,2	41	83 V	Veighted A	verage			
	9,3	71	4	0.32% Per	vious Area			
	13,8	70	5	9.68% lmp	ervious Ar	ea		
	Tc Len	_	Slope	•	Capacity	Description		
(m	nin) (fe	eet)	(ft/ft)	(ft/sec)	(cfs)		 	
	6 N					Direct Entry		

Subcatchment PRE-3:

Summary for Pond 1P: POI #3

Inflow Area =	2.010 ac, 27	.59% Impervious, Inflow [Depth = 1.86"	for 10-YR event
Inflow =	4.46 cfs @	12.00 hrs, Volume=	0.312 af	
Outflow =	4.46 cfs @	12.00 hrs, Volume=	0.312 af, At	ten= 0%, Lag= 0.0 min
Primary =	4.46 cfs @	12.00 hrs, Volume=	0.312 af	_
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 371.56' @ 12.00 hrs

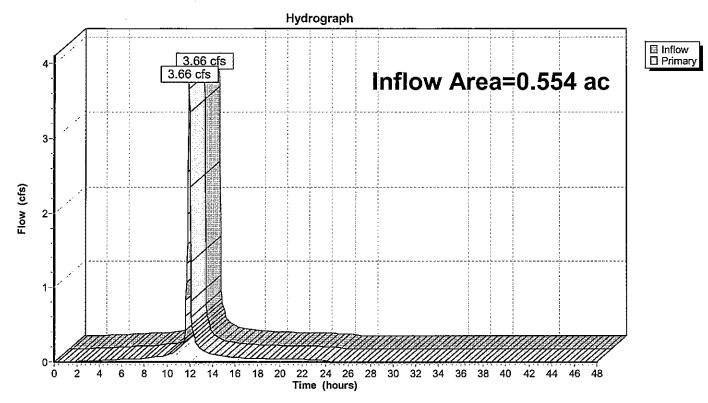
Device	Routing	Invert	Outlet Devices
#1	Primary	369.11'	15.0" Round Culvert L= 127.0' Box, headwall w/3 square edges, Ke= 0.500
			Outlet Invert= 368.42' S= 0.0054 '/' Cc= 0.900 n= 0.012
#2	Device 1	371.30'	23.9" x 37.5" Horiz. Orifice/Grate C= 0.600 in 23.9" x 37.5" Grate
			Limited to weir flow at low heads
#3	Secondary	372.00'	60.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=4.44 cfs @ 12.00 hrs HW=371.56' (Free Discharge)
1=Culvert (Passes 4.44 cfs of 6.75 cfs potential flow)
2=Orifice/Grate (Weir Controls 4.44 cfs @ 1.67 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=369.14' (Free Discharge) 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: POI #3

Summary for Link 1L:


Inflow Area = 0.554 ac, 94.86% Impervious, Inflow Depth = 4.33" for 10-YR event

3.66 cfs @ 11.96 hrs, Volume= Inflow 0.200 af

3.66 cfs @ 11.96 hrs, Volume= 0.200 af, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs

Link 1L:

9151CA.0310a site

Prepared by {enter your company name here}
HydroCAD® 9.00 s/n 02614 © 2009 HydroCAD Software Solutions LLC

Type II 24-hr 100-YR Rainfall=8.00" Printed 9/1/2011

Page 1

Time span=0.00-48.00 hrs, dt=0.04 hrs, 1201 points x 2
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment OFF-3:

Runoff Area=1.476 ac 15.99% Impervious Runoff Depth=3.83"

Flow Length=360' Tc=15.5 min CN=64.40 Runoff=7.16 cfs 0.471 af

Subcatchment PRE-1:

Runoff Area=11,768 sf 100.00% Impervious Runoff Depth=7.76"

Tc=6.0 min CN=98.00 Runoff=3.05 cfs 0.175 af

Subcatchment PRE-2:

Runoff Area=12,369 sf 89.97% Impervious Runoff Depth=7.32"

Tc=6.0 min CN=94.29 Runoff=3.16 cfs 0.173 af

Subcatchment PRE-3:

Runoff Area=23,241 sf 59.68% Impervious Runoff Depth=5.99"

Tc=6.0 min CN=83.08 Runoff=5.30 cfs 0.266 af

Pond 1P: POI #3

Peak Elev=372.07' Inflow=10.65 cfs 0.737 af

Primary=7.61 cfs 0.703 af Secondary=3.04 cfs 0.034 af Outflow=10.65 cfs 0.737 af

Link 1L: POI#1&2

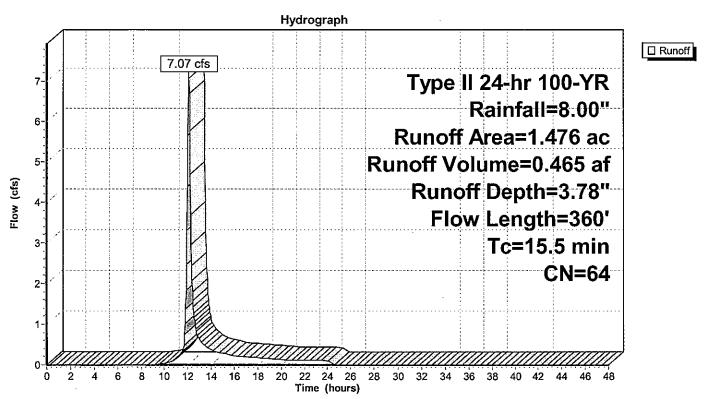
Inflow=6.20 cfs 0.348 af

Primary=6.20 cfs 0.348 af

Total Runoff Area = 2.564 ac Runoff Volume = 1.085 af Average Runoff Depth = 5.08" 57.87% Pervious = 1.484 ac 42.13% Impervious = 1.080 ac

Summary for Subcatchment OFF-3:

Runoff =


7.07 cfs @ 12.08 hrs, Volume=

0.465 af, Depth= 3.78"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 100-YR Rainfali=8.00"

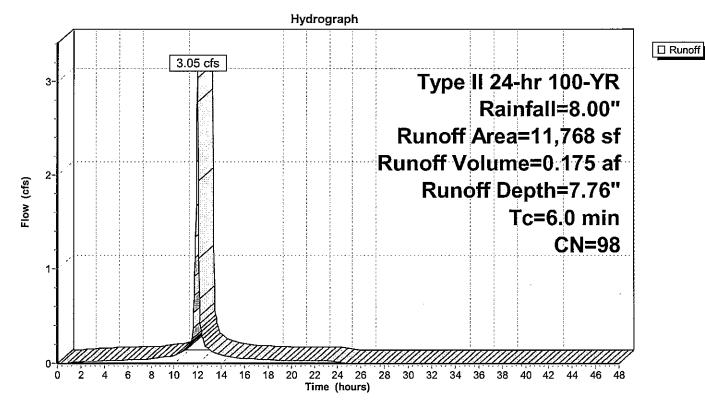
Area (ad	c) C	N Desc	cription		
1.24	Ю 5	8 Woo	ds/grass o	comb., Goo	d, HSG B
0.23	6 9	8 Pave	ed parking	, HSG B	
1.47	'6 6	4 Weig	ghted Avei	age	
1.24	10		1% Pervio		
0.23	6	15.9	9% Imper	ious Area	
	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.5	100	0.0230	0.12		Sheet Flow, Offsite-Residential Lawn
2.0	260	0.0180	2.16		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, lawn/draw to inlet Unpaved Kv= 16.1 fps
15.5	360	Total	•		<u> </u>

Subcatchment OFF-3:

Summary for Subcatchment PRE-1:

Runoff

=


3.05 cfs @ 11.96 hrs, Volume=

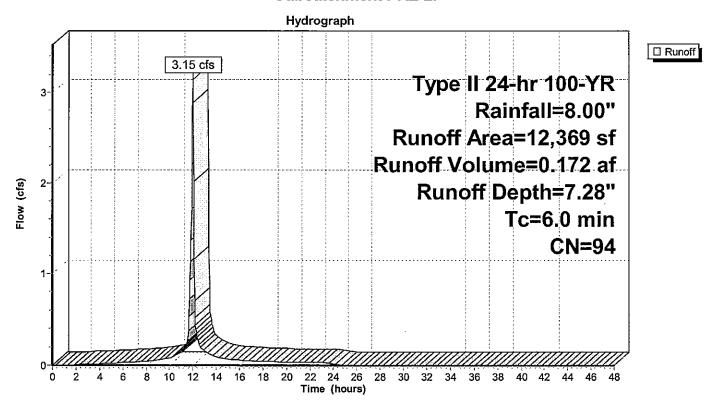
0.175 af, Depth= 7.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 100-YR Rainfall=8.00"

Area (s	f) CN	Description		
2,20	6 98	Roofs, HSC	B	
9,50	02 98	Paved park	ing, HSG B	В
	0 61	>75% Gras	s cover, Go	Good, HSG B
11,70	8 98	Weighted A	verage	
11,76	88	100.00% In	rpervious A	Area
Tc Len	gth Slo	pe Velocity	Capacity	y Description
(min) (fe	et) (ft	/ft) (ft/sec)	(cfs)	
6.0				Direct Entry.

Subcatchment PRE-1:

Summary for Subcatchment PRE-2:


Runoff = 3.15 cfs @ 11.96 hrs, Volume=

0.172 af, Depth= 7.28"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 100-YR Rainfall=8.00"

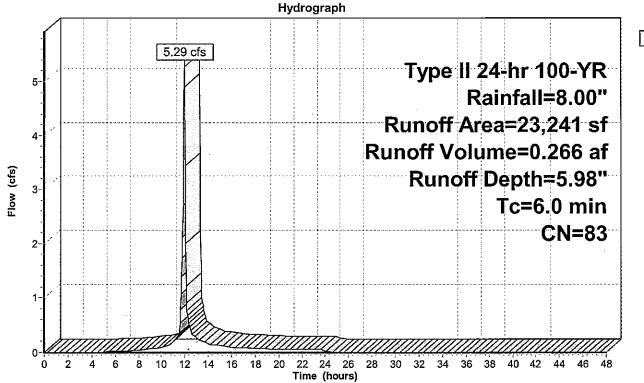
Are	ea (sf)	CN	Description			
	2,922	98	Roofs, HSG	B		
	8,207	98	Paved park	ing, HSG B		
	1,240	61	>75% Gras	s cover, Go	od, HSG B	
1	12,369	94	Weighted A	verage		
	1,240		10.03% Per	vious Area		
1	11,129		89.97% Imp	ervious Ar	ea	
	,	01		0 "	.	
Tc	Length	Slop	-	Capacity	Description	
<u>(min)</u>	(feet)	(ft/fl) (ft/sec)	(cfs)		
6.0					Direct Entry,	

Subcatchment PRE-2:

Summary for Subcatchment PRE-3:

Runoff

=


5.29 cfs @ 11.97 hrs, Volume=

0.266 af, Depth= 5.98"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 100-YR Rainfall=8.00"

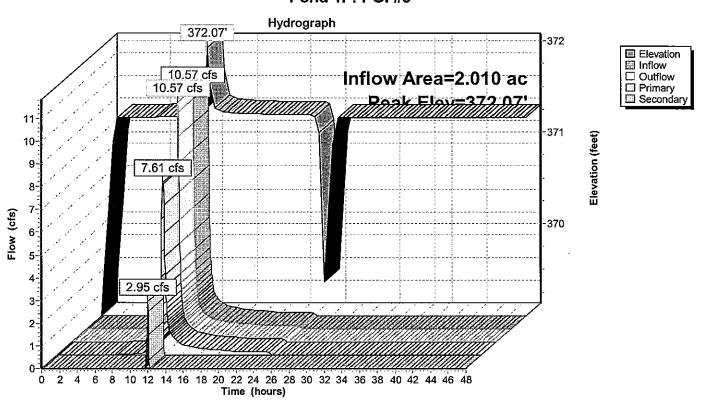
Are	ea (sf)	CN	Description				
_	1,394	98	Roofs, HSG	B			
1	2,476	98	Paved park	ing, HSG E			
	9,371	61	>75% Ġras:	s cover, Go	od, HSG B		
2	23,241	83	Weighted A	verage			
	9,371		40.32% Per	vious Area			
1	3,870		59.68% lmp	ervious Ar	ea		
_							
	Length	Slope	•	Capacity	Description		
(min)	(feet)	(ft/ft	(ft/sec)	, (cfs)			
6.0					Direct Entry.		

Subcatchment PRE-3:

Page 11

Summary for Pond 1P: POI #3

Inflow Area =	2.010 ac, 27	59% Impervious, Inflow D	epth = 4.36"	for 100-YR event
Inflow =	10.57 cfs @	12.01 hrs, Volume=	0.731 af	
Outflow =	10.57 cfs @	12.01 hrs, Volume=	0.731 af, At	ten= 0%, Lag= 0.0 min
Primary =	7.61 cfs @	12.01 hrs, Volume=	0.699 af	_
Secondary =	2.95 cfs @	12.01 hrs, Volume=	0.032 af	


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 372.07' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	369.11'	15.0" Round Culvert L= 127.0' Box, headwall w/3 square edges, Ke= 0.500
	•		Outlet Invert= 368.42' S= 0.0054 '/' Cc= 0.900 n= 0.012
#2	Device 1	371.30'	23.9" x 37.5" Horiz. Orifice/Grate C= 0.600 in 23.9" x 37.5" Grate
			Limited to weir flow at low heads
#3	Secondary	372.00'	60.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=7.61 cfs @ 12.01 hrs HW=372.07' (Free Discharge)
1=Culvert (Barrel Controls 7.61 cfs @ 6.20 fps)
2=Orifice/Grate (Passes 7.61 cfs of 22.68 cfs potential flow)

Secondary OutFlow Max=2.86 cfs @ 12.01 hrs HW=372.07' (Free Discharge) —3=Broad-Crested Rectangular Weir (Weir Controls 2.86 cfs @ 0.67 fps)

Pond 1P: POI #3

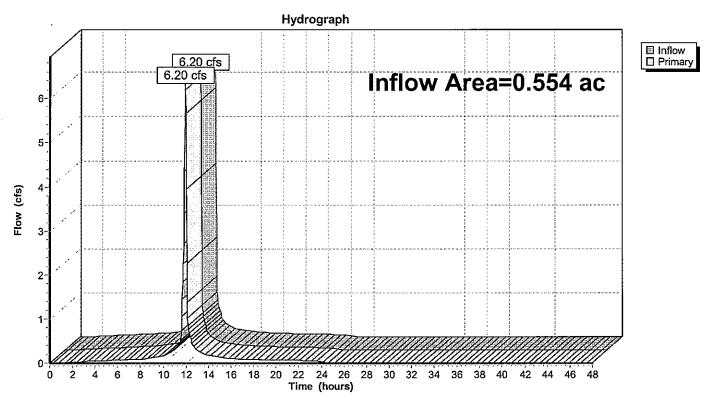
Summary for Link 1L:

Inflow Area =

0.554 ac, 94.86% Impervious, Inflow Depth = 7.52" for 100-YR event

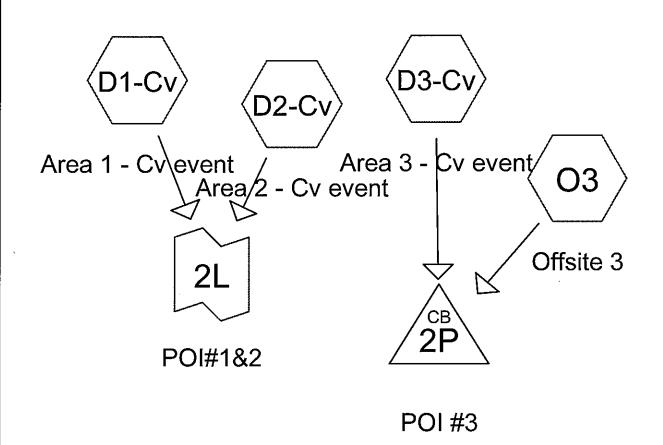
Inflow =

Primary


6.20 cfs @ 11.96 hrs, Volume= 6.20 cfs @ 11.96 hrs, Volume=

0.347 af

0.347 af, Atten= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs

Link 1L:

APPENDIX D

POST-DEVELOPMENT CALCULATIONS

Reach

Type II 24-hr 10-YR Rainfall=4.80" Printed 9/1/2011

Prepared by {enter your company name here} HydroCAD® 9.00 s/n 02614 © 2009 HydroCAD Software Solutions LLC

Page 2

Time span=0.00-48.00 hrs, dt=0.04 hrs, 1201 points x 2
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment D1-Cv: Area 1 - Cv event Runoff Area=12,094 sf 16.37% Impervious Runoff Depth=3.11"

Tc=6.0 min CN=84.26 Runoff=1.48 cfs 0.072 af

Subcatchment D2-Cv: Area 2 - Cv event Runoff Area=13,075 sf 37.18% Impervious Runoff Depth=3.53"

Tc=6.0 min CN=88.54 Runoff=1.77 cfs 0.088 af

Subcatchment D3-Cv: Area 3 - Cv event Runoff Area=22,208 sf 36.71% Impervious Runoff Depth=3.05"

Tc=6.0 min CN=83.58 Runoff=2.67 cfs 0.130 af

Subcatchment O3: Offsite 3 Runoff Area=1.476 ac 15.99% Impervious Runoff Depth=1.48"

Flow Length=360' Tc=15.5 min CN=64.40 Runoff=2.64 cfs 0.182 af

Pond 2P: POI #3 Peak Elev=371.56' Inflow=4.43 cfs 0.312 af

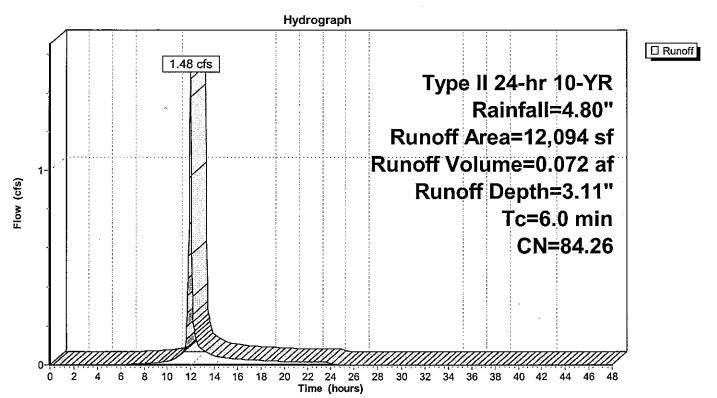
Primary=4.43 cfs 0.312 af Secondary=0.00 cfs 0.000 af Outflow=4.43 cfs 0.312 af

Link 2L: POI#1&2 Inflow=3.25 cfs 0.160 af

Primary=3.25 cfs 0.160 af

Total Runoff Area = 2.564 ac Runoff Volume = 0.472 af Average Runoff Depth = 2.21" 77.37% Pervious = 1.983 ac 22.63% Impervious = 0.580 ac

Summary for Subcatchment D1-Cv: Area 1 - Cv event


Runoff = 1.48 cfs @ 11.97 hrs, Volume=

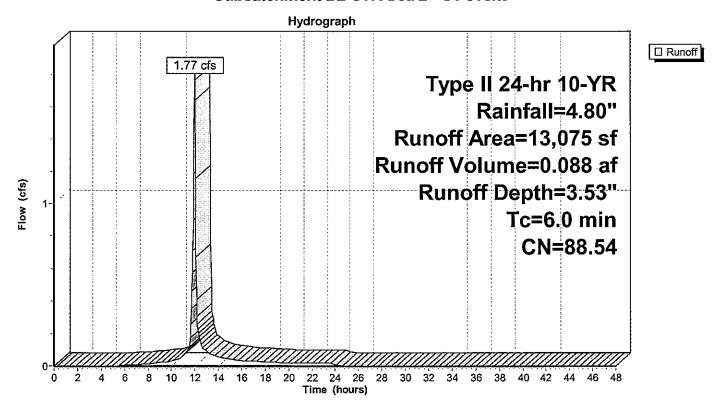
0.072 af, Depth= 3.11"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 10-YR Rainfall=4.80"

	Area (sf)	CN	Description			
	0	98.00	Roofs, HSG B			
*	1,069	98.00	Paved parking, HSG B			
*	911	98.00	Sidewalk, HSG B			
	2,307	61.00	>75% Grass cover, Good, HSG B			
*	7,807	87.65	DURMM FS 1			
	12,094 10,114 1,980		Weighted Average 83.63% Pervious Area 16.37% Impervious Area			
(r	Tc Lengt	•	Velocity Capacity Description (ft/sec) (cfs)			
	6.0		Direct Entry.			

Subcatchment D1-Cv: Area 1 - Cv event

Summary for Subcatchment D2-Cv: Area 2 - Cv event


Runoff = 1.77 cfs @ 11.97 hrs, Volume=

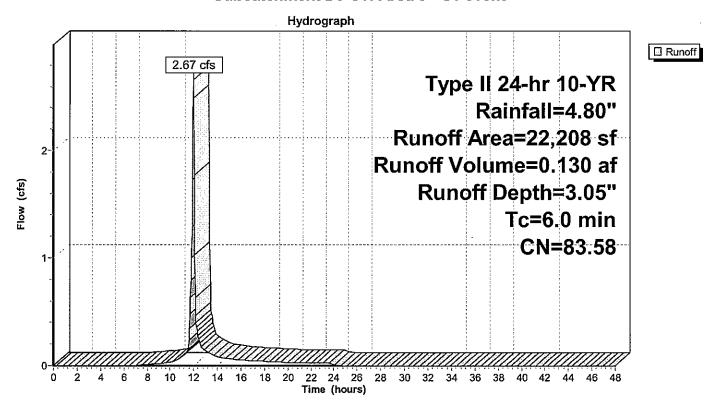
0.088 af, Depth= 3.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 10-YR Rainfall=4.80"

	Area (sf)	CN	Description								
	1,967	98.00	oofs, HSG B								
	2,894	98.00	Paved parking, HSG B								
	1,186	61.00	>75% Grass cover, Good, HSG B								
*	7,028	86.65	DURMM FS 2								
	13,075	88.54	Weighted Average								
	8,214		62.82% Pervious Area								
	4,861		37.18% Impervious Area								
	Tc Length	Slope									
	(min) (feet)	(ft/ft)	(ft/sec) (cfs)								
	6.0		Direct Entry,								

Subcatchment D2-Cv: Area 2 - Cv event

Summary for Subcatchment D3-Cv: Area 3 - Cv event

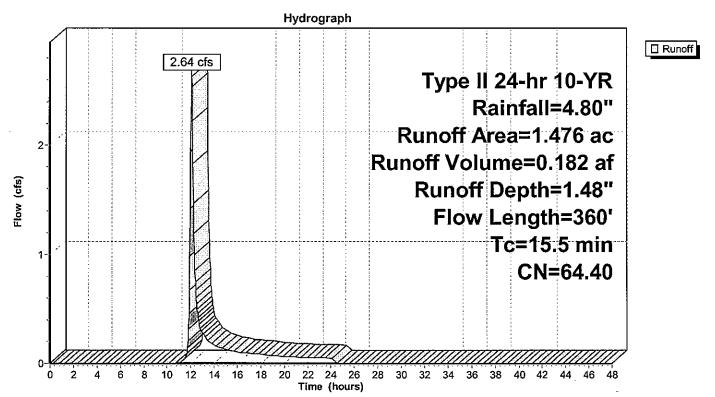

Runoff = 2.67 cfs @ 11.97 hrs, Volume=

0.130 af, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 10-YR Rainfall=4.80"

	Α	rea (sf)	CN	Descripti	on						
		2,551	98.00	Roofs, H	SG B						
		5,601	98.00	Paved pa	Paved parking, HSG B						
		6,450	61.00	>75% Gr	>75% Grass cover, Good, HSG B						
*		4,671	88.45	DURMM	DURMM FS 3						
*		2,935	85.37	DURMM	DURMM FS 4						
		22,208	83.58	Weighte	Weighted Average						
		14,056		63.29% F	Pervious A≀	rea					
		8,152		36.71% I	36.71% Impervious Area						
	Тс	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.0					Direct Entry.					

Subcatchment D3-Cv: Area 3 - Cv event


Summary for Subcatchment O3: Offsite 3

Runoff = 2.64 cfs @ 12.09 hrs, Volume= 0.182 af, Depth= 1.48"

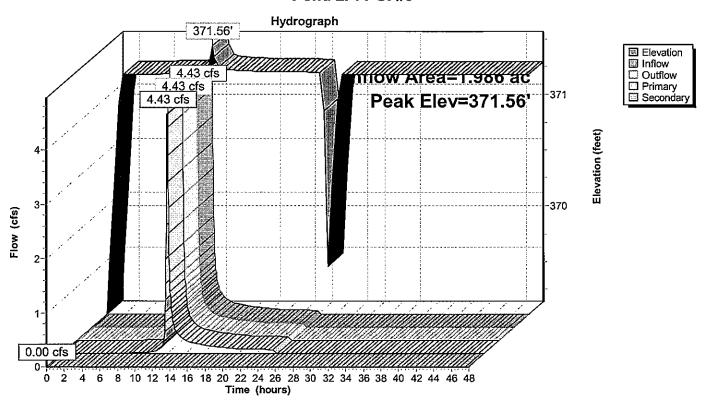
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 10-YR Rainfall=4.80"

	Area	(ac)	CN	Description			
	1.	240	58.00	Woods/gras	ss comb., G	Good, HSG B	
	0.	236	98.00	Paved park	ing, HSG B		
	1.	476	64.40	Weighted A	verage		
	1.	240		84.01% Per	vious Area		
	0.	236		15.99% lmp	pervious Ar	ea	
	Tc (min)	Length (feet)	•	,	Capacity (cfs)	Description	
	13.5	100	0.0230	0.12		Sheet Flow, Offsite-Residential Lawn	
	2.0	260	0.0180	2.16		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, lawn/draw to inlet Unpaved Kv= 16.1 fps	
_	15.5	360	Total				

Subcatchment O3: Offsite 3

Summary for Pond 2P: POI #3

Inflow Area =	1.986 ac, 21.31% Impervious, Inflow	Depth = 1.88" for 10-YR event
Inflow =	4.43 cfs @ 12.00 hrs, Volume=	0.312 af
Outflow =	4.43 cfs @ 12.00 hrs, Volume=	0.312 af, Atten= 0%, Lag= 0.0 min
Primary =	4.43 cfs @ 12.00 hrs, Volume=	0.312 af
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 371.56' @ 12.00 hrs

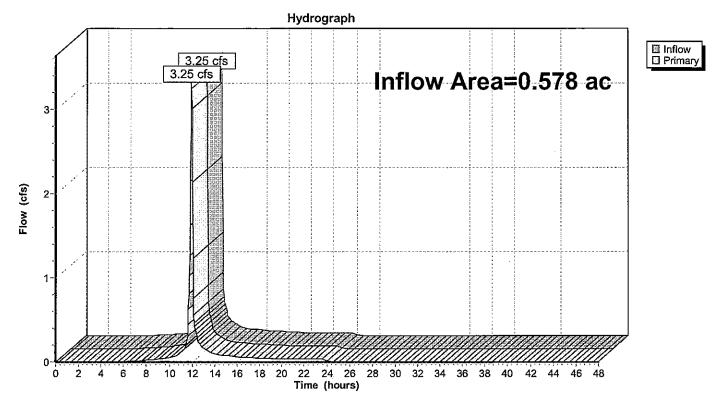
Device	Routing	Invert	Outlet Devices
#1	Primary	369.11'	15.0" Round Culvert L= 127.0' Box, headwall w/3 square edges, Ke= 0.500
			Outlet Invert= 368.42' S= 0.0054 '/' Cc= 0.900 n= 0.012
#2	Device 1	371.30'	23.9" x 37.5" Horiz. Orifice/Grate C= 0.600 in 23.9" x 37.5" Grate
			Limited to weir flow at low heads
#3	Secondary	372.00'	60.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

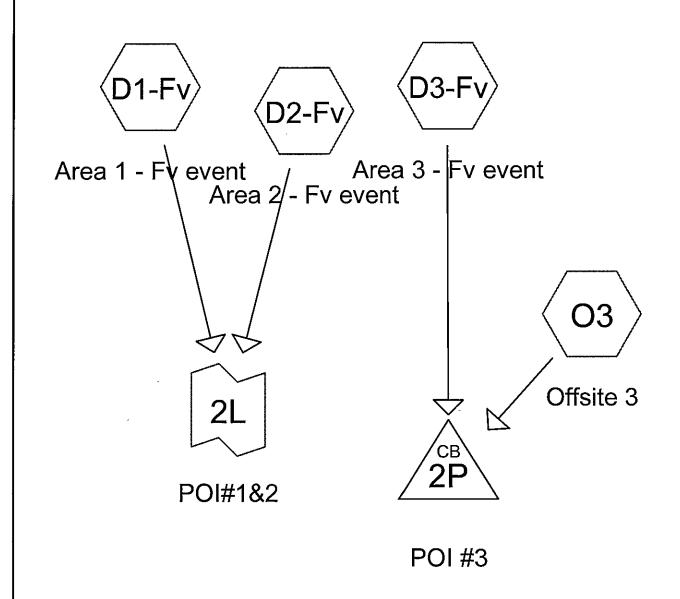
Primary OutFlow Max=4.41 cfs @ 12.00 hrs HW=371.56' (Free Discharge)
1=Culvert (Passes 4.41 cfs of 6.75 cfs potential flow)
2=Orifice/Grate (Weir Controls 4.41 cfs @ 1.66 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=369.14' (Free Discharge) = 3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: POI #3

Summary for Link 2L: POI#1&2


Inflow Area = 0.578 ac, 27.18% Impervious, Inflow Depth = 3.33" for 10-YR event


Inflow = 3.25 cfs @ 11.97 hrs, Volume= 0.160 af

Primary = 3.25 cfs @ 11.97 hrs, Volume= 0.160 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs

Link 2L: POI#1&2

Prepared by {enter your company name here}, Printed 9/1/2011 HydroCAD® 9.00 s/n 02614 © 2009 HydroCAD Software Solutions LLC

Time span=0.00-48.00 hrs, dt=0.04 hrs, 1201 points x 2
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment D1-Fv: Area 1 - Fv event

Runoff Area=12,094 sf 16.37% Impervious Runoff Depth=6.29"

Tc=6.0 min CN=85.64 Runoff=2.85 cfs 0.146 af

Subcatchment D2-Fv: Area 2 - Fv event

Runoff Area=13,075 sf 37.18% Impervious Runoff Depth=6.77"

Tc=6.0 min CN=89.67 Runoff=3.22 cfs 0.169 af

Subcatchment D3-Fv: Area 3 - Fv event

Runoff Area=22,208 sf 36.71% Impervious Runoff Depth=6.13"

Tc=6.0 min CN=84.30 Runoff=5.15 cfs 0.260 af

Subcatchment O3: Offsite 3

Runoff Area=1.476 ac 15.99% Impervious Runoff Depth=3.83"

Flow Length=360' Tc=15.5 min CN=64.40 Runoff=7.16 cfs 0.471 af

Pond 2P: POI #3

Peak Elev=372.07' Inflow=10.51 cfs 0.731 af

Primary=7.61 cfs 0.699 af Secondary=2.90 cfs 0.032 af Outflow=10.51 cfs 0.731 af

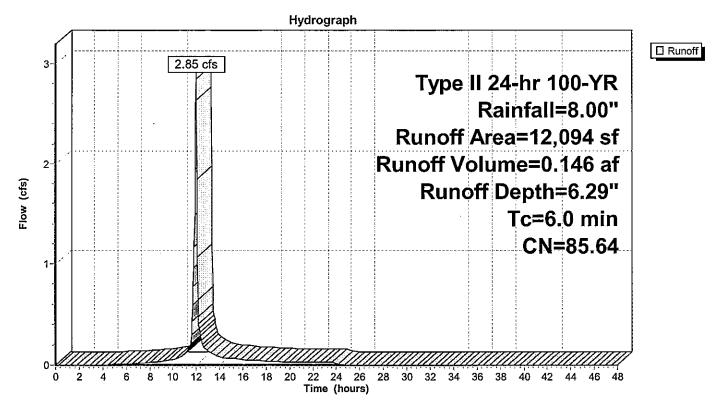
Link 2L: POI#1&2

Inflow=6.07 cfs 0.315 af

Primary=6.07 cfs 0.315 af

Total Runoff Area = 2.564 ac Runoff Volume = 1.046 af Average Runoff Depth = 4.90" 77.37% Pervious = 1.983 ac 22.63% Impervious = 0.580 ac

Summary for Subcatchment D1-Fv: Area 1 - Fv event


Runoff = 2.85 cfs @ 11.97 hrs, Volume=

0.146 af, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 100-YR Rainfall=8.00"

	Area (sf)	CN	Description					
	0	98.00	Roofs, HSG B					
*	1,069	98.00	Paved parking, HSG B					
*	911	98.00	Sidewalk, HSG B					
	2,307	61.00	>75% Grass cover, Good, HSG B					
*	7,807	89.78	DURMM FS 1					
	12,094	85.64	Weighted Average					
	10,114		83.63% Pervious Area					
	1,980		16.37% Impervious Area					
	Tc Length	Slope	Velocity Capacity Description					
(m	n) (feet)	(ft/ft)	(ft/sec) (cfs)					
ϵ	0.0		Direct Entry.					

Subcatchment D1-Fv: Area 1 - Fv event

Summary for Subcatchment D2-Fv: Area 2 - Fv event

Runoff = 3.22 cfs @ 11.96 hrs, Volume=

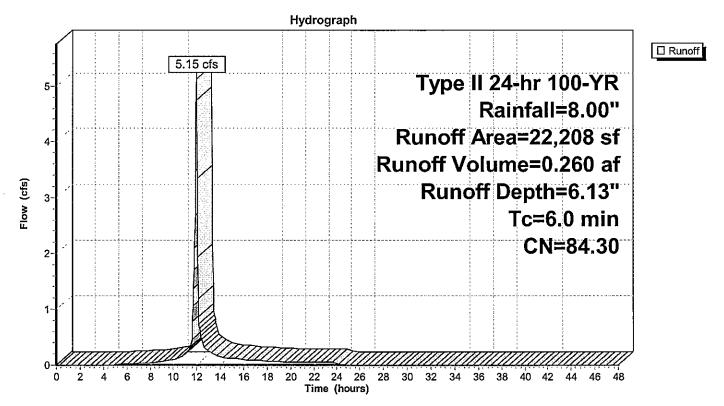
0.169 af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 100-YR Rainfall=8.00"

_	Are	ea (sf)	CN	Descripti	Description						
		1,967	98.00	Roofs, H	Roofs, HSG B						
		2,894	98.00	Paved pa	Paved parking, HSG B						
	•	1,186	61.00	>75% Ğı	>75% Grass cover, Good, HSG B						
*		7,028	88.75	DURMM	DURMM FS 2						
_	1	13,075	89.67	Weighte	Weighted Average						
		8,214		62.82% I	62.82% Pervious Area						
		4,861		37.18% l	37.18% Impervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	6.0					Direct Entry,					

Subcatchment D2-Fv: Area 2 - Fv event

Summary for Subcatchment D3-Fv: Area 3 - Fv event

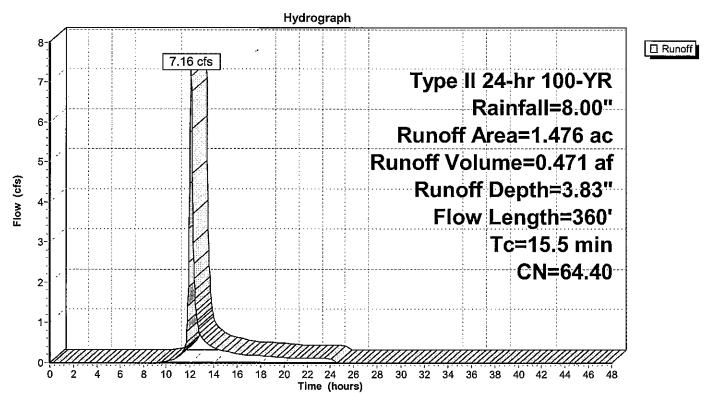

Runoff = 5.15 cfs @ 11.97 hrs, Volume=

0.260 af, Depth= 6.13"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 100-YR Rainfall=8.00"

	Area (sf)	CN	Description				
	2,551	98.00	Roofs, HSG B				
	5,601	98.00	Paved parking, HSG B				
	6,450	61.00	>75% Grass cover, Good, HSG B				
*	4,671	90.60	DURMM FS 3				
*	2,935	87.43	DURMM FS 4				
	22,208	84.30	Weighted Average				
	14,056		63.29% Pervious Area				
	8,152		36.71% Impervious Area				
(r	Tc Length	Slope (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)				
	6.0		Direct Entry.				

Subcatchment D3-Fv: Area 3 - Fv event


Summary for Subcatchment O3: Offsite 3

Runoff = 7.16 cfs @ 12.08 hrs, Volume= 0.471 af, Depth= 3.83"

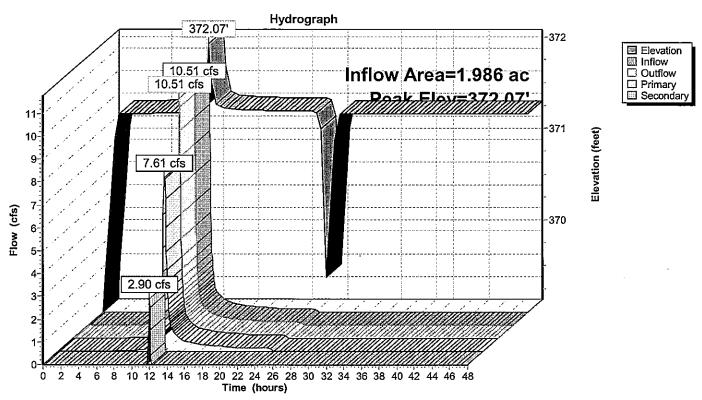
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs Type II 24-hr 100-YR Rainfall=8.00"

_	Area	(ac)	_CN [Description		
	1.	240 5	58.00 \	Voods/gras	ss comb., G	Good, HSG B
_	0.	236	98.00 F	Paved park	ing, HSG B	3
	1.	476	34.40 \	Veighted A	verage	
	1.	240	3	34.01% Per	vious Area	
	0.	236	•	15.99% lmp	pervious Ar	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	13.5	100	0.0230	0.12		Sheet Flow, Offsite-Residential Lawn
_	2.0	260	0.0180	2.16		Grass: Dense n= 0.240 P2= 3.20" Shallow Concentrated Flow, lawn/draw to inlet Unpaved Kv= 16.1 fps
	15.5	360	Total			

Subcatchment O3: Offsite 3

Summary for Pond 2P: POI #3

Inflow Area =	1.986 ac, 21	.31% Impervious, Inflow De	epth = 4.42" for 100-YR event
Inflow =	10.51 cfs @	12.01 hrs, Volume=	0.731 af
Outflow =	10.51 cfs @	12.01 hrs, Volume=	0.731 af, Atten= 0%, Lag= 0.0 min
Primary =	7.61 cfs @	12.01 hrs, Volume=	0.699 af
Secondary =	2.90 cfs @	12.01 hrs, Volume=	0.032 af


Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs / 2 Peak Elev= 372.07' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	369.11'	15.0" Round Culvert L= 127.0' Box, headwall w/3 square edges, Ke= 0.500
	-		Outlet Invert= 368.42' S= 0.0054 '/' Cc= 0.900 n= 0.012
#2	Device 1	371.30'	23.9" x 37.5" Horiz. Orifice/Grate C= 0.600 in 23.9" x 37.5" Grate
			Limited to weir flow at low heads
#3	Secondary	372.00'	60.0' long x 10.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=7.61 cfs @ 12.01 hrs HW=372.07' (Free Discharge)
1=Culvert (Barrel Controls 7.61 cfs @ 6.20 fps)
2=Orifice/Grate (Passes 7.61 cfs of 22.63 cfs potential flow)

Secondary OutFlow Max=2.80 cfs @ 12.01 hrs HW=372.07' (Free Discharge) 3=Broad-Crested Rectangular Weir (Weir Controls 2.80 cfs @ 0.66 fps)

Pond 2P: POI #3

Summary for Link 2L: POI#1&2

Inflow Area = 0.578 ac, 27.18% Impervious, Inflow Depth = 6.54" for 100-YR event

Inflow = 6.07 cfs @ 11.97 hrs, Volume= 0.315 af

Primary = 6.07 cfs @ 11.97 hrs, Volume= 0.315 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-48.00 hrs, dt= 0.04 hrs

Link 2L: POI#1&2

APPENDIX E

PRE-DEVELOPMENT AND POST-DEVELOPMENT DRAINAGE PLANS

F. APPROVED PLANS REMAIN VALID FOR 3 YEARS FROM THE DATE OF APPROVAL

MANAGEMENT FACILITY COMPLETION.

EFFECTIVE DATE JANUARY 17, 2007.

6. NO DEBRIS IS TO BE BURIED ON THIS SITE.

2001, LATER REVISED JANUARY 2008.

IN THE APPROVED LANDSCAPE PLAN FOR THE SITE.

APPROVAL

G. POST CONSTRUCTION VERIFICATION DOCUMENTS ARE TO BE SUBMITTED TO THE DNREC SEDIMENT AND STORMWATER PROGRAM [OR, THE RELEVANT DELEGATED AGENCY] WITHIN 60-DAYS OF STORMWATER

H. APPROVAL OF A SEDIMENT AND STORMWATER MANAGEMENT PLAN DOES NOT GRANT OR IMPLY A RIGHT TO DISCHARGE STORMWATER RUNOFF. THE OWNER/DEVELOPER IS RESPONSIBLE FOR ACQUIRING ANY AND ALL AGREEMENTS, EASEMENTS, ETC., NECESSARY TO COMPLY WITH STATE DRAINAGE AND OTHER

. THE NOTICE OF INTENT FOR STORM WATER DISCHARGES ASSOCIATED WITH CONSTRUCTION ACTIVITY UNDER A NPDES GENERAL PERMIT FOR THIS PROJECT IS # (TO BE FILLED IN ONCE RECEIVED), AT ANY

THEIR RESPONSIBILITIES UNTIL A NOTICE OF TERMINATION HAS BEEN PROCESSED BY DNREC.

TIME THE OWNERSHIP FOR THIS PROJECT CHANGES, A TRANSFER OF AUTHORIZATION OR A CO-PERMITTEE APPLICATION MUST BE SUBMITTED TO DNREC. THE PERMITTEE OF RECORD SHALL NOT BE RELIEVED OF

J. THE OWNER SHALL BE FAMILIAR WITH AND COMPLY WITH ALL ASPECTS OF THE NPDES CONSTRUCTION GENERAL PERMIT ASSOCIATED WITH THE PROJECT, INCLUDING, BUT NOT LIMITED TO, PERFORMING

WEEKLY SITE INSPECTIONS DURING CONSTRUCTION AND AFTER RAIN EVENTS, AND MAINTAINING WRITTEN

K. BEFORE ANY EARTHWORK OR EXCAVATION TAKES PLACE, THE CONTRACTOR SHALL CALL MISS UTILITY

AT 811 OR 1.800.282.8555 AT LEAST 48 HOURS PRIOR TO CONSTRUCTION, TO HAVE ALL EXISTING UTILITIES

THE PURPOSE OF THIS LAND DEVELOPMENT PLAN IS TO DEMOLISH AN EXISTING 1,824± S.F.

BUILDING ON TAX PARCEL 06-054.00-074 AND A 2,420 S.F. BUILDING ON TAX PARCEL

SILVERSIDE ROADS", BY RAMESH C. BATTA ASSOCIATES, DATED OCTOBER 19, 2009.

06-054.00-075, EXTINGUISH THE BOUNDARY LINE BETWEEN THE TWO PARCELS, AND TO CONSTRUCT A 3,934± S.F. BANK WITH DRIVE-THROUGH LANES AND ASSOCIATED PARKING.

THE PROPERTY LINES AND TOPOGRAPHY DEPICTED ON THIS PLAN ARE TAKEN FROM THE

BOUNDARY AND TOPOGRAPHICAL SURVEY ENTITLED "1708 & 1712 FOULK ROAD - FOULK &

FLOODPLAIN DOES NOT EXIST ON THIS SITE. PER FEDERAL EMERGENCY MANAGEMENT

AGENCY (FEMA) FLOOD INSURANCE RATE MAP (FIRM), COMMUNITY PANEL NO. 10003C0067 J.

ACCORDING TO THE WATER RESOURCE PROTECTION AREA MAP 1 OF 3, DATED JANUARY 1993, AND REVISED MAY 2001 AND FEBRUARY 2006. THIS SITE DOES NOT LIE WITHIN THE LIMITS OF A

NO CRITICAL NATURAL RESOURCE AREAS EXIST WITHIN THE SITE PER THE NATURAL AREAS

WETLANDS, AND NO WETLANDS WERE FOUND TO EXIST ON THE SITE. SEE LETTER OF NO

6. THIS SITE WAS EVALUATED IN ACCORDANCE WITH THE 1987 CORPS OF ENGINEERS

FINDINGS, BY DUFFIELD ASSOCIATES, DATED OCTOBER 7, 2009.

WETLANDS DELINEATION MANUAL TO IDENTIFY THE PRESENCE OF JURISDICTIONAL

ALL ENTRANCES SHALL CONFORM TO DELDOT'S STANDARDS AND REGULATIONS FOR

SUBDIVISION STREETS AND STATE HIGHWAY ACCESS AND SHALL BE SUBJECT TO ITS

AND CONSTRUCTION SHALL BE IN ACCORDANCE WITH "THE STATE OF DELAWARE

10. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND ELEVATIONS IN THE FIELD AND

11. THE CONTRACTOR'S ACTIVITIES SHALL BE LIMITED TO THE AREA WITHIN THE LIMIT OF

CONSTRUCTION SAFETY SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

REPORT ANY DISCREPANCIES TO THE ENGINEER BEFORE PROCEEDING WITH WORK.

EXCEPT AS MODIFIED BY THESE DRAWINGS AND CONTRACT DOCUMENTS, ALL MATERIALS

DEPARTMENT OF TRANSPORTATION (DELDOT) STANDARD SPECIFICATIONS", DATED AUGUST

CONTRACTOR SHALL PRESERVE ALL TREES ON THIS SITE UNLESS SPECIFIED FOR REMOVAL

DISTURBANCE LINE SHOWN ON THESE DRAWINGS. STORAGE OF EQUIPMENT / MATERIALS OUTSIDE OF THIS AREA SHALL NOT BE PERMITTED. PARKING OF VEHICLES OUTSIDE THE LIMIT OF DISTURBANCE SHALL NOT BE PERMITTED WITHOUT PRIOR APPROVAL OF THE ENGINEER.

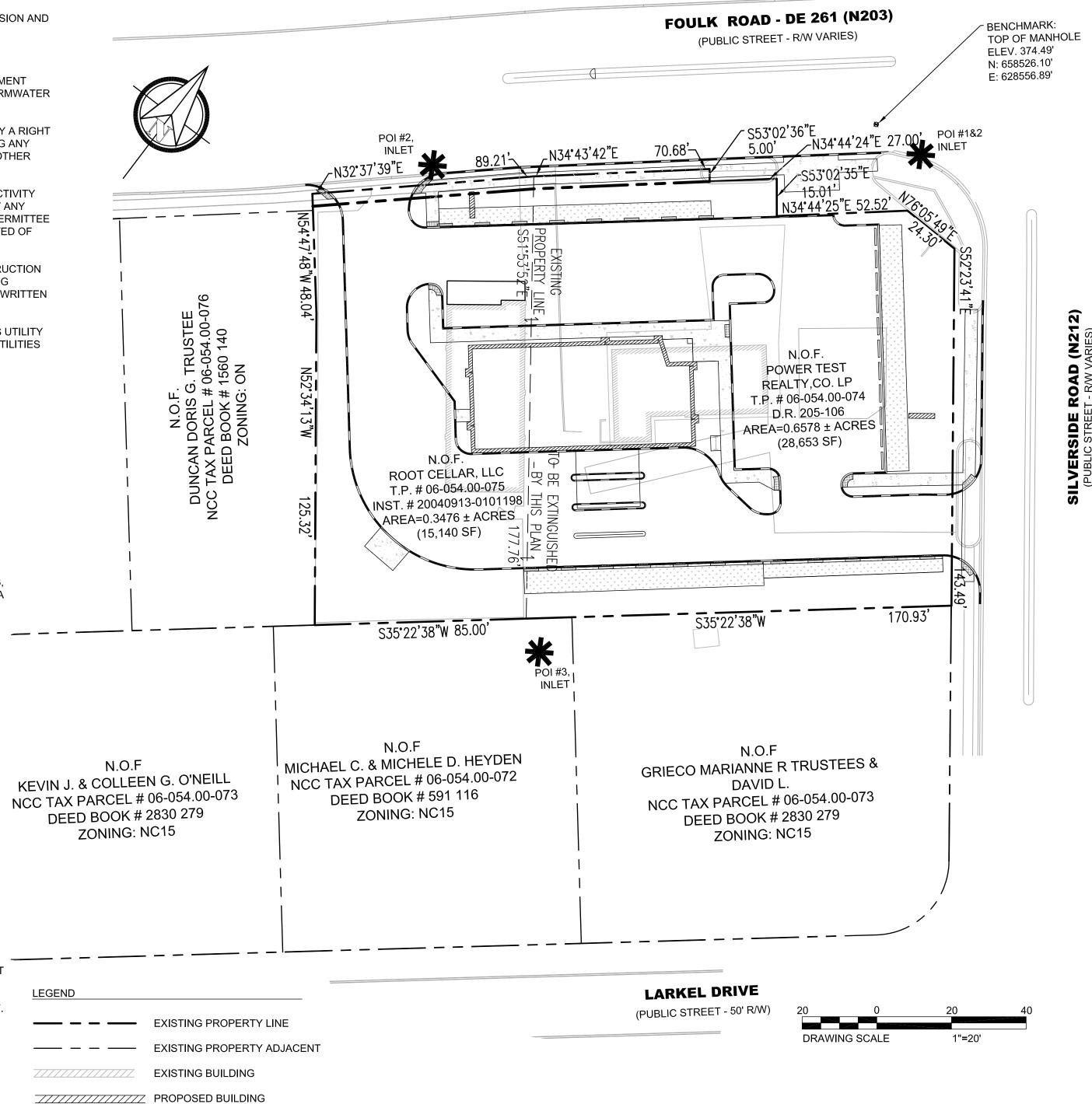
12. THESE PLANS DO NOT CONTAIN THE NECESSARY COMPONENTS FOR CONSTRUCTION SAFETY.

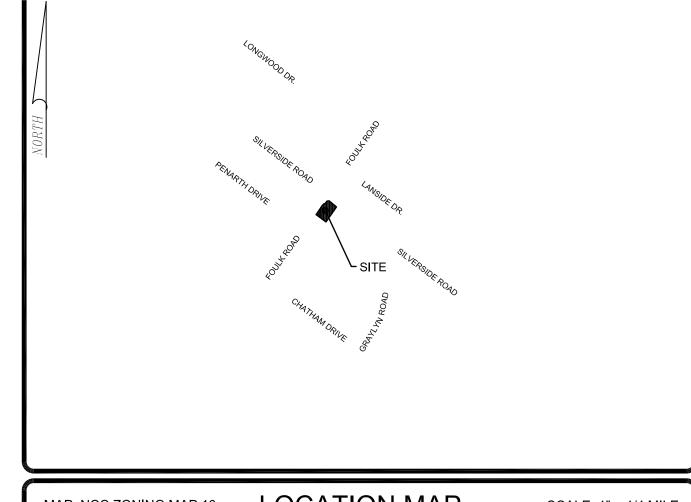
LEGEND

SITE SOILS:

PROPOSED SIDEWALK

PROPOSED CURB, 8-INCH REVEAL


NtB - NESHAMINY-TALLEYVILLE URBAN LAND COMPLEX


3% - 8% SLOPES - HSG B

REDEVELOPMENT PROJECT

SHELLPOT CREEK WATERSHED

SEDIMENT & STORMWATER MANAGEMENT PLANS

LOCATION MAP SCALE: 1" = 1/4 MILE SITE DATA: APPLICATION NO.: 2. TAX PARCEL NO.: 06-054.00-075 1708 FOULK ROAD 1712 FOULK ROAD POSTAL ADDRESS: WILMINGTON, DE 19803 WILMINGTON, DE 19803 4. OWNER: NAME ADDRESS ADDRESS SOURCE OF TITLE: DEED BOOK INSTRUMENT NO. DATUM: HORIZONTAL - NAD 1983 (DELAWARE STATE PLANE) **VERTICAL - NAVD 1988** BENCHMARK: TOP OF EXISTING STORM MANHOLE NEAR STOP BAR IN FOULK ROAD NORTHBOUND RIGHT THROUGH LANE, ELEVATION 374,49 ACREAGE: EXISTING GROSS AREA: 06-054.00-074 06-054.00-075 0.3476 ACRES 1.0054 ACRES CN-COMMERCIAL NEIGHBORHOOD 8. ZONING DISTRICT: 9 AREAS EXISTING BUILDINGS/CANOPY: 0.151 AC **EXISTING OTHER IMPERVIOUS:** 0.597 AC **EXISTING LANDSCAPED AREA:** 0.257 AC 1.005 AC 0.106 AC PROPOSED BUILDINGS/CANOPY: PROPOSED OTHER IMPERVIOUS: 0.580 AC PROPOSED LANDSCAPED AREA: 0.319 AC PROPOSED TOTAL: 1.005 AC PROPOSED STORMWATER MANAGEMENT AREA: 0.072 AC GROSS FLOOR AREA: EXISTING (TO BE REMOVED): 1712 FOULK RD 1,824 SF 1708 FOULK RD 2,420 SF PROPOSED (BANK): 10. PARKING RATIONALE: REQUIRED: 3,934 S.F. (BANK) @ 4.0 P.S. PER 1000 S.F. = 16 SPACES 3 DRIVE-IN LANES @ 6 STACKING PER LANE = 18 STACKING SPACES PROVIDED: 30 (BANK) W/ 2 HANDICAP SPACES PLUS 18 STACKING SPACES 11. WATER SUPPLY: UNITED WATER DELAWARE NEW CASTLE COUNTY 12. SANITARY SEWER:

POI#1 (DELDOT INLET):

POI#2 (DELDOT INLET): POI#3 (LAWN INLET):

INDEX OF SHEETS

SHEET 1 COVER SHEET

LANDSCAPE PLAN

LIGHTING PLAN

SHEET 2 PRE-LIMIT OF DISTURBANCE DRAINAGE AREA PLAN

THE COMPLETE PROJECT PLAN SET INCLUDES:

GENERAL DEVELOPMENT PLANS

RECORD MINOR LAND DEVELOPMENT PLAN

SEDIMENT & STORMWATER MANAGEMENT PLANS

SHEET 3 POST-LIMIT OF DISTURBANCE DRAINAGE AREA PLAN

0.300 AC

0.278 AC

0.509 AC

1.087 AC

13. LIMIT OF DISTURBANCE:

30 AUGUST 2011 SCALE: 1'' = 20'PROJECT NO. 9151.CA

1 OF 3 SHEET:

OWNER

I, THE UNDERSIGNED, HEREBY CERTIFY THAT ALL LAND CLEARING,

OWNER CERTIFICATION

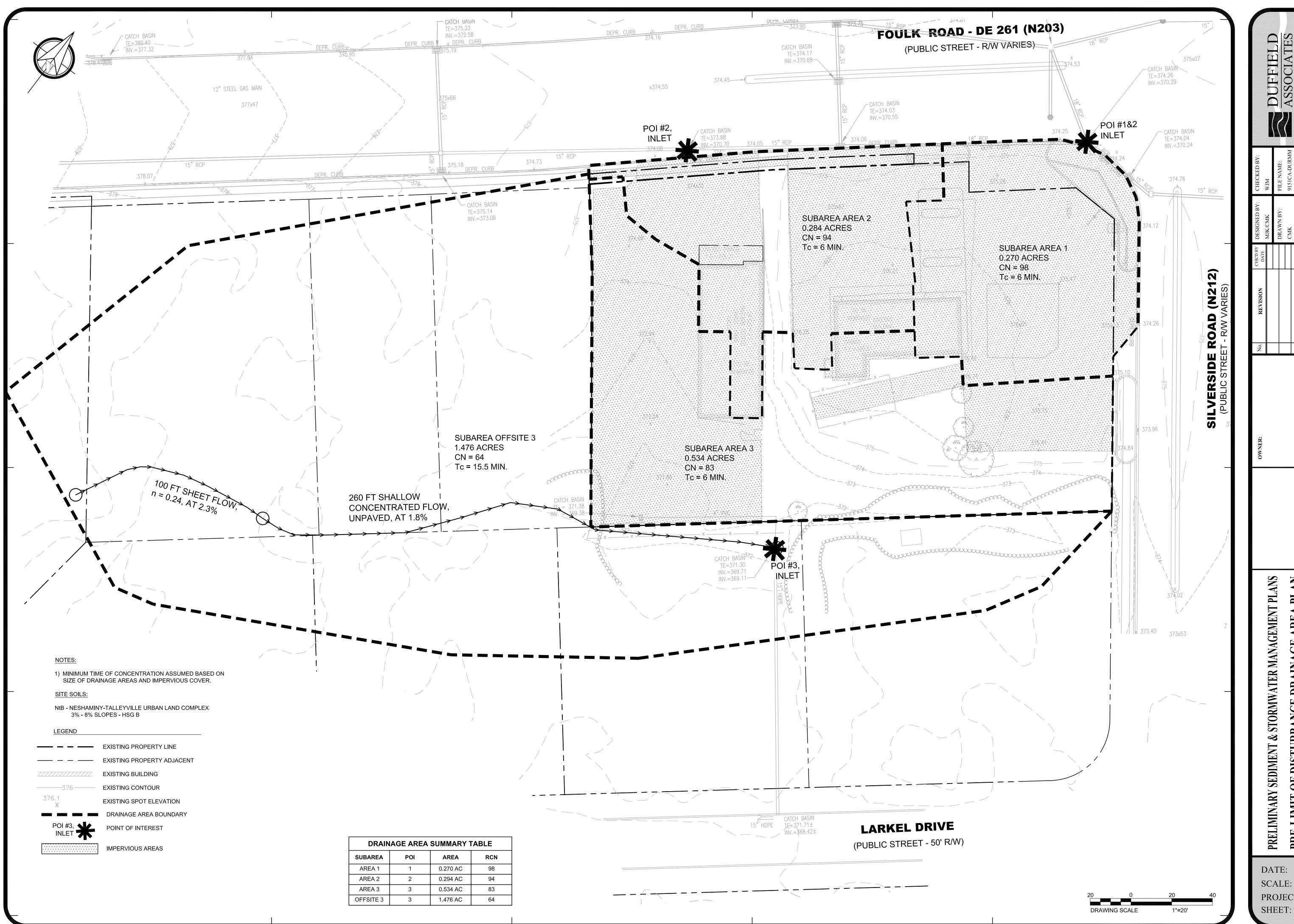
I HEREBY CERTIFY THAT THIS PLAN HAS BEEN PREPARED UNDER

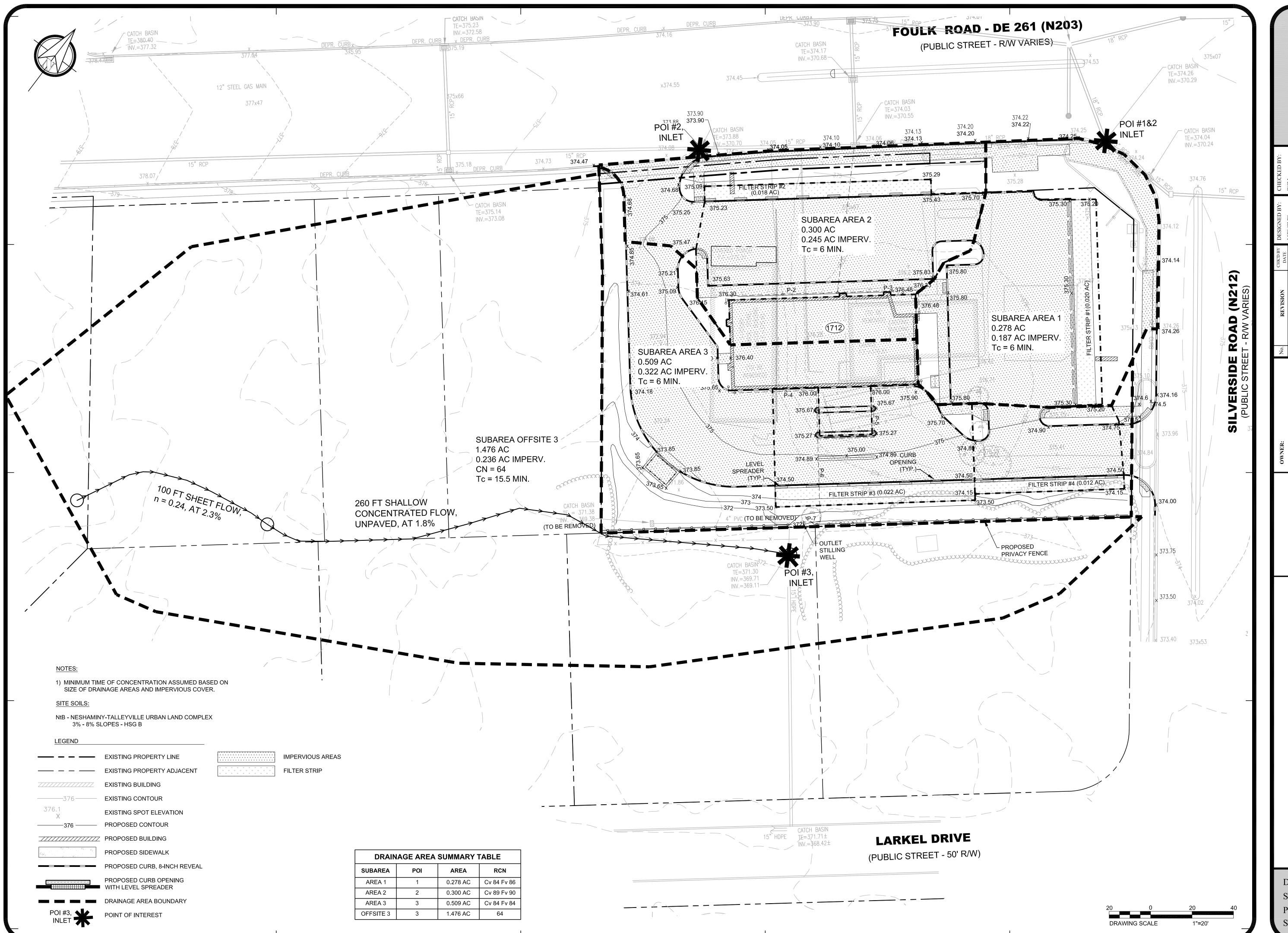
MY SUPERVISION AND TO THE BEST OF MY KNOWLEDGE

COMPLIES WITH THE APPLICABLE STATE AND LOCAL

SITE DESIGNER CERTIFICATION

REGULATIONS AND ORDINANCES.


HAVE THE RIGHT TO CONDUCT ON-SITE INSPECTIONS.


CONSTRUCTION, AND DEVELOPMENT SHALL BE PURSUANT TO THE APPROVED

TRAINING FROM DNREC. DNREC AND NEW CASTLE COUNTY PERSONNEL SHALL

PLAN AND RESPONSIBLE PERSONS INVOLVED WILL HAVE A CERTIFICATE OF

Effective April 2016

