DURMM v2 Example Plan – Commercial Site Stormwater Management Report

For

DNREC Div. of Watershed Stewardship Sediment and Stormwater Program

Prepared by:

August 2011

Table of Contents

Section 1 – Introduction

- 1.1 Project Description
 - 1.1.1 "Approved" and Constructed (As-Built) Plan (DURMM v1)
 - 1.1.2 DURMM v2 Model using Constructed/As-Built Stormwater Management Facilities
 - 1.1.3 DURMM v2 Model using Redesigned Stormwater Management Facilities (to comply with new Sediment and Stormwater Regulations)

Section 2 – DURMM v2 Evaluation

- 2.1 "Approved" and Constructed (As-Built) Plan (DURMM v1)
 - 2.1.1 Pre-Developed Conditions
 - 2.1.2 Post-Developed Conditions
 - 2.1.3 Stormwater Management
- 2.2 DURMM v2 Model using the Constructed/As-built Stormwater Management Facilities
 - 2.2.1 Evaluation of As-Built Stormwater Management Facilities
- 2.3 DURMM v2 Model using Redesigned Stormwater Management Facilities
 - 2.3.1 Evaluation of Stormwater Management Treatment Train

<u>Section 3 – Project Summary</u>

<u>Section 4 – General Outlook of New Model (DURMM v2)</u>

Appendices

- Appendix 1 Plan Sheets
- Appendix 2 "Approved" and Constructed (As-Built) Report and Plan (DURMM v1 & HydroCAD)
- Appendix 3 DURMM v2 Model using the Constructed/As-Built Stormwater Management Facilities
- Appendix 4 DURMM v2 HydroCAD Model using the Constructed/As-Built Stormwater Management Facilities
- Appendix 5 DURMM v2 Model using Redesigned Stormwater Management Facilities
- Appendix 6 DURMM v2 HydroCAD Model using Redesigned Stormwater Management Facilities
- Appendix 7 Checklist

Section 1 – Introduction

This report provides a comparative analysis of stormwater management (SWM) design for an existing commercial site that was approved and constructed under Delaware's existing Sediment and Stormwater Regulations and the same site designed using the Delaware Urban Runoff Management Model v2 (DURMM v2). This report presents a summary of the approved SWM design (DURMM v1) and detailed SWM design using DURMM v2. DURMM v2 references within this report refer to the latest version provided by DNREC at the generation of this report, DURMM_v2_beta_110802. The primary objective of this analysis was to identify stormmwater management and related site approach and design changes associated with the DURMM v2 and the revised Sediment and Stormwater regulations (versus the existing regulations). Specifically this report presents: a summary of the approved SWM design (DURMM v1); detailed stormwater management design using DURMM v2; evaluation of compliance with: runoff reduction; the Resource Protection Event (RPv), Conveyance Event (Cv) and Flood Event (Fv); a conceptual stormwater management design using DURMM v2 output; and a comparison of SWM design using DURMM v1 and DURMM v2.

1.1 Project Description

The previously approved SWM report and associated modeling results for this project are provided in Appendix 1 & 2 of this report. It provides all of the information regarding the original pre-post analysis of the site and the stormwater management approach utilized. The purpose of this project was to remove an existing 1,185 square foot office building and stone parking area and construct a 5,700 square foot two story office building and adjacent parking lot.

The soils information for the project is found in the USDA Soil Conservation Service Soil Survey for New Castle County, Delaware (1970). The site is mapped as having a small portion of Matapeake Silt Loam Series (MeB2), in soils group B, but the site is predominately the Elkton Silt Loam Series (EmA), in soils group C\D. The Elkton Silt Loam series is described as poorly drained and therefore, soils group D was used for that portion of the site to be conservative.

Three separate DURMM Modeling and design scenarios are presented:

- The "Approved" and Constructed (As-Built) Plan (DURMM v1);
- DURMM v2 Model using the Constructed/As-Built Stormwater Management Facilities;
 and
- DURMM v2 Model using Redesigned Stormwater Management Facilities (to comply with new Sediment and Stormwater Regulations)

1.1.1 "Approved" and Constructed (As-Built) Plan (DURMM v1)

Stormwater quality and quantity management of the plan previously approved for this site were achieved using a bioretention facility with an overflow storage area. The approved site plan can be found in appendix 1 and a detailed description of the facility design can be found in section 2.1.3 of this report.

Additional details of the approved SWM design are included in Appendix 1 and 2.

1.1.2 DURMM v2 Model using the Constructed/As-Built Stormwater Management Facilities

The post-development flows as presented in Table 2 were routed through the as-built bioretention area using DURMM v2. The model results were then reviewed to evaluate compliance with the following requirements as proposed in the new Sediment and Stormwater Regulations:

- Runoff Reduction;
- Resource Protection Event (RPv);
- Total Maximum Daily Loads (TMDLs);
 - o Total Suspended Solids;
 - o Total Nitrogen; and
 - o Total Phosphorus.

The revised Cv and Fv runoff curve numbers (RCN's) generated in the DURMM v2 model were then used in new HydroCAD H&H model runs to establish allowable Cv and Fv discharge rates and storage requirements.

Sizing of the as-built stormwater management facility was then reviewed to evaluate its ability to safely contain and manage the runoff generated. In addition, the as-built facility originally utilized exfiltration as a component of the design, however the advent of the revised RCN for the Cv and Fv events is meant to account for infiltration taking place, so the exfiltration outlet was removed from the hydraulic model.

Results of the model indicated that the as-built stormwater management facilities met the RPv requirements but were inadequate to meet some of the TMDL requirements, and the Cv and Fv requirements for the entire site. In addition, the as-built facility did not nhave adequate storage to successfully manage the Fv storm event.

1.1.3 DURMM v2 Model using Redesigned Stormwater Management Facilities (to comply with new Sediment and Stormwater Regulations)

The final stage in the DURMMv2 analysis was to conceptualize what changes could be made to the site design to maximize the runoff reduction and to obtain compliance with the TMDL's for the site.

As with the previous scenario, the post-development flows as presented in Table 2 were routed through the as-built bioretention area using DURMM v2. Based on DURMM v2 model results, new stormwater management facilities were design to comply with the following requirements as proposed in the new Sediment and Stormwater Regulations:

- Runoff Reduction;
- Resource Protection Event (RPv);
- Total Maximum Dail Loads (TMDLs);

- o Total Suspended Solids;
- o Total nitrogen; and
- o Total Phosphorus.

The new stormwater management approach and facilities consist of a treatment train of impervious disconnection, a filter strip, a biofiltration swale and a bioretention facility.

Similarly, the revised Cv and Fv runoff curve numbers (RCN's) generated in the DURMM v2 model were then used in new HydroCAD H&H model runs to establish allowable Cv and Fv discharge rates and storage requirements. As modeled in the previous scenario, the exfiltration outlet was removed from the hydraulic model.

Based on the allowable discharge rates and storage requirements, the new bioretention facility's storage volume was designed.

Section 2 – DURMM v2 and HydroCAD Modeling

2.1 "Approved" and Constructed (As-Built) Plan (DURMM v1)

Stormwater quality and quantity management were achieved using a bioretention facility with an overflow storage area. The bioretention facility was designed in accordance with the criteria set forth in the Delaware Urban Runoff Management Model (DURMM v1).

2.1.1 Pre-Developed Conditions

There are four major points of analysis for the pre-developed site (Refer to associated plan sheets in Appendix 1). The site is relatively flat and has a slight ridge in the center splitting the site into four areas draining to each side of the property. There is an existing 1,185 square foot building, driveway and stone parking area covering most of the site. There is little off-site drainage contributing to this project site.

All stormwater management calculations were performed using methods outlined in the SCS Publication on Urban Hydrology for Small Watersheds, Technical Release 55, (TR-55) and computed by HydroCAD software. The approved detailed stormwater report is presented in Appendix 2.

Table 1 illustrates the peak discharge runoff rates and volume for the 2, 10 and 100 year storm events in the pre-developed conditions evaluated for each subarea and at the four main points of analysis on the site.

Table 1 – Pre-Development Summary							
	2 year		10 y	/ear	100 year		
Analysis Point	Q (cfs)	V (ac-ft)	Q (cfs)	V (ac-ft)	Q (cfs)	V (ac-ft)	
1	0.58	0.041	1.13	0.079	2.29	0.163	
2	0.04	0.002	0.08	0.004	0.16	0.008	
3	0.14	0.007	0.28	0.014	0.58	0.029	
4	0.84	0.041	1.58	0.077	3.13	0.158	

2.1.2 Post-Developed Conditions

The post-development site will have three major points of analysis. The majority of runoff from the post-developed site discharges to Analysis Point #1 (Refer to associated plan sheets in Appendix 1). Runoff to all other analysis points WAS significantly reduced or eliminated in post-development. The existing building and stone parking area was removed and replaced by the 5,700 square foot building and adjacent paved parking lot. Runoff from the post-development site will be in the form of sheet flow and discharge to a proposed bioretention area (Post-Development Drainage Plan – Appendix 1).

The bioretention area will discharge through a traditional outlet structure which ties into a proposed drainage inlet at Analysis Point #1. The existing inlet will be removed because its location interferes with the new entrance and conflicts with the waterline. Subarea 2

and Subarea 3 will discharge to the existing Analysis Points #2 and #3 respectively. The area originally discharging to Analysis Point #4 will be discharging to the new drainage inlet at Analysis Point #1.

Table 2 illustrates the peak discharge runoff rates and volume for the 2, 10 and 100 year storm events in the post-developed conditions evaluated for each subarea and at the points of analysis on the site. The post-development calculations can be found in Appendix B of this report. The approved detailed stormwater report is presented in Appendix 2.

Table 3 – Post-Development Summary							
	2 year		10)	year	100 year		
Analysis Point	Q (cfs)	V (ac-ft)	Q (cfs)	V (ac-ft)	Q (cfs)	V (ac-ft)	
1	0.38	0.113	0.82	0.195	2.14	0.363	
3	0.14	0.007	0.26	0.013	0.52	0.026	
4	0.11	0.005	0.22	0.011	0.44	0.022	

2.1.3 Stormwater Management

Stormwater quality and quantity management were achieved using a bioretention facility with an overflow storage area (Post-Development Drainage Plan – Appendix 1). The bioretention facility was designed in accordance with the criteria set forth in the Delaware Urban Runoff Management Model (DURMM v1). The bioretention facility is capable of infiltrating the entire quality storm (2" rainfall event), thus meeting the requirement of reducing the total suspended solids by 80%, and is designed to drain completely within 48 hours. The bioretention facility has an overflow storage area to provide quantity management and volume control for larger storm events. The outlet structure is a modified concrete inlet box which connects to the existing 30" storm drain located in the street adjacent to the site.

The bioretention facility is capable of safely conveying the 100 year storm in the event that the outlet structure becomes completely clogged and the emergency spillway acts as the sole means of discharge from the facility.

2.2 DURMM v2 Model using the Constructed/As-Built Stormwater Management Facilities

The as-built site bioretention facility and drainage conditions as shown on the Post-Develeopment Drainage Plan in Appendix 1 were evaluated in this scenario to determine if as-built conditions meet the new stormwater requirements. DURMM v2 was used to develop RPv, Cv and Fv values for each of the four subareas (Appendix 3). For the runoff that is not infiltrated and will have to be managed for the Cv and Fv, HydroCAD runs where then performed using adjusted CV and Fv RCN values (Appendix 4). DURMM v2 and HydroCAD model output are summarized in Tables 3 and 4.

Table	3 – DURMM	I v2 Summary			
	SubArea 1	SubArea 3	SubArea 4	SubAr	ea 5
Site Data					
Contributing area to BMPs (ac.)	0.58	0.056	0.047	0.082	
C.A. RCN	89	80	80	86	
Subarea LOD (ac)	0.58	0.056	0.047	0.0385	
TMDL-TN (lbs/ac/yr)	5.70	5.70	5.70	5.70	
TMDL-P (lbs/ac/yr)	0.35	0.35	0.35	0.35	
TMDL-TSS (lbs/ac/yr)	N/A	N/A	N/A	N/A	
BMP Selection	Bio-	Impervious	Impervious	Imperv.	Filter
	retention	Disconnection	Disconnection	Disconn.	Strip
Resource Protection Event (RPv)					
RPv for contributing area	1.90	1.39	1.41	1.73	
Required Rpv Reduction for contributing area (in)	0.56	0.06	0.04	0.42	
Required Rpv Reduction for contributing area (iii) Required Rpv Reduction for contributing area (%)	29%	5%	3%	24%	
C.A. allowable discharge rate (cfs)	0.05	0.00	0.00	0.00	
Unmanaged pollutant load, TN (lbs/ac/yr)	12.03	8.30	8.44	10.81	
Unmanaged pollutant load, TV (los/ac/yr) Unmanaged pollutant load, TP (lbs/ac/yr)	1.62	1.12	1.14	1.46	
Unmanaged pollutant load, TF (lbs/ac/yr) Unmanaged pollutant load, TSS (lbs/ac/yr)	361	249	253	324	
BMP Reduction Performance	301	247	255	324	
RPv runoff volume after all reductions (in)	0.49	1.27	1.29	1.58	1.38
Total RPv runoff reduction (in)	1.42	0.12	0.12	0.14	0.34
Total RPv runoff reduction (%)	74%	9%	95	8%	0.20
Required runoff reduction met?	YES	YES	YES	NO	NO NO
BMP TMDL Performance	1125	TES	1 Lb	INO	INO
Adjusted pollutant load, TN (lbs/ac/yr)	4.81	7.47	7.59	9.73	8.27
Required TN reduction met?	YES	NO	NO NO	NO NO	NO
Adjusted pollutant load, TP (lbs/ac/yr)	0.81	1.01	1.02	1.31	1.12
Required TP reduction met?	NO NO	NO NO	NO NO	NO	NO NO
Adjusted pollutant load, TSS (lbs/ac/yr)	92	224	228	292	248
Required Tss reduction met?	YES	YES	YES	YES	YES
Offset Requirements	125	TES	ILS	125	125
RPv offset (cu. Ft)	N/A	N/A	N/A	82	22
111 1 111111 (111111)		- ,,,,,	- "		
Conveyance Event (Cv)					
Cv runoff volume (in)	3.58	2.72	2.75	3.31	
Stds-based allowable discharge (cfs)	0.44	0.04	0.04		
BMP Performance					
Cv runoff volume after all reductions (in)	0.78	2.66	2.70	3.24	3.18
Flooding Event (Fv)					
Fv runoff volume (in)	6.68	5.63	5.67	6.36	
Stds-based allowable discharge (cfs)	1.31	0.12	0.11		
BMP Performance					
Fv runoff volume after all reductions (in)	3.88	5.63	5.67	6.36	6.36
Adjusted Subarea Data for Downstream					
DURMM Modeling					
Contributing area (AC)	0.58	0.06	0.05	0.0	8
C.A. RCN	89	80	80	86	<u> </u>
LOD area (ac)	0.59	0.06	0.05	0.0	
Weighted Target Runoff (in)	1.35	1.32	1.37	0.6	6
Adjusted CN after all reductions	58.70	77.63	77.98	79.9	91
Adjusted RPv (in)	0.49	1.27	1.29	1.4	8
Adjusted Cv (in)					
Adjusted Fv (in)					
Adjusted Culturas Data for HOTT 14 1 1					
Adjusted Subarea Data for H&H Modeling			1		

Resource Protection Event				
Rain (in)	2.7	2.7	2.7	2.7
RCN	N/A	N/A	N/A	N/A
Conveyance Event				
Rain (in)	4.8	4.8	4.8	4.8
RCN	53.16	79.39	79.75	84.92
Flooding Event				
Rain (in)	8.0	8.0	8.0	8.0
RCN	64.91	80	80.36	86.27

Table 4	– Hyd	lroCA	D Sun	ımary				
	SubA	Area 1	Sub	Area 3	SubA	rea 4	Sub	Area 5
				Ri	unoff			
	Q	Vol	Q	Vol	Q	Vol	Q	Vol
	(cfs)	Ac ft	cfs	Ac ft	Cfs	Ac ft	cfs	Ac ft
Conveyance Event (Cv)								
Adjusted RCN at Analysis Point	0.50	0.022	0.26	0.012	0.23	0.011	-	-
Allowable Discharge (DURMM v2)	0.44		0.04		0.04		1	-
Meets Allowable Discharge?	N	O]	NO	N	O		
Flooding Event (Fv)								
Adjusted RCN at Analysis Point	1.18	0.190	0.54	0.026	0.45	0.022	ı	-
Allowable Discharge (DURMM v2)	1.31		0.12		0.11		-	-
Meets Allowable Discharge?	Y	ES]	NO	N	O		

2.21 Evaluation of As-Built Stormwater Management Facilities

Subarea 1 - The Bioretention facility in Subarea 1 was able to meet runoff reduction, TN reduction and TSS reduction requirements. TP reduction was not met. Cv discharge rates are above allowable rates as calculated by DURMM v2. Fv discharge rates are acceptable rates as calculated by DURMM v2.

Subarea 3 – Due to the relatively small size of this subarea, impervious disconnection was the only feasible BMP. Impervious ddisconnection in this subarea met the runoff reduction and TSS reduction requirements but not the TN reduction and TP reduction requirements. Cv and Fv discharge rates are above allowable rates as calculated by DURMM v2.

SubArea 4 – Like Subarea 3, due to the relatively small size of this subarea, impervious disconnection was the only feasible BMP. Impervious ddisconnection in this subarea met the runoff reduction and TSS reduction requirements but not the TN reduction and TP reduction requirements. Cv and Fv discharge rates are above allowable rates as calculated by DURMM v2.

Subarea 5 – The size and orientation of this subarea allowed for the design impervious disconnection and a filter strip. These BMPs met the TSS reduction requirements, but did not meet the runoff reduction, TN reduction or TP reduction requirements. Cv and Fv discharge rates are above allowable rates as calculated by DURMM v2.

2.3 DURMM v2 Model using Redesigned Stormwater Management Facilities (to comply with new Sediment and Stormwater Regulations)

In this scenario, the site was redesigned to eliminate the small subareas areas that drain off-site. Accordingly, the site was regraded to allow all stormwater runoff to flow to one analysis point. (Refer to the plan sheets in Appendix 1). This is a significant design change that would require the import of fill material. Stormwater management was designed using a treatment train of impervious disconnection, a filter strip, a biofiltration swale and a bioretention facility.

DURMM v2 was used to develop RPv, Cv and Fv values (Appendix 5). For runoff that is not infiltrated and will have to be managed for the Cv and Fv, HydroCAD runs where then performed using adjusted CV and Fv RCN values (Appendix 6). DURMM v2 and HydroCAD model output are summarized in Tables 5 and 6.

	· · · · · · · · · · · · · · · · · · ·		
	SubA	rea 1	
0.68			
88			
0.683			
5.70			
0.35			
N/A			
Impervious	Filter Strip	Biofiltration	Bioretention
Disconnection	•		
1.82			
0.47			
26%			
0.05			
11.42			
1.54			
343			
1.66	1.45	1.13	0.00
0.16	0.37	0.69	1.82
9%	0.21	0.38	1.00
NO	NO	YES	YES
10.28	8.74	6.55	2.62
NO	NO	NO	YES
1.39	1.18	0.88	0.44
NO	NO	NO	NO
308	262	197	74
YES	YES	YES	YES
768	249	N/A	N/A
		•	•
3.44			
0.51			
3.37	3.31	3.14	0.77
	88 0.683 5.70 0.35 N/A Impervious Disconnection 1.82 0.47 26% 0.05 11.42 1.54 343 1.66 0.16 9% NO 10.28 NO 1.39 NO 308 YES 768	88 0.683 5.70 0.35 N/A Impervious Disconnection 1.82 0.47 26% 0.05 11.42 1.54 343 1.66 1.45 0.16 0.37 9% 0.21 NO NO NO 10.28 8.74 NO NO 1.39 1.18 NO NO 308 262 YES YES 768 249	S8

Flooding Event (Fv)				
Fv runoff volume (in)	6.52			
Stds-based allowable discharge (cfs)	1.53			
BMP Performance				
Fv runoff volume after all reductions (in)	6.52	6.52	6.46	4.08
		- -		
Adjusted Subarea Data for Downstream				
DURMM Modeling				
Contributing area (AC)	0.68			
C.A. RCN	88			
LOD area (ac)	0.68			
Weighted Target Runoff (in)	1.35			
Adjusted CN after all reductions	32.37			
Adjusted RPv (in)	0.00			
Adjusted Cv (in)				
Adjusted Fv (in)				
Adjusted Subarea Data for H&H Modeling		<u> </u>		
Resource Protection Event				
Rain (in)	2.7	1		
RCN	N/A	- -		
Conveyance Event		1		
Rain (in)	4.8			
RCN	52.91			
Flooding Event				
Rain (in)	8.0			
RCN	66.67			

Г	able 6 – HydroCAD Summary	
	Sub	Area 1
	Ru	ınoff
	Q	Vol
	(cfs)	Ac ft
Conveyance Event (Cv)		
Adjusted RCN at Analysis Point	0.44	0.025
Allowable Discharge (DURMM v2)	0.51	
Meets Allowable Discharge?	Y	YES
Flooding Event (Fv)		
Adjusted RCN at Analysis Point	1.19	0.236
Allowable Discharge (DURMM v2)	1.53	
Meets Allowable Discharge?	Y	YES

2.3.1 Evaluation of Stormwater Management Treatment Train

The impervious disconnection, a filter strip, a biofiltration swale and a bioretention facility stormwater treatment met the runoff reduction, TN reduction and TSS reduction requirements. The treatment train did not meet the TP reduction requirements. Cv and Fv discharge rates are acceptable rates as calculated by DURMM v2.

Section 3 – Project Summary

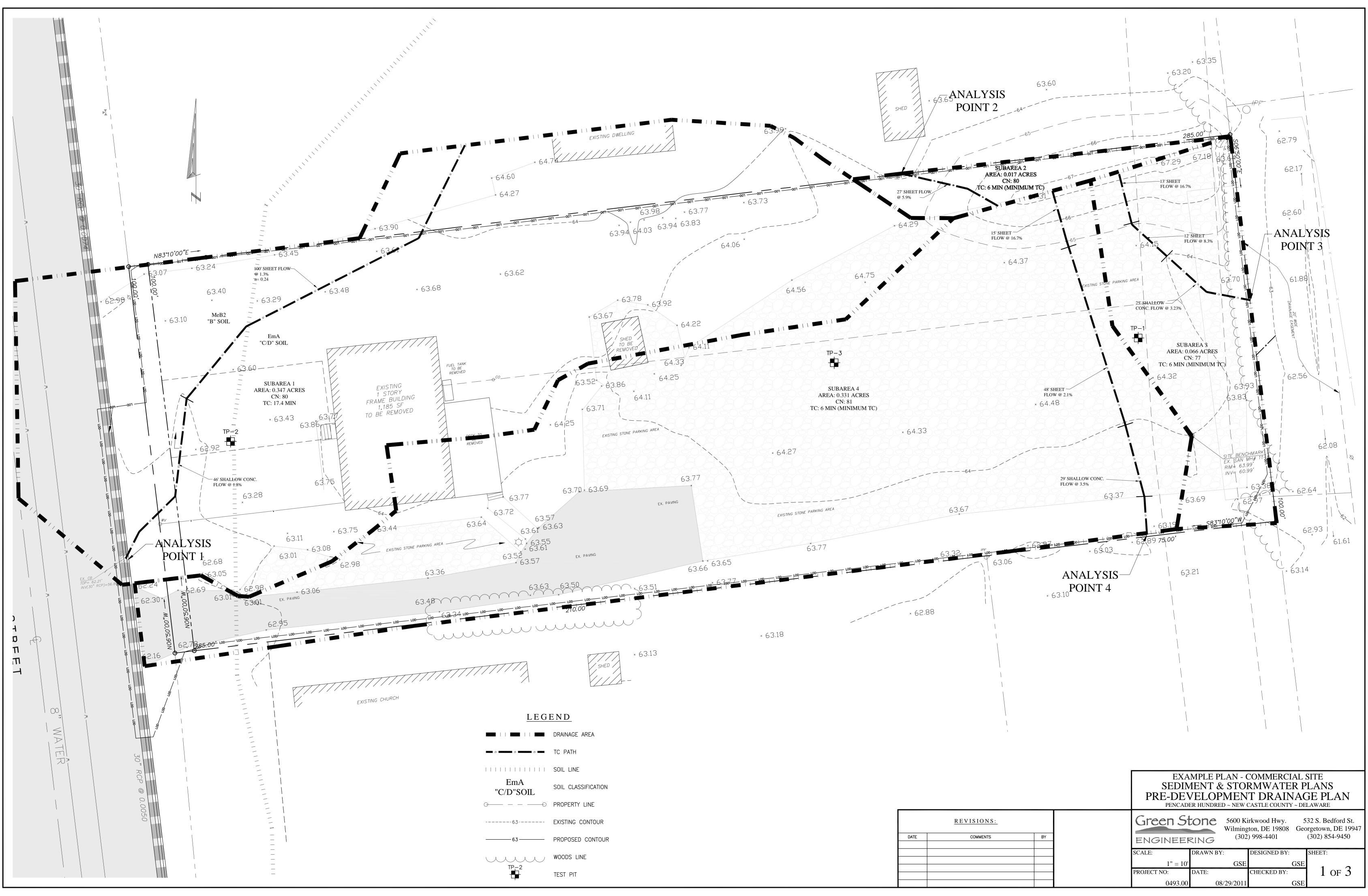
In its current configuration and with the approved/as-built stormwater management facilities (bioretention), the approved site can not meet all of the runoff, TN, TP and TSS reduction requirements of the new sediment and stormwater regulations (DURMM v2 methodology). The

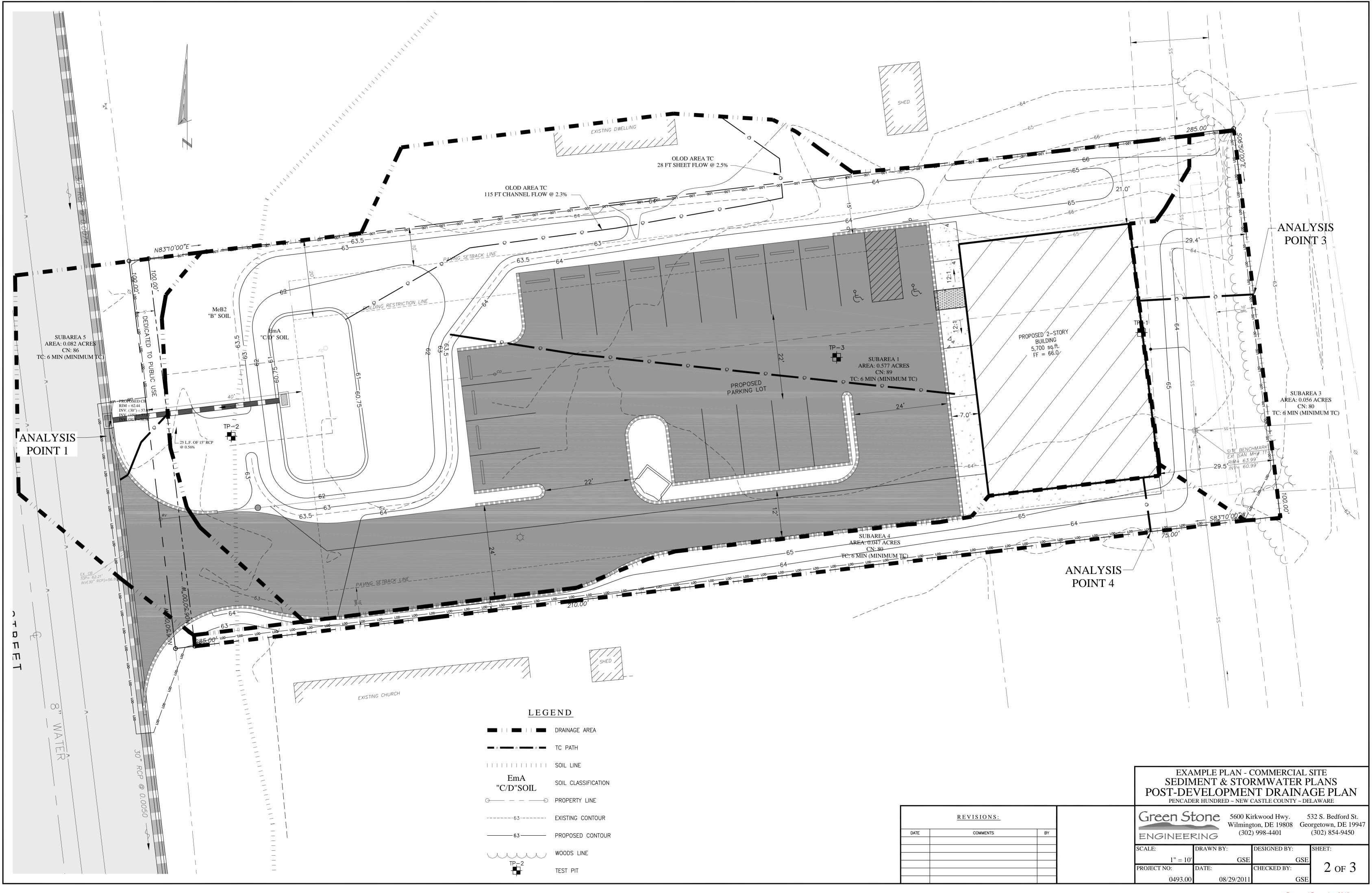
primary reasons for non-compliance are the three small subareas for which adequate BMPs can not be implemented.

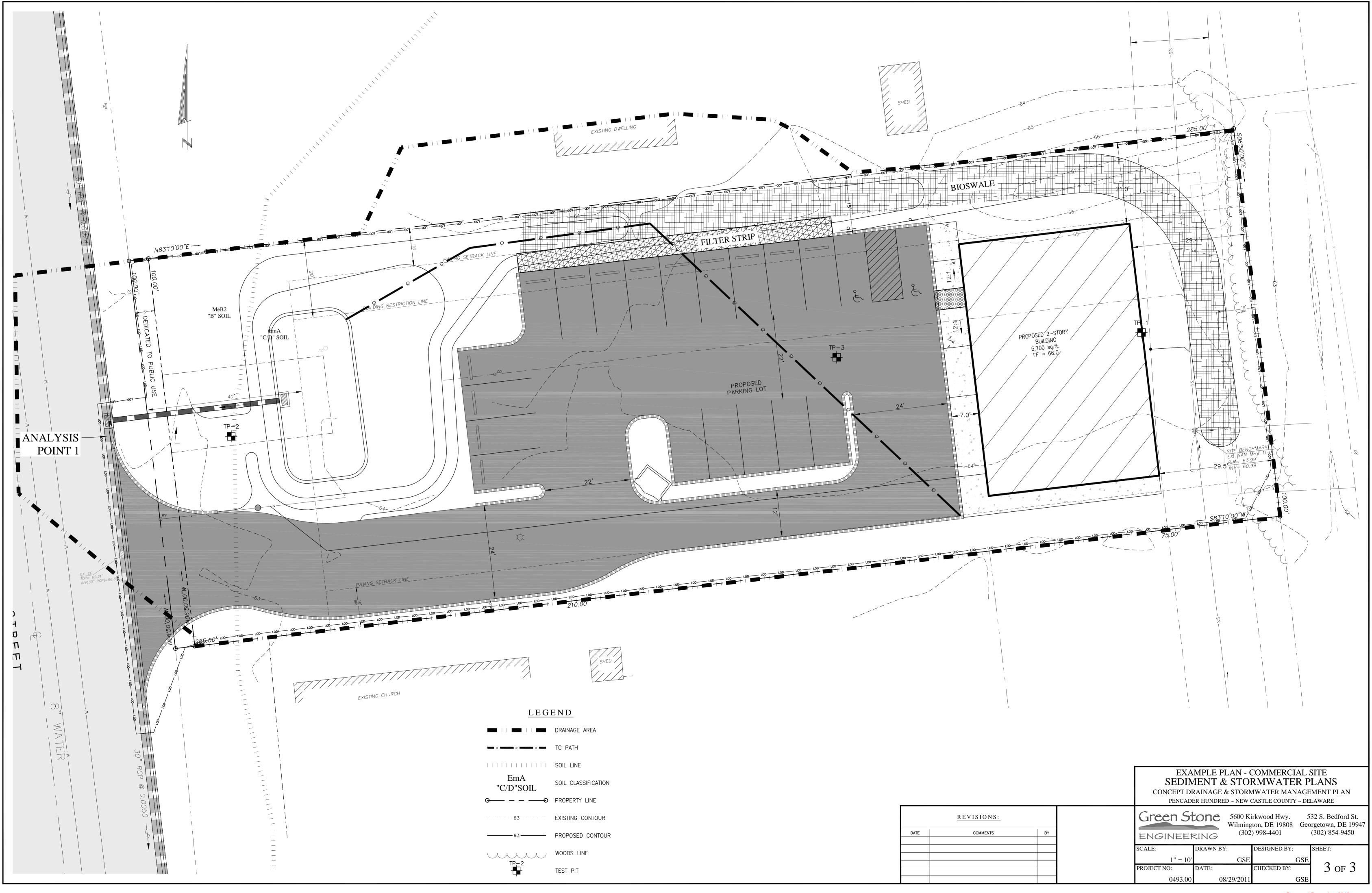
Using the DURMM v2 design methodology, the following site drainage and stormwater management modifications would have to be made to bring the site into compliance, with the exception of Total Phosphorous, with the new sediment and stormwater regulations:

- The site would have to be regarded to direct all runoff through a water quality treatment train:
- The as-built bioretention facility is adequately sized, however, impervious disconnection, a filter strip and a biofiltration swale would have to be added to the stormwater management treatment train (see Appendix 1 Post Development Drainage Plan).

As presented in Tables 5 and 6, the impervious disconnection, filter strip, biofiltration swale and bioretention facility treatment train accomplishes the required runoff reduction, TN reduction and TSS reduction. In addition, bioretention facility discharge rates are below the allowable discharge rates identified in the DURMM v2 model. The treatment train did not meet the required TP reduction.


<u>Section 4 – General Outlook of New Model (DURMM v2)</u>


In general, the DURMM v2 model appears to be logical, more user friendly and more transparent than DURMM v1. There were a number of "glitches' in the model that we addressed during the period of this contract.


There does not appear to be documentation of the nutrient or TSS removal rates for the various BMPs that can be used in the model.

Appendix 1

Plan Sheets

Appendix 2

"Approved" and Constructed (As-Built) Report and Plan (DURMM v1 & HydroCAD)

Stormwater Management Report

For

Example Plan – Commercial Site

Prepared by:

December 2007 Revised February 2008

Table of Contents

- I. Project Description
- II. Pre-Developed Conditions
- III. Post-Developed Conditions
- IV. Stormwater Management Design
- V. Erosion & Sediment Control

Figure 1 – Aerial

Figure 2 – USGS Map

Figure 3 – Soils Map

Figure 4 – 1954 Aerial

Appendix A – Pre-Development Calculations

Appendix B – Post-Development Calculations

Appendix C – Post-Development Calculations with Outlet Structure Blocked

Appendix D – Post-Development Calculations with Sediment Trap

Appendix E – Soils Investigation

Appendix F – Drainage Area Plan

I. Project Description

The purpose of this project is to remove an existing 1,185 square foot office building and stone parking area and construct a 5,700 square foot two story office building and adjacent parking lot in New Castle County, Delaware. The site is located on

The soils information for the project is found in the USDA Soil Conservation Service Soil Survey for New Castle County, Delaware (1970). The site is mapped as having a small portion of Matapeake Silt Loam Series (MeB2), in soils group B, but the site is predominately the Elkton Silt Loam Series (EmA), in soils group C\D. The Elkton Silt Loam series is described as poorly drained and therefore, soils group D was used for that portion of the site to be conservative.

II. Pre-Developed Conditions

There are four major points of analysis for the pre-developed site. The site is relatively flat and has a slight ridge in the center splitting the site into four areas draining to each side of the property. There is an existing 1,185 square foot building, driveway and stone parking area covering most of the site. There is little off-site drainage contributing to this project site.

Most of the existing building and the western portion of the site make up Subarea 1 which discharges to Analysis Point 1 at the existing inlet on portion of the site consisting of grass and a small amount of stone makes up Subarea 2 which discharges to the adjacent residential property to the north at Analysis Point 2. Subarea 3 is the most easterly portion of the site and discharges to the wooded area to the east at analysis point 3. Subarea 4 discharges to the adjacent church property to the south at Analysis point 4. Subarea 4 consists of the majority of the stone parking area and existing paving.

All stormwater management calculations were performed using methods outlined in the SCS Publication on Urban Hydrology for Small Watersheds, Technical Release 55, (TR-55) and computed by HydroCAD software. A curve number of 98 was used for all impervious area including the stone area. Based on comments from New Castle County, the 1954 aerials were used to generate curve numbers in the pre-development analysis because most of the current paving existed legally prior to adoption of the zoning code. A copy of the 1954 aerial is included as Figure 4 in this report. The curve numbers and time of concentration path calculations for each of the pre-development points of analysis, including peak discharge rates and volume, are included in Appendix A. The minimum time of concentration value of 6 minutes was used in Subareas 2, 3 and 4.

The table below illustrates the peak discharge runoff rates and volume for the 2, 10 and 100 year storm events in the pre-developed conditions evaluated for each subarea and at the four main points of analysis on the site.

Pre-Development Summary

	2 year		10 y	/ear	100 year		
Analysis Point	Q (cfs)	V (ac-ft)	Q (cfs)	V (ac-ft)	Q (cfs)	V (ac-ft)	
1	0.58	0.041	1.13	0.079	2.29	0.163	
2	0.04	0.002	0.08	0.004	0.16	0.008	
3	0.14	0.007	0.28	0.014	0.58	0.029	
4	0.84	0.041	1.58	0.077	3.13	0.158	

III. Post-Developed Conditions

The post-development site will have three major points of analysis. The majority of runoff from the post-developed site will discharge to Analysis Point #1. Runoff to all other analysis points will be significantly reduced or eliminated in post-development. The existing building and stone parking area will be removed and replaced by the 5,700 square foot building and adjacent paved parking lot.

A curve number of 98 will be used for all impervious surfaces, including the road. Runoff from the post-development site will be in the form of sheet flow and discharge to a proposed bioretention area in the front of the site near A curb waiver is hereby requested along the north and western sides of the parking lot to promote drainage in the form of sheet flow to the proposed stormwater facility.

The bioretention area will discharge through a traditional outlet structure which ties into a proposed drainage inlet on at Analysis Point #1. The existing inlet will be removed because its location interferes with the new entrance and conflicts with the waterline. Subarea 2 and Subarea 3 will discharge to the existing Analysis Points #2 and #3 respectively. The area originally discharging to Analysis Point #4 will be discharging to the new drainage inlet at Analysis Point #1.

The table below illustrates the peak discharge runoff rates and volume for the 2, 10 and 100 year storm events in the post-developed conditions evaluated for each subarea and at the points of analysis on the site. The post-development calculations can be found in Appendix B of this report.

Post-Development Summary

	2 y	ear	10 y	/ear	100 year		
Analysis Point	Q (cfs)	V (ac-ft)	Q (cfs)	V (ac-ft)	Q (cfs)	V (ac-ft)	
1	0.38	0.113	0.82	0.195	2.14	0.363	
% Increase	-34%	176%	-27%	147%	-7%	123%	
3	0.14	0.007	0.26	0.013	0.52	0.026	
% Increase	0%	0%	-7%	-7%	-10%	-10%	
4	0.11	0.005	0.22	0.011	0.44	0.022	
% Increase	-87%	-88%	-86%	-86%	-86%	-86%	

IV. Stormwater Management Design

Stormwater quality and quantity management will be achieved using a bioretention facility with an overflow storage area. The application of green technology best management practices will be utilized through the use of the bioretention facility, which will be designed in accordance with the criteria set forth in the Delaware Urban Runoff Management Model (DURMM). The bioretention facility will infiltrate the entire quality storm event to meet the requirement of reducing the total suspended solids by 80%. The 2" rainfall event was used for the quality storm event in accordance with the State Stormwater Regulations.

The bioretention facility will have an overflow storage area to provide quantity management and volume control for larger storm events. The outlet structure will be a modified concrete inlet box which connects to the existing storm system on _______. The existing storm sewer system on _______ is a 30" concrete pipe and appears to be free of sedimentation and in good condition.

For an additional level of safety, calculations have also been provided to demonstrate that the bioretention facility can safely convey the 100 year storm in the event that the outlet structure becomes completely clogged and the emergency spillway acts as the sole means of discharge from the facility. The calculations can be found in Appendix C of this report.

During a geotechnical exploration of the site, three test pits were excavated and field infiltration testing was performed at the three locations shown on the attached Drainage Area Plan. The three locations (MW-1, 2, and 3) evaluated for infiltration potential each had an infiltration rate of 1.4 inches per hour with a depth to groundwater of 5.7 feet below existing grade. The State Sediment and Stormwater Regulations require that infiltration practices be limited to soils having an infiltration rate of at least 1.02 inches per hour. The design guidelines set forth in the State Sediment and Stormwater Regulations state that the design infiltration rate for an infiltration facility shall have a factor of safety of 2.0 based on the measured infiltration rate. The bioretention facility is designed to drain completely within 48 hours.

It is the intent of the owner to occupy the existing building until construction of the new office building is completed. The proposed bioretention facility will be located in the front of the existing building and will be used as a sediment trap during construction. Final conversion of the overflow storage area for the bioretention facility will occur after the remaining site work has been completed. Inspection and maintenance guidelines for the proposed bioretention facility are included on the sediment and stormwater plans for this project.

VI. Erosion and Sediment Control

The project will be constructed in a single phase, disturbing less than the maximum allowable twenty (20) acres. Erosion and Sediment Control practices will include the standard accepted practices from the Delaware Erosion and Sediment Control Handbook. The standard notes and details are included on the detail sheet of the Sediment and Stormwater Plans, and the locations of the individual practices are shown on the E&S Plan. Any dewatering necessary for

construction of the stormwater management facility or utility installations will be done through a dirt bag.

The bioretention facility will be used as temporary sediment trap during site construction. The sediment basin was designed such that the 100 year runoff from the site, assuming the site to be in bare soil, can pass safely through the basin. These supplemental calculations can be found in Appendix D of this report.

 $\begin{array}{ccc} \underline{FIGURE} & \underline{1} \\ EXAMPLE & OFFICE & BUILDING \end{array}$

AERIAL SCALE 1" = 100'±

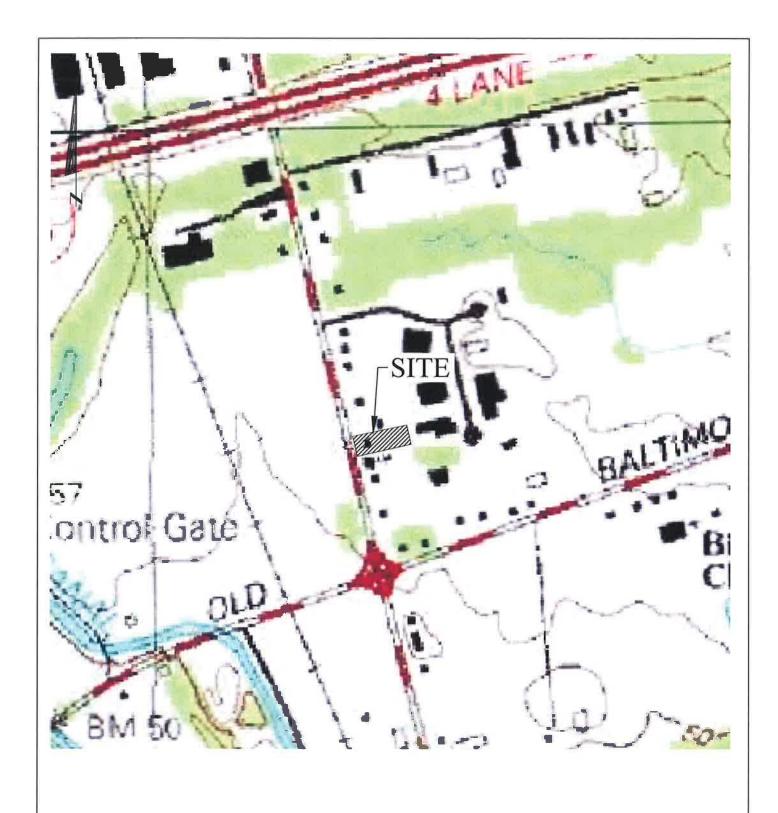


FIGURE 2 EXAMPLE OFFICE BUILDING

USGS MAP SCALE 1" = 500'±

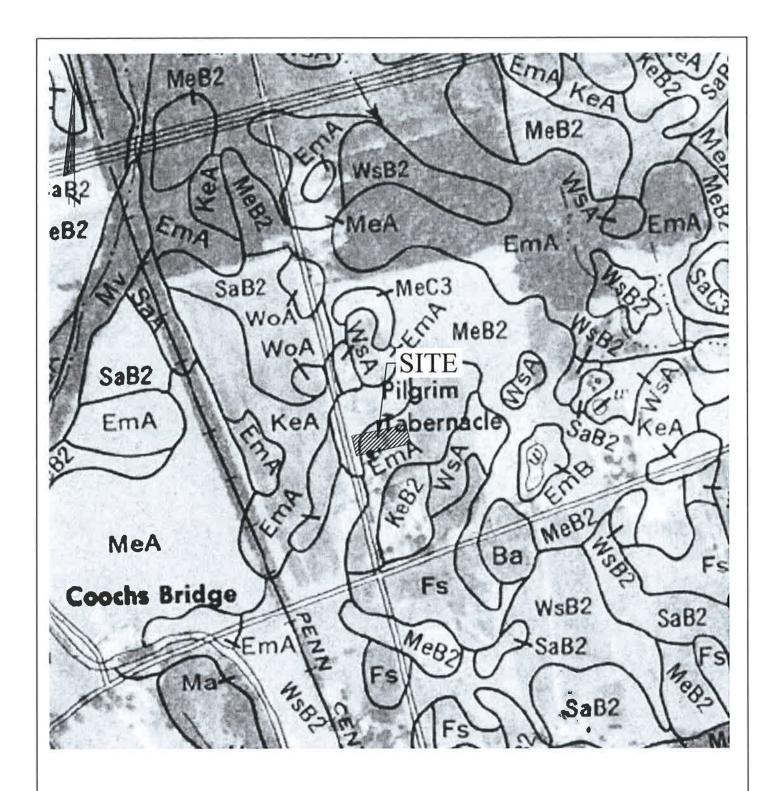


FIGURE 3 EXAMPLE OFFICE BUILDING

SOILS MAP SCALE 1" = 500'±



$\begin{array}{ccc} \underline{FIGURE} & \underline{4} \\ \mathbf{EXAMPLE} & \mathbf{OFFICE} & \mathbf{BUILDING} \end{array}$

1954 AERIAL SCALE I" = 500'±

Prepared by {enter your company name here}

Page 2

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea 1 Runoff Area=0.347 ac Runoff Depth=1.40"

Flow Length=146' Tc=17.4 min CN=80 Runoff=0.58 cfs 0.041 af

Subcatchment 2: Subarea 2 Runoff Area=0.017 ac Runoff Depth=1.40"

Tc=6.0 min CN=80 Runoff=0.04 cfs 0.002 af

Subcatchment 3: Subarea 3 Runoff Area=0.066 ac Runoff Depth=1.21"

Tc=6.0 min CN=77 Runoff=0.14 cfs 0.007 af

Subcatchment 4: Subarea 4 Runoff Area=0.331 ac Runoff Depth=1.47"

Tc=6.0 min CN=81 Runoff=0.84 cfs 0.041 af

Pond 1P: Existing CB (AP 1)

Peak Elev=62.26' Inflow=0.58 cfs 0.041 af

Outflow=0.58 cfs 0.041 af

Link 1L: Tailwater Condition = 59.30' Inflow=0.58 cfs 0.041 af

Primary=0.58 cfs 0.041 af

Link AP2: Analysis Point 2 Inflow=0.04 cfs 0.002 af

Primary=0.04 cfs 0.002 af

Link AP3: Analysis Point 3 Inflow=0.14 cfs 0.007 af

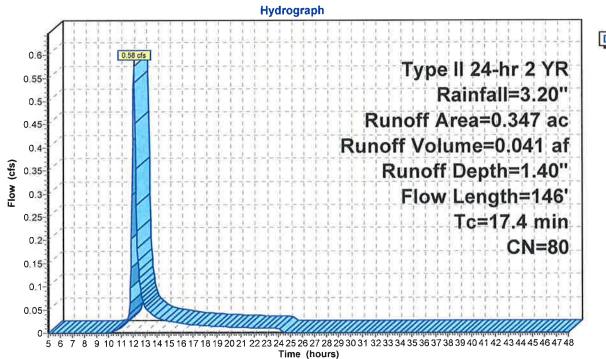
Primary=0.14 cfs 0.007 af

Link AP4: Analysis Point 4 Inflow=0.84 cfs 0.041 af

Primary=0.84 cfs 0.041 af

Total Runoff Area = 0.761 ac Runoff Volume = 0.090 af Average Runoff Depth = 1.41"

Page 3 8/30/2011


Subcatchment1: Subarea 1

Runoff = 0.58 cfs @ 12.10 hrs, Volume= 0.041 af, Depth= 1.40"

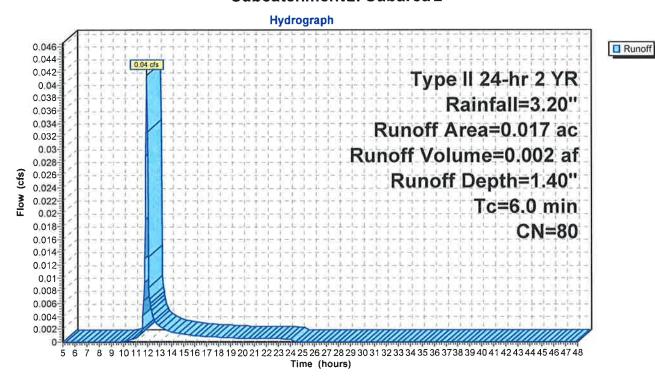
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2 YR Rainfall=3.20"

Area	(ac) C	N Desc	cription			
0.	071 9	8 Pave	ed parking	& roofs		
0.	215 8	30 >759	% Ġrass c	over, Good	, HSG D	
0.	061 6	31 >75°	% Grass co	over, Good	, HSG B	
0.	347 8	30 Weig	hted Aver	age		
				J		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)_	(cfs)		
17.0	100	0.0130	0.1	_	Sheet Flow,	
					Grass: Dense n= 0.240 P2= 3.20"	
0.4	46	0.0180	2.2		Shallow Concentrated Flow,	
					Unpaved Kv= 16.1 fps	
17.4	146	Total				

Subcatchment1: Subarea1

Page 4

8/30/2011


Subcatchment2: Subarea 2

Runoff = 0.04 cfs @ 11.98 hrs, Volume= 0.002 af, Depth= 1.40"

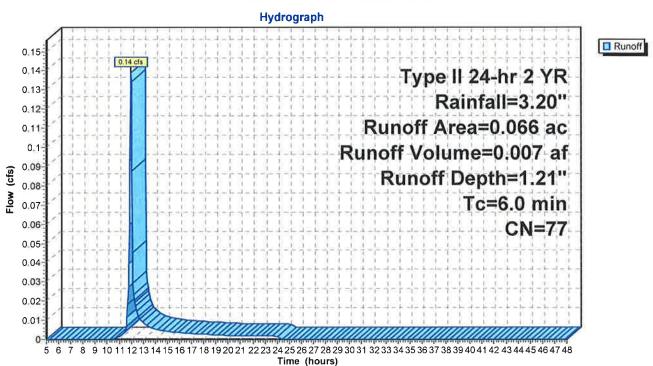
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2 YR Rainfall=3.20"

Area	(ac)	CN D	escription		
0	.017	80 >	'5% Grass c	over, Good	H, HSG D
Тс			•		Description
(min)	(fee	t) (ft/1	t) (ft/sec)	(cfs)	
6.0					Direct Entry.

Subcatchment2: Subarea 2

Page 5 8/30/2011

02303 9 1300-2003 Applied Milcrocomputer Systems


Subcatchment3: Subarea 3

Runoff = 0.14 cfs @ 11.98 hrs, Volume= 0.007 af, Depth= 1.21"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2 YR Rainfall=3.20"

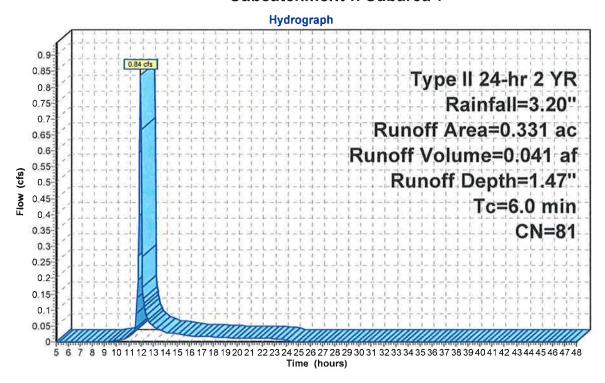
	Area	(ac)	CN	Desc	Description					
	0.006 80				>75% Grass cover, Good, HSG D					
0.060 77 Woods, Good, HSG D					ds, Good,	HSG D	w			
0.066 77 Weighted Average										
	Тс	Leng	jth	Slope	Velocity	Capacity	Description			
-	(min)	(fee	∋t)	(ft/ft)	(ft/sec)	(cfs)				
	6.0	,,					Direct Entry,			

Subcatchment3: Subarea 3

Page 6 8/30/2011

Runoff

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Subcatchment4: Subarea 4

Runoff = 0.84 cfs @ 11.97 hrs, Volume= 0.041 af, Depth= 1.47"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2 YR Rainfall=3.20"

	Area (ac)		CN	Description						
	0.028 98			Paved parking & roofs						
	0.295		80	>75% Grass cover, Good, HSG D						
	0.004		61	>75% Grass cover, Good, HSG B						
	0.004		77	Woods, Good, HSG D						
	0.331 81			Weig	hted Aver	age				
	Tc	Lengt		Slope	Velocity	Capacity	Description			
,	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)				
	6.0						Direct Entry.			

Subcatchment4: Subarea 4

Page 7 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Pond 1P: Existing CB (AP 1)

[57] Hint: Peaked at 62.26' (Flood elevation advised)

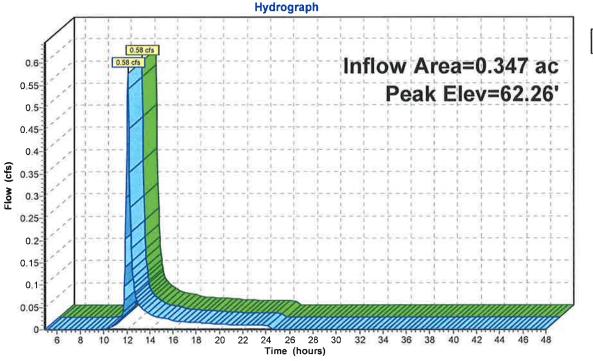
Inflow Area = 0.347 ac, Inflow Depth = 1.40" for 2 YR event Inflow = 0.58 cfs @ 12.10 hrs, Volume= 0.041 af

Outflow = 0.58 cfs @ 12.10 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.0 min

Primary = 0.58 cfs @ 12.10 hrs, Volume= 0.041 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 62.26' @ 12.10 hrs


Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= (not calculated)

#	Routing	Invert	Outlet Devices
1	Primary	56.80'	30.0" x 207.0' long Culvert RCP, square edge headwall, Ke= 0.500
	•		Outlet Invert= 55.76' S= 0.0050 '/' n= 0.012 Cc= 0.900
2	Device 1	62.21'	3.00' x 4.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

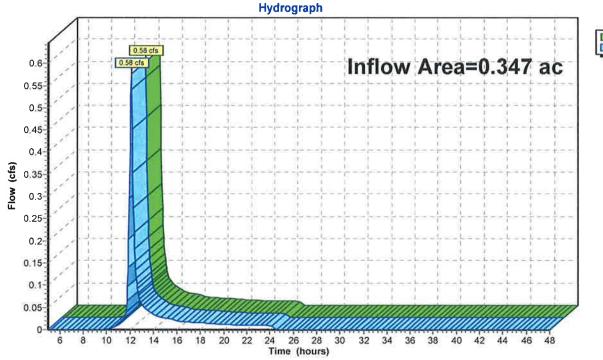
Primary OutFlow Max=0.57 cfs @ 12.10 hrs HW=62.26' TW=59.30' (Dynamic Tailwater)
1=Culvert (Passes 0.57 cfs of 38.32 cfs potential flow)
2=Orifice/Grate (Weir Controls 0.57 cfs @ 0.8 fps)

Pond 1P: Existing CB (AP 1)

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Link 1L: Tailwater Condition = 59.30'


Inflow Area = 0.347 ac, Inflow Depth = 1.40" for 2 YR event Inflow = 0.58 cfs @ 12.10 hrs, Volume= 0.041 af

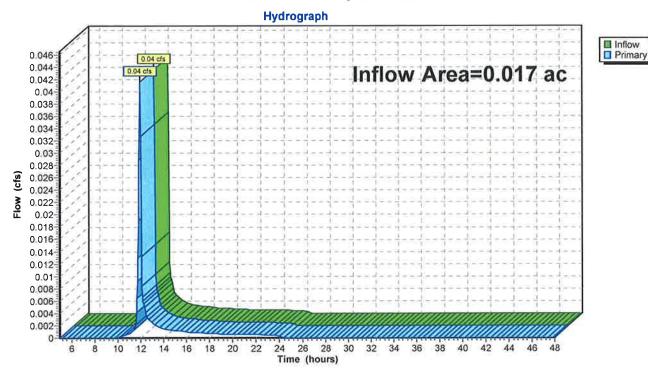
Primary = 0.58 cfs @ 12.10 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 59.30'

Link 1L: Tailwater Condition = 59.30'

Page 9 8/30/2011


Link AP2: Analysis Point 2

Inflow Area = 0.017 ac, Inflow Depth = 1.40" for 2 YR event Inflow = 0.04 cfs @ 11.98 hrs, Volume= 0.002 af

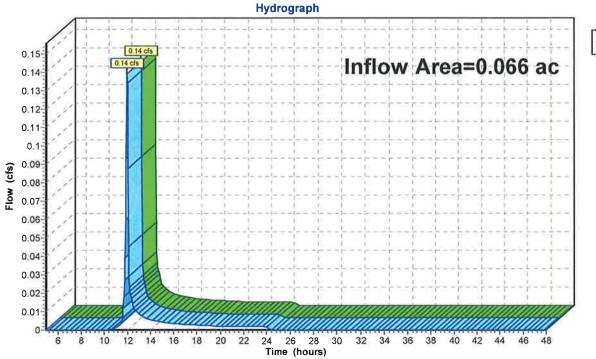
Primary = 0.04 cfs @ 11.98 hrs, Volume= 0.002 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP2: Analysis Point 2

Page 10 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Link AP3: Analysis Point 3

Inflow Area = 0.066 ac, Inflow Depth = 1.21" for 2 YR event Inflow = 0.14 cfs @ 11.98 hrs, Volume= 0.007 af

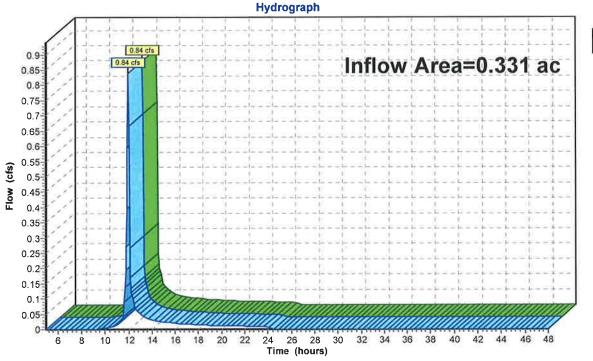
Primary = 0.14 cfs @ 11.98 hrs, Volume= 0.007 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP3: Analysis Point 3

Page 11 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Link AP4: Analysis Point 4

Inflow Area = 0.331 ac, Inflow Depth = 1.47" for 2 YR event Inflow = 0.84 cfs @ 11.97 hrs, Volume= 0.041 af

Primary = 0.84 cfs @ 11.97 hrs, Volume= 0.041 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP4: Analysis Point 4

Prepared by {enter your company name here}
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Page 12

8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea 1 Runoff Area=0.347 ac Runoff Depth=2.72"

Flow Length=146' Tc=17.4 min CN=80 Runoff=1.13 cfs 0.079 af

Subcatchment 2: Subarea 2 Runoff Area=0.017 ac Runoff Depth=2.72"

Tc=6.0 min CN=80 Runoff=0.08 cfs 0.004 af

Subcatchment 3: Subarea 3 Runoff Area=0.066 ac Runoff Depth=2.46"

Tc=6.0 min CN=77 Runoff=0.28 cfs 0.014 af

Subcatchment 4: Subarea 4 Runoff Area=0.331 ac Runoff Depth=2.81"

Tc=6.0 min CN=81 Runoff=1.58 cfs 0.077 af

Pond 1P: Existing CB (AP 1)

Peak Elev=62.29' Inflow=1.13 cfs 0.079 af

Outflow=1.13 cfs 0.079 af

Link 1L: Tailwater Condition = 59.30' Inflow=1.13 cfs 0.079 af

Primary=1.13 cfs 0.079 af

Link AP2: Analysis Point 2 Inflow=0.08 cfs 0.004 af

Primary=0.08 cfs 0.004 af

Link AP3: Analysis Point 3 Inflow=0.28 cfs 0.014 af

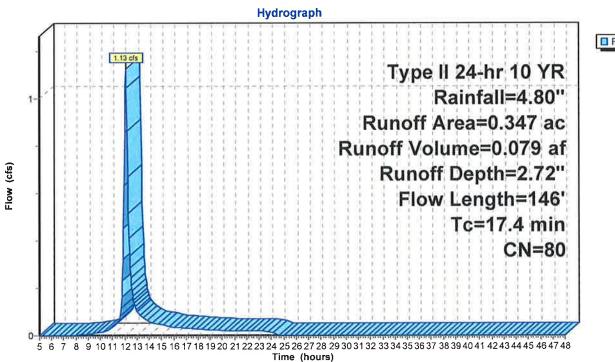
Primary=0.28 cfs 0.014 af

Link AP4: Analysis Point 4 Inflow=1.58 cfs 0.077 af

Primary=1.58 cfs 0.077 af

Total Runoff Area = 0.761 ac Runoff Volume = 0.173 af Average Runoff Depth = 2.74"

Page 13 8/30/2011


Subcatchment1: Subarea1

Runoff = 1.13 cfs @ 12.10 hrs, Volume= 0.079 af, Depth= 2.72"

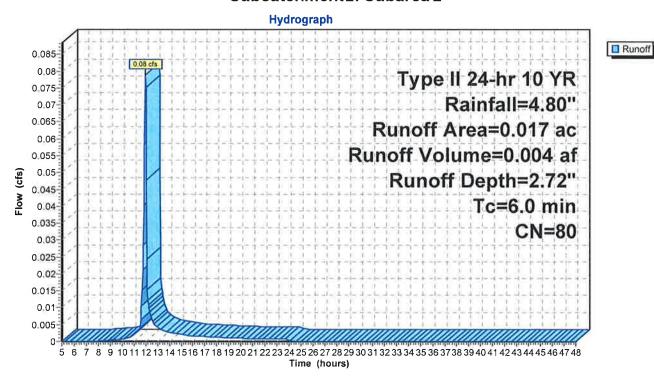
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10 YR Rainfall=4.80"

Area	a (ac) CN Description							
0.071 98 Paved parking & roofs								
0.215 80 >75% Grass cover, Good, HSG D								
0.	0.061 61 >75% Grass cover, Good, HSG B							
0.	0.347 80 Weighted Average							
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
17.0	100	0.0130	0.1		Sheet Flow,			
					Grass: Dense n= 0.240 P2= 3.20"			
0.4	46	0.0180	2.2		Shallow Concentrated Flow,			
					Unpaved Kv= 16.1 fps			
17.4	146	Total						

Subcatchment1: Subarea1

Page 14 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Subcatchment 2: Subarea 2

Runoff 0.08 cfs @ 11.97 hrs, Volume= 0.004 af, Depth= 2.72"

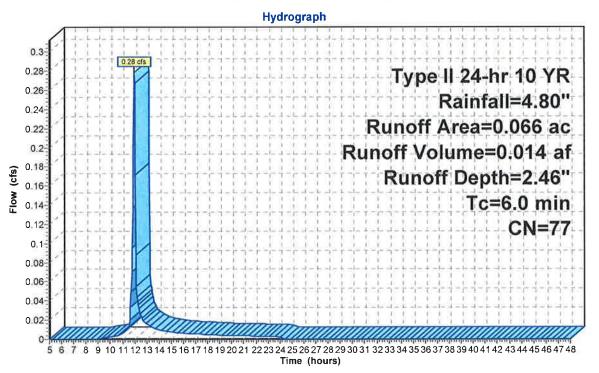
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10 YR Rainfall=4.80"

Area	(ac)	CN	Desc	cription			
0.	017	80	>75%	% Grass co	over, Good	H, HSG D	
Tc (min)	Leng		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0						Direct Entry	

Subcatchment 2: Subarea 2

8/30/2011

Subcatchment3: Subarea 3


Runoff = 0.28 cfs @ 11.97 hrs, Volume=

0.014 af, Depth= 2.46"

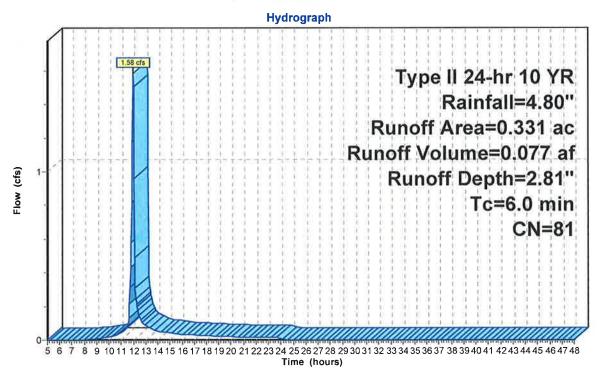
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10 YR Rainfall=4.80"

Area (ac) CN Description											
	0.	.006	80	80 >75% Grass cover, Good, HSG D							
	0.060 77 Woods, Good, HSG D										
0.066 77 Weighted Average											
	Тс	Leng	th	Slope	Velocity	Capacity	Description				
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
	6.0						Direct Entry.				

Subcatchment3: Subarea 3

Runoff

Page 16 8/30/2011


Subcatchment4: Subarea 4

Runoff = 1.58 cfs @ 11.97 hrs, Volume= 0.077 af, Depth= 2.81"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10 YR Rainfall=4.80"

Area	(ac)	CN	Desc	Description							
0.	028	98	Pave	Paved parking & roofs							
0.295 80 >75% Grass cover, Good, HSG D											
0.	004	61	>75%	>75% Grass cover, Good, HSG B							
0.004 77 Woods, Good, HSG D											
0.331 81 Weighted Average											
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0						Direct Entry,					

Subcatchment4: Subarea 4

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond 1P: Existing CB (AP 1)

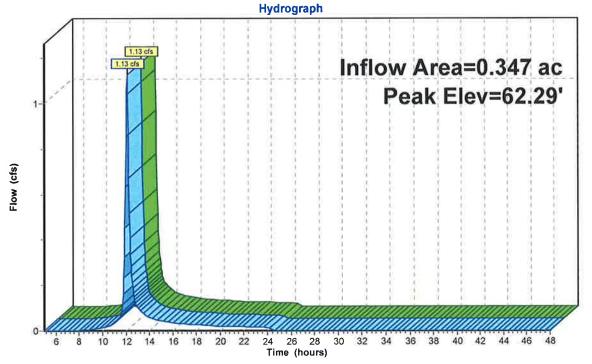
[57] Hint: Peaked at 62.29' (Flood elevation advised)

Inflow Area = 0.347 ac, Inflow Depth = 2.72" for 10 YR event Inflow = 1.13 cfs @ 12.10 hrs, Volume= 0.079 af

Outflow = 1.13 cfs @ 12.10 hrs, Volume= 0.079 af, Atten= 0%, Lag= 0.0 min

Primary = 1.13 cfs @ 12.10 hrs, Volume= 0.079 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 62.29' @ 12.10 hrs


Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= (not calculated)

#	Routing	Invert	Outlet Devices
1	Primary	56.80'	30.0" x 207.0' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 55.76' S= 0.0050 '/' n= 0.012 Cc= 0.900
2	Device 1	62.21'	3.00' x 4.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

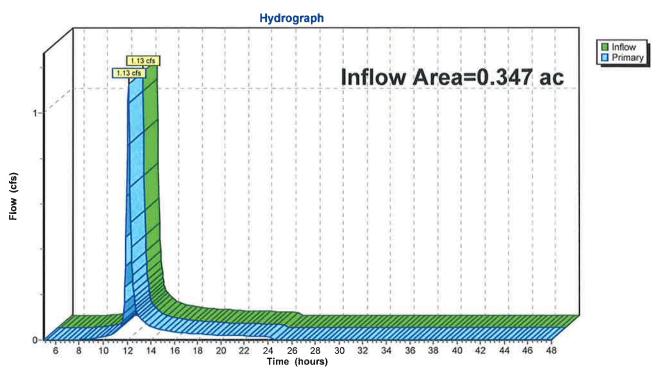
Primary OutFlow Max=1.12 cfs @ 12.10 hrs HW=62.29' TW=59.30' (Dynamic Tailwater)
1=Culvert (Passes 1.12 cfs of 38.51 cfs potential flow)
2=Orifice/Grate (Weir Controls 1.12 cfs @ 1.0 fps)

Pond 1P: Existing CB (AP 1)

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Link 1L: Tailwater Condition = 59.30'


Inflow Area = 0.347 ac, Inflow Depth = 2.72" for 10 YR event Inflow = 1.13 cfs @ 12.10 hrs, Volume= 0.079 af

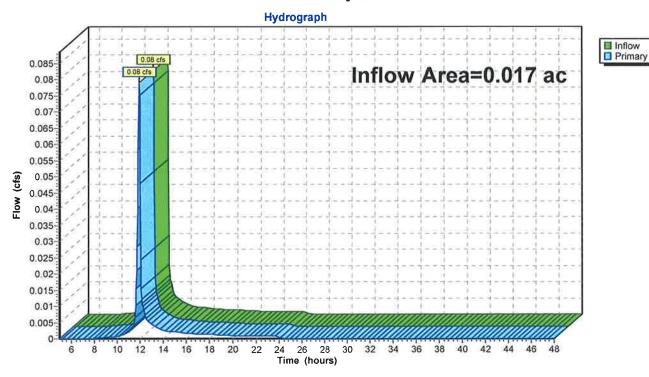
Primary = 1.13 cfs @ 12.10 hrs, Volume= 0.079 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 59.30'

Link 1L: Tailwater Condition = 59.30'

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Link AP2: Analysis Point 2

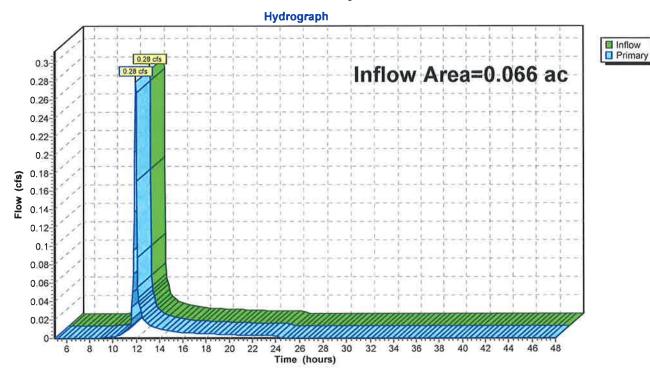
Inflow Area = 0.017 ac, Inflow Depth = 2.72" for 10 YR event 1nflow = 0.08 cfs @ 11.97 hrs, Volume= 0.004 af

Primary = 0.08 cfs @ 11.97 hrs, Volume= 0.004 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP2: Analysis Point 2

8/30/2011


Link AP3: Analysis Point 3

Inflow Area = 0.066 ac, Inflow Depth = 2.46" for 10 YR event 10.28 cfs @ 11.97 hrs, Volume= 0.014 af

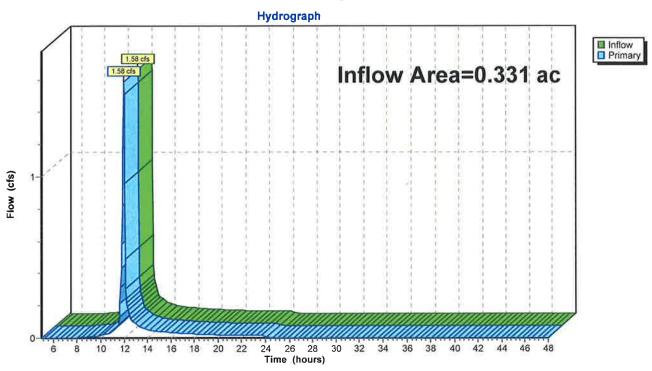
Primary = 0.28 cfs @ 11.97 hrs, Volume= 0.014 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP3: Analysis Point 3

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011


Link AP4: Analysis Point 4

Inflow Area = 0.331 ac, Inflow Depth = 2.81" for 10 YR event Inflow = 1.58 cfs @ 11.97 hrs, Volume= 0.077 af

Primary = 1.58 cfs @ 11.97 hrs, Volume= 0.077 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP4: Analysis Point 4

Prepared by {enter your company name here}

Page 22

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea 1	Runoff Area=0.347 ac	Runoff Depth=5.63"
---------------------------	----------------------	--------------------

Flow Length=146' Tc=17.4 min CN=80 Runoff=2.29 cfs 0.163 af

Subcatchment 2: Subarea 2 Runoff Area=0.017 ac Runoff Depth=5.62"

Tc=6.0 min CN=80 Runoff=0.16 cfs 0.008 af

Subcatchment 3: Subarea 3 Runoff Area=0.066 ac Runoff Depth=5.27"

Tc=6.0 min CN=77 Runoff=0.58 cfs 0.029 af

Subcatchment 4: Subarea 4 Runoff Area=0.331 ac Runoff Depth=5.74"

Tc=6.0 min CN=81 Runoff=3.13 cfs 0.158 af

Pond 1P: Existing CB (AP 1) Peak Elev=62.35' Inflow=2.29 cfs 0.163 af

Outflow=2.29 cfs 0.163 af

Link 1L: Tailwater Condition = 59.30' Inflow=2.29 cfs 0.163 af

Primary=2.29 cfs 0.163 af

Link AP2: Analysis Point 2 Inflow=0.16 cfs 0.008 af

Primary=0.16 cfs 0.008 af

Link AP3: Analysis Point 3 Inflow=0.58 cfs 0.029 af

Primary=0.58 cfs 0.029 af

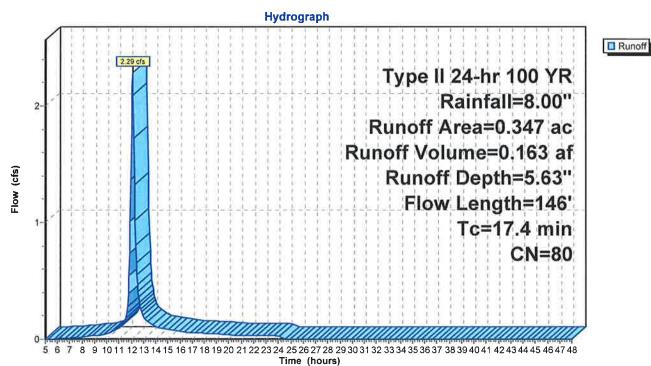
Link AP4: Analysis Point 4 Inflow=3.13 cfs 0.158 af

Primary=3.13 cfs 0.158 af

Total Runoff Area = 0.761 ac Runoff Volume = 0.358 af Average Runoff Depth = 5.65"

8/30/2011

Subcatchment1: Subarea 1


Runoff = 2.29 cfs @ 12.09 hrs, Volume=

0.163 af, Depth= 5.63"

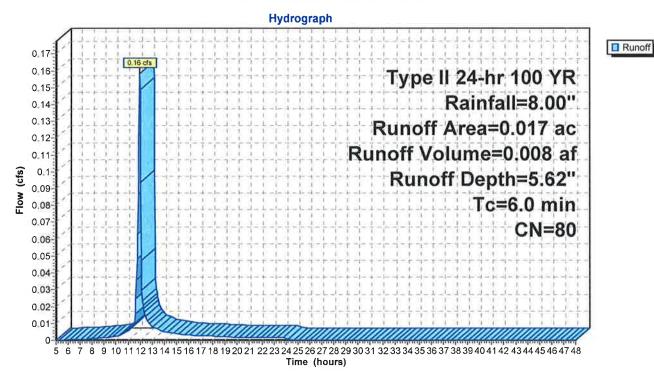
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100 YR Rainfall=8.00"

	Area	(ac)	CN De	scription					
	0.	071	98 Pa	Paved parking & roofs					
0.215 80				>75% Grass cover, Good, HSG D					
0.061 61 >75% Grass cover, Good, HSG B									
0.347 80 Weighted Average									
Tc Length Slope Velocity Capacity D					Capacity	Description			
	(min)	(feet	•	,	(cfs)	Description			
	17.0	100	0.0130	0.1	723	Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.20"			
	0.4	46	0.0180	2.2		Shallow Concentrated Flow,			
_						Unpaved Kv= 16.1 fps			
	17.4	146	Total						

Subcatchment1: Subarea 1

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011


Subcatchment2: Subarea 2

Runoff = 0.16 cfs @ 11.97 hrs, Volume= 0.008 af, Depth= 5.62"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100 YR Rainfall=8.00"

	Area	(ac)	CN Des	cription			
	0.	.017	80 >75	% Grass c	over, Good	HSG D	
	Тс	Length	ı Slope	•	Capacity	Description	
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	6.0				32 - 11	Direct Entry.	

Subcatchment2: Subarea 2

Page 25 8/30/2011

Subcatchment3: Subarea 3

Runoff = 0.58 cfs @ 11.97 hrs, Volume = 0.

0.029 af, Depth= 5.27"

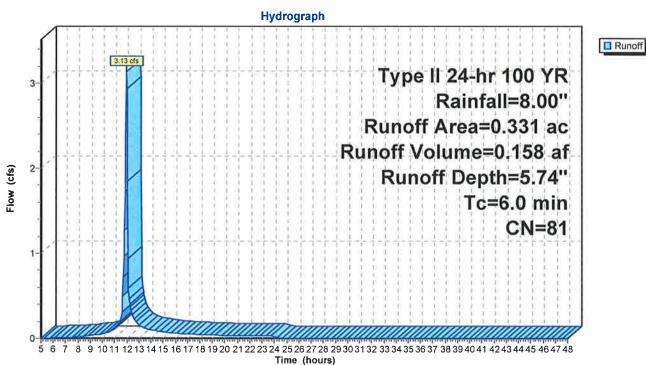
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100 YR Rainfall=8.00"

	Area	(ac)	CN	Desc	cription		
0.006 80 >75% Grass cover, Good, HSG D							
						age	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
•	6.0						Direct Entry

Subcatchment3: Subarea 3

Page 26 8/30/2011

Subcatchment4: Subarea 4


Runoff = 3.13 cfs @ 11.97 hrs, Volume= 0.158 af, Depth= 5.74"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100 YR Rainfall=8.00"

	Area	(ac)	CN	Description					
-	0.028 98 Paved parking & roofs								
0.295 80 >75% Grass cover, Good, HSG D									
	0.	004	61	>75%	>75% Grass cover, Good, HSG B				
0.004 77 Woods, Good, H						HSG D			
	0.331 81		81	Weighted Average					
	Тс	Lengt	h	Slope	Velocity	Capacity	Description		
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)			
	6.0						Direct Entry		

Direct Entry,

Subcatchment4: Subarea 4

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond 1P: Existing CB (AP 1)

[57] Hint: Peaked at 62.35' (Flood elevation advised)

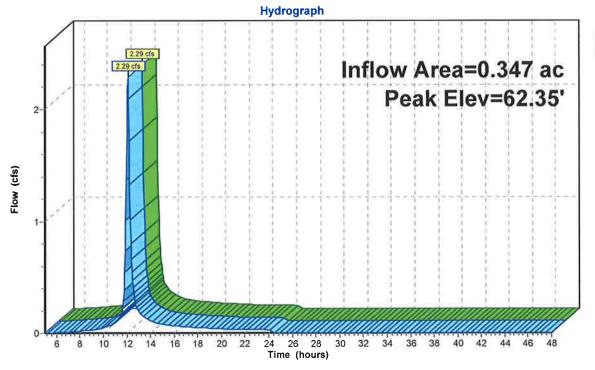
Inflow Area = 0.347 ac, Inflow Depth = 5.63" for 100 YR event Inflow = 2.29 cfs @ 12.09 hrs, Volume= 0.163 af

Outflow = 2.29 cfs @ 12.09 hrs, Volume= 0.163 af, Atten= 0%, Lag= 0.0 min

Primary = 2.29 cfs @ 12.09 hrs, Volume= 0.163 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 62.35' @ 12.09 hrs


Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= (not calculated)

#	Routing	Invert	Outlet Devices
1	Primary	56.80'	30.0" x 207.0' long Culvert RCP, square edge headwall, Ke= 0.500
	•		Outlet Invert= 55.76' S= 0.0050 '/' n= 0.012 Cc= 0.900
2	Device 1	62.21'	3.00' x 4.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

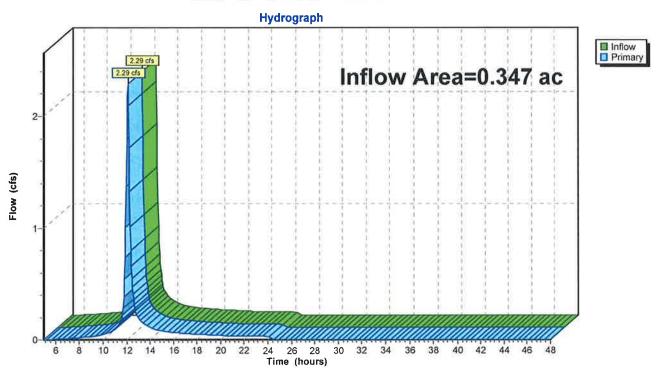
Primary OutFlow Max=2.28 cfs @ 12.09 hrs HW=62.35' TW=59.30' (Dynamic Tailwater)
1=Culvert (Passes 2.28 cfs of 38.84 cfs potential flow)
2=Orifice/Grate (Weir Controls 2.28 cfs @ 1.2 fps)

Pond 1P: Existing CB (AP 1)

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Link 1L: Tailwater Condition = 59.30'


Inflow Area = 0.347 ac, Inflow Depth = 5.63" for 100 YR event 2.29 cfs @ 12.09 hrs, Volume= 0.163 af

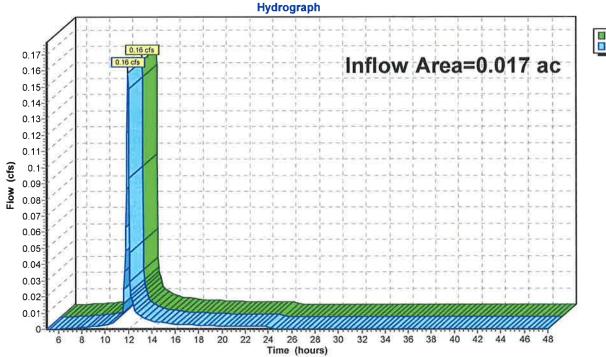
Primary = 2.29 cfs @ 12.09 hrs, Volume= 0.163 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 59.30'

Link 1L: Tailwater Condition = 59.30'

8/30/2011


Link AP2: Analysis Point 2

Inflow Area = 0.017 ac, Inflow Depth = 5.62" for 100 YR event 0.16 cfs @ 11.97 hrs, Volume= 0.008 af

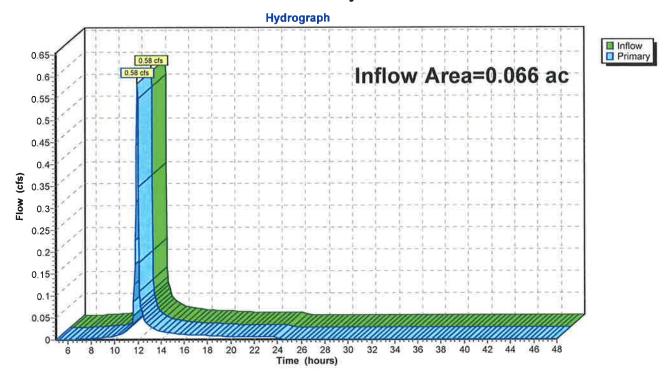
Primary = 0.16 cfs @ 11.97 hrs, Volume= 0.008 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP2: Analysis Point 2

Page 30 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Link AP3: Analysis Point 3

Inflow Area = 0.066 ac, Inflow Depth = 5.27" for 100 YR event Inflow = 0.58 cfs @ 11.97 hrs, Volume= 0.029 af

Primary = 0.58 cfs @ 11.97 hrs, Volume= 0.029 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP3: Analysis Point 3

Page 31 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

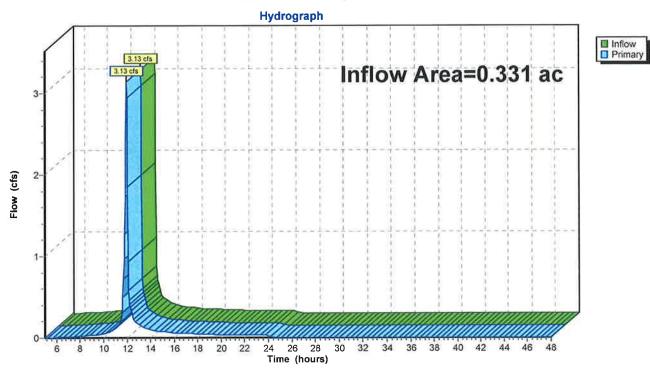
Link AP4: Analysis Point 4

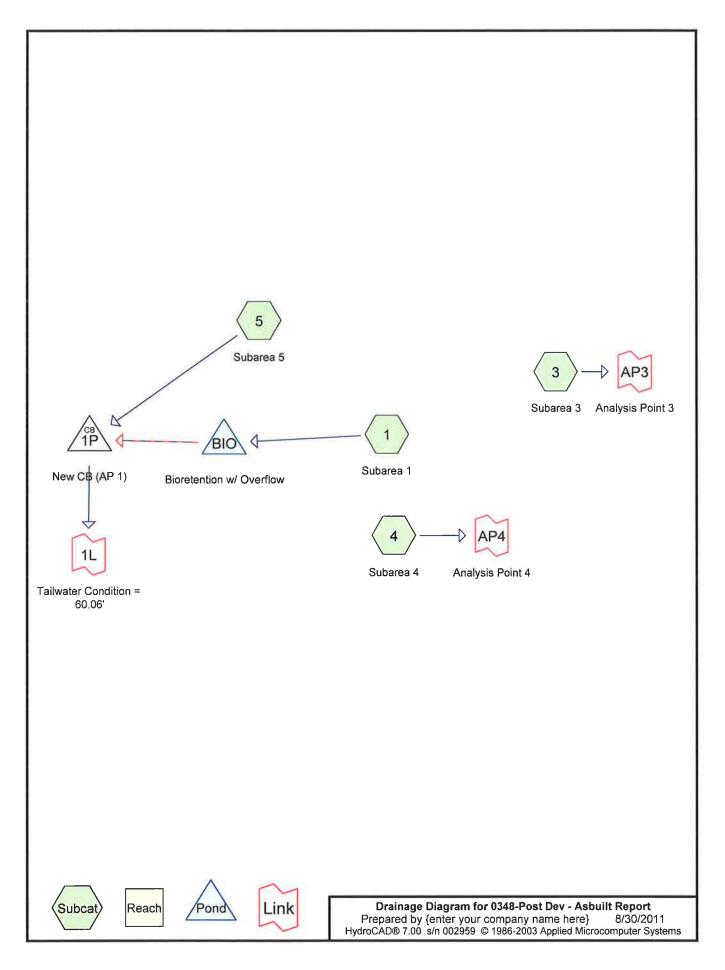
Inflow Area =

0.331 ac, Inflow Depth = 5.74" for 100 YR event

Inflow

Primary


3.13 cfs @ 11.97 hrs, Volume= 3.13 cfs @ 11.97 hrs, Volume=


0.158 af

0.158 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP4: Analysis Point 4

0348-Post Dev - Asbuilt Report

Prepared by {enter your company name here}

Page 2

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems 8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dvn-Stor-Ind method - Pond routing by Dvn-Stor-Ind method

Subcatchment 1: Subarea 1 Runoff Area=0.577 ac Runoff Depth=2.08"

Tc=6.0 min CN=89 Runoff=2.02 cfs 0.100 af

Subcatchment 3: Subarea 3 Runoff Area=0.056 ac Runoff Depth=1.40"

Tc=6.0 min CN=80 Runoff=0.14 cfs 0.007 af

Subcatchment 4: Subarea 4 Runoff Area=0.047 ac Runoff Depth=1.40"

Tc=6.0 min CN=80 Runoff=0.11 cfs 0.005 af

Subcatchment 5: Subarea 5 Runoff Area=0.082 ac Runoff Depth=1.84"

Tc=6.0 min CN=86 Runoff=0.26 cfs 0.013 af

Pond 1P: New CB (AP 1) Peak Elev=60.06' Inflow=0.40 cfs 0.113 af

30.0" x 234.0' Culvert Outflow=0.40 cfs 0.113 af

Pond BIO: Bioretention w/ Overflow Peak Elev=61.61' Storage=1,787 cf Inflow=2.02 cfs 0.100 af

Primary=0.34 cfs 0.100 af Secondary=0.00 cfs 0.000 af Outflow=0.34 cfs 0.100 af

Link 1L: Tailwater Condition = 60.06' Inflow=0.40 cfs 0.113 af

Primary=0.40 cfs 0.113 af

Link AP3: Analysis Point 3 Inflow=0.14 cfs 0.007 af

Primary=0.14 cfs 0.007 af

Link AP4: Analysis Point 4 Inflow=0.11 cfs 0.005 af

Primary=0.11 cfs 0.005 af

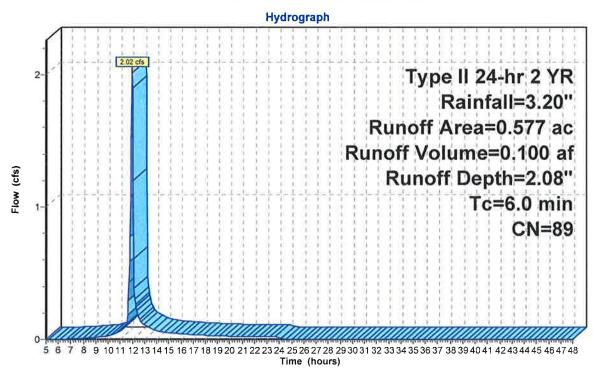
Total Runoff Area = 0.762 ac Runoff Volume = 0.125 af Average Runoff Depth = 1.96"

Prepared by {enter your company name here}

Page 3 8/30/2011

■ Runoff

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Subcatchment1: Subarea 1

Runoff = 2.02 cfs @ 11.97 hrs, Volume= 0.100 af, Depth= 2.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2 YR Rainfall=3.20"

_	Area	(ac)	CN	Desc	ription		
0.317 98 Paved parking & roofs							
	0.	232	80	>75%	6 Grass co	over, Good,	I, HSG D
-	0.	028	61	>75%	√ Grass co	over, Good,	I, HSG B
0.577 89 Weighted Average							
	Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	6.0					****	Direct Entry,

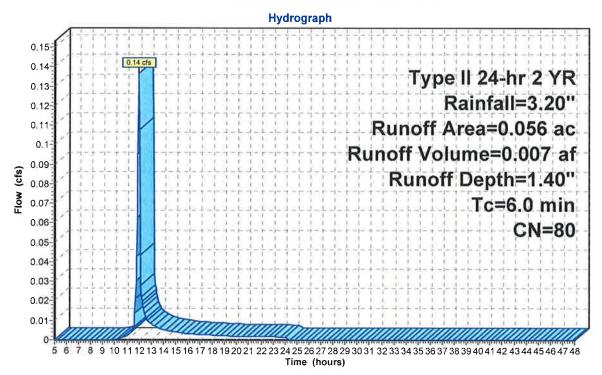
Subcatchment1: Subarea 1

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems Page 4

8/30/2011

Runoff

Subcatchment3: Subarea 3


Runoff 0.14 cfs @ 11.98 hrs, Volume=

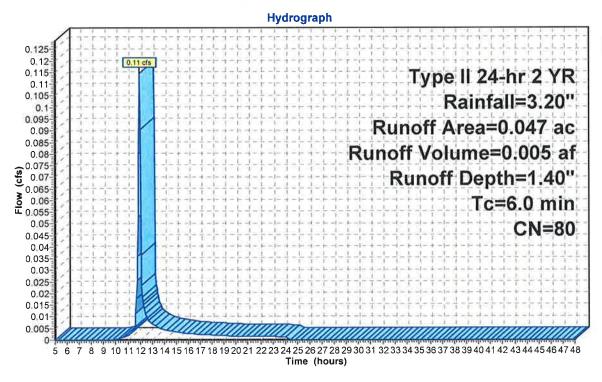
0.007 af, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2 YR Rainfall=3.20"

	Area (ac) CN			Desc	cription				
	0.049			>75%	>75% Grass cover, Good, HSG D				
	0.	007	77	Woo	ds, Good,	HSG D			
	0.	056	80	Weig	ghted Aver	age			
	Tc	Leng		Slope	Velocity	Capacity	Description		
_	(min)	(fee	(t)	(ft/ft)	(ft/sec)	(cfs)			
	6.0						Direct Entry,		

Subcatchment3: Subarea 3

Page 5 8/30/2011


Subcatchment4: Subarea 4

Runoff = 0.11 cfs @ 11.98 hrs, Volume= 0.005 af, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2 YR Rainfall=3.20"

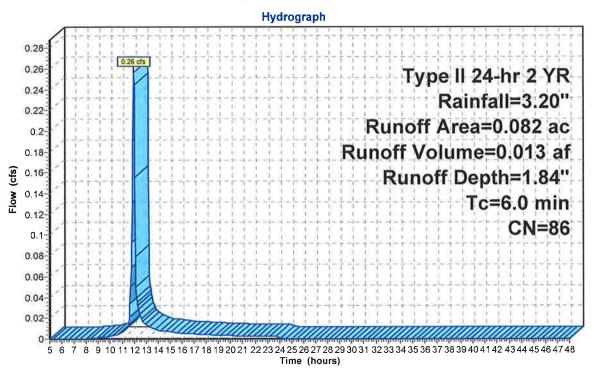
Area (ac) CN				Desc	ription			
	0.	044	80	>75%	6 Grass co	over, Good,	d, HSG D	
	0.	.001	61	>75%	√ Grass co	over, Good,	d, HSG B	
1,1	0.	.002	98	Pave	ed parking	& roofs		
	0.	047	80	Weig	hted Aver	age		
91	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	6.0						Direct Entry,	

Subcatchment4: Subarea 4

Page 6 8/30/2011

■ Runoff

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Subcatchment5: Subarea 5

Runoff = 0.26 cfs @ 11.97 hrs, Volume= 0.013 af, Depth= 1.84"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 2 YR Rainfall=3.20"

Area	(ac)	CN	Desc	cription			
0.	026	61	>75%	% Grass co	over, Good	, HSG B	
0.	056	98	Pave	ed parking	& roofs		
0.	.082	86	Wei	ghted Aver	age		
Tc	Leng		Slope	Velocity	Capacity	Description	
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
6.0						Direct Entry.	

Subcatchment5: Subarea 5

Prepared by {enter your company name here}

Page 7 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Pond 1P: New CB (AP 1)

[57] Hint: Peaked at 60.06' (Flood elevation advised)

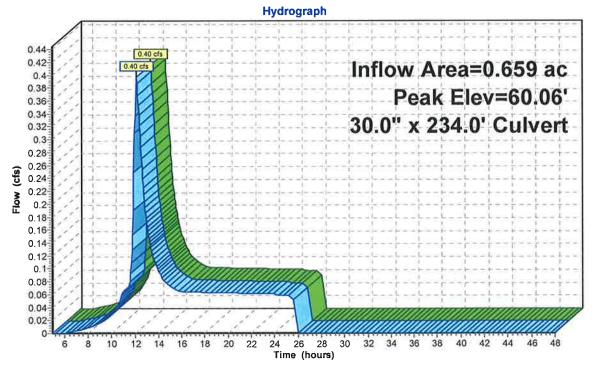
[80] Warning: Exceeded Pond BIO by 1.61' @ 10.65 hrs (0.06 cfs)

Inflow Area = 0.659 ac, Inflow Depth = 2.05" for 2 YR event Inflow = 0.40 cfs @ 12.12 hrs, Volume= 0.113 af

Outflow = 0.40 cfs @ 12.12 hrs, Volume= 0.113 af, Atten= 0%, Lag= 0.0 min

Primary = 0.40 cfs @ 12.12 hrs, Volume= 0.113 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 60.06' @ 12.12 hrs


Plug-Flow detention time= 0.0 min calculated for 0.113 af (100% of inflow)

Center-of-Mass det. time= 0.0 min (977.0 - 977.0)

	#	Routing	Invert	Outlet Devices	
_	1	Primary	57.56'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500	
		•		Outlet Invert= 55.76' S= 0.0077 '/' n= 0.012 Cc= 0.900	

Primary OutFlow Max=0.39 cfs @ 12.12 hrs HW=60.06' TW=60.06' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.39 cfs @ 0.1 fps)

Pond 1P: New CB (AP 1)

Prepared by {enter your company name here}

Page 8 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Pond BIO: Bioretention w/ Overflow

Inflow Area = 0.577 ac, Inflow Depth = 2.08" for 2 YR event
Inflow = 2.02 cfs @ 11.97 hrs, Volume= 0.100 af
Outflow = 0.34 cfs @ 12.18 hrs, Volume= 0.100 af, Atten= 83%, Lag= 12.5 min
Outflow = 0.34 cfs @ 12.18 hrs, Volume= 0.100 af
Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 61.61' @ 12.18 hrs Surf.Area= 900 sf Storage= 1,787 cf Plug-Flow detention time= 188.2 min calculated for 0.100 af (100% of inflow) Center-of-Mass det. time= 188.7 min (996.7 - 808.0)

#	Invert	Avail.Storage	Storage Description
1	60.90'	5,006 cf	Custom Stage Data (Irregular) Listed below -Impervious
2	58.45'	882 cf	20.00'W x 45.00'L x 2.45'H Prismatoid
			2,205 cf Overall x 40.0% Voids

5,888 cf Total Available Storage

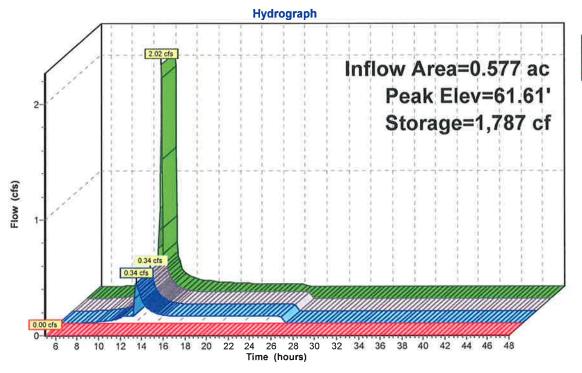
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
60.90	830	117.0	0	0	830
62.00	1,776	165.0	1,401	1,401	1,918
63.00	3,542	357.0	2,609	4,009	9,898
63.25	4,446	410.0	996	5,006	13,134

#	Routing	Invert	Outlet Devices
1	Primary	0.00'	0.003930 fpm Exfiltration over entire Surface area
2	Primary	57.72'	15.0" x 43.0' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 57.56' S= 0.0037 '/' n= 0.012 Cc= 0.900
3	Device 2	61.25'	5.5" Vert. Orifice/Grate C= 0.600
4	Device 2	63.11'	1.50' x 2.83' Horiz. Orifice/Grate Limited to weir flow C= 0.600
5	Secondary	63.25'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50
			3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66
			2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=0.34 cfs @ 12.18 hrs HW=61.61' TW=60.06' (Dynamic Tailwater)

1=Exfiltration (Exfiltration Controls 0.06 cfs)

-2=Culvert (Passes 0.28 cfs of 7.35 cfs potential flow)


-3=Orifice/Grate (Orifice Controls 0.28 cfs @ 2.0 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=58.45' TW=57.56' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

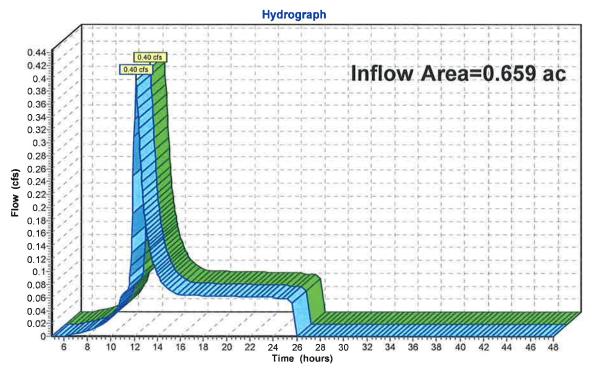
Page 9 8/30/2011

Pond BIO: Bioretention w/ Overflow

8/30/2011

Link 1L: Tailwater Condition = 60.06'

[80] Warning: Exceeded Pond 1P by 2.50' @ 5.00 hrs (26.43 cfs)


0.659 ac, Inflow Depth = 2.05" for 2 YR event Inflow Area = Inflow 0.40 cfs @ 12.12 hrs, Volume= 0.113 af

0.40 cfs @ 12.12 hrs, Volume= 0.113 af, Atten= 0%, Lag= 0.0 min Primary

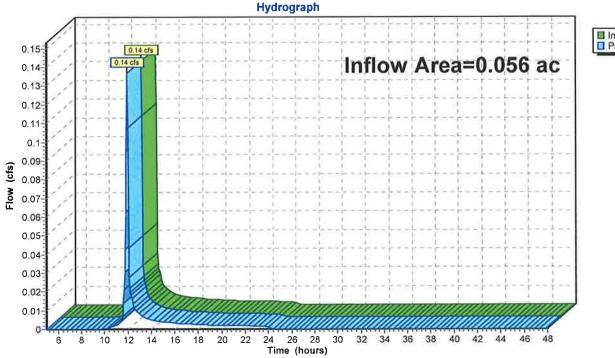
Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 60.06'

Link 1L: Tailwater Condition = 60.06'

Page 11 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Link AP3: Analysis Point 3

Inflow Area = 0.056 ac, Inflow Depth = 1.40" for 2 YR event Inflow = 0.14 cfs @ 11.98 hrs, Volume= 0.007 af

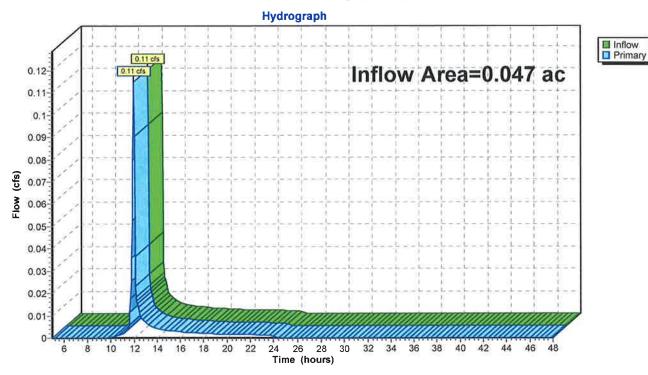
Primary = 0.14 cfs @ 11.98 hrs, Volume= 0.007 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP3: Analysis Point 3

Page 12 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Link AP4: Analysis Point 4

Inflow Area = 0.047 ac, Inflow Depth = 1.40" for 2 YR event Inflow = 0.11 cfs @ 11.98 hrs, Volume= 0.005 af

Primary = 0.11 cfs @ 11.98 hrs, Volume= 0.005 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP4: Analysis Point 4

0348-Post Dev - Asbuilt Report

Prepared by {enter your company name here}

Page 13

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea 1 Runoff Area=0.577 ac Runoff Depth=3.58"

Tc=6.0 min CN=89 Runoff=3.37 cfs 0.172 af

Subcatchment 3: Subarea 3 Runoff Area=0.056 ac Runoff Depth=2.72"

Tc=6.0 min CN=80 Runoff=0.26 cfs 0.013 af

Subcatchment 4: Subarea 4 Runoff Area=0.047 ac Runoff Depth=2.72"

Tc=6.0 min CN=80 Runoff=0.22 cfs 0.011 af

Subcatchment 5: Subarea 5 Runoff Area=0.082 ac Runoff Depth=3.28"

Tc=6.0 min CN=86 Runoff=0.45 cfs 0.022 af

Pond 1P: New CB (AP 1) Peak Elev=60.06' Inflow=1.11 cfs 0.195 af

30.0" x 234.0' Culvert Outflow=1.11 cfs 0.195 af

Pond BIO: Bioretention w/ Overflow Peak Elev=62.28' Storage=3,006 cf Inflow=3.37 cfs 0.172 af

Primary=0.77 cfs 0.172 af Secondary=0.00 cfs 0.000 af Outflow=0.77 cfs 0.172 af

Link 1L: Tailwater Condition = 60.06' Inflow=1.11 cfs 0.195 af

Primary=1.11 cfs 0.195 af

Link AP3: Analysis Point 3 Inflow=0.26 cfs 0.013 af

Primary=0.26 cfs 0.013 af

Link AP4: Analysis Point 4 Inflow=0.22 cfs 0.011 af

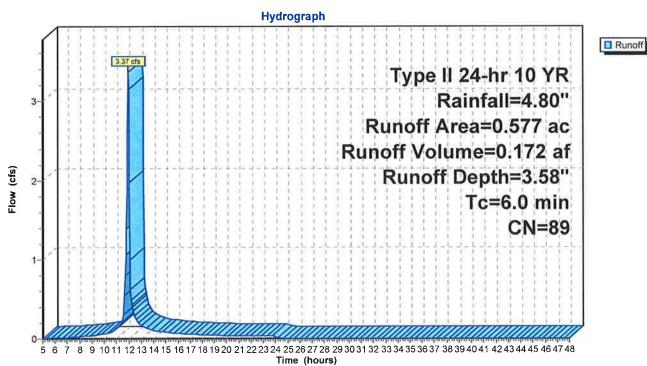
Primary=0.22 cfs 0.011 af

Total Runoff Area = 0.762 ac Runoff Volume = 0.218 af Average Runoff Depth = 3.43"

Prepared by {enter your company name here}

Page 14 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Subcatchment1: Subarea 1

Runoff = 3.37 cfs @ 11.97 hrs, Volume= 0.172 af, Depth= 3.58"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10 YR Rainfall=4.80"

122	Area	Area (ac) CN Description									
	0.	.317	98	Pave	ed parking	& roofs					
	0.	HSG D									
0.028 61 >75% Grass cover, Good, HSG B											
_	0.	.577	89	Weig	hted Aver	age					
	Tc	Lengtl		Slope	Velocity	Capacity	Description				
-	(min)	(feet		(ft/ft)	(ft/sec)	(cfs)					
	6.0						Direct Entry,				

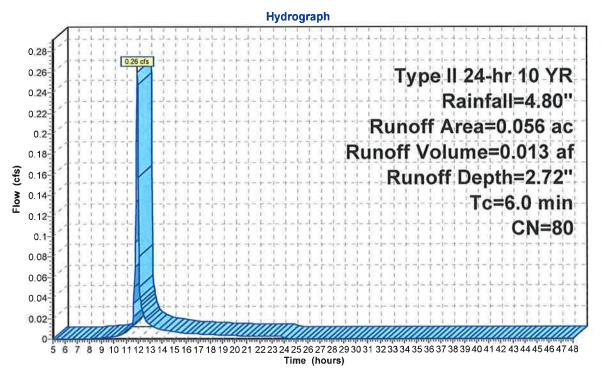
Subcatchment1: Subarea 1

Page 15 8/30/2011

■ Runoff

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Subcatchment3: Subarea 3


Runoff = 0.26 cfs @ 11.97 hrs, Volume=

0.013 af, Depth= 2.72"

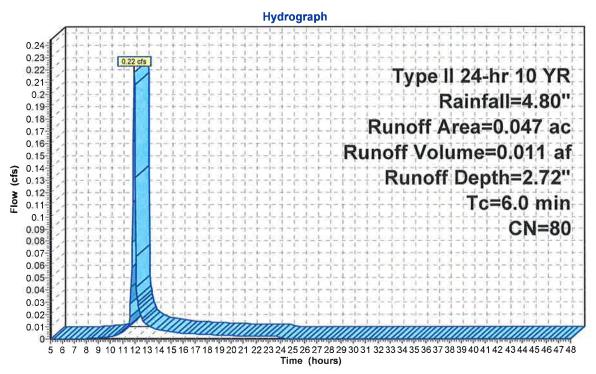
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10 YR Rainfall=4.80"

Area	(ac) CN Description									
0.049 80 >75% Grass cover, Good, HSG D										
0.007 77 Woods, Good, HSG D										
0.056 80 Weighted Average										
Tc Length Slope Velocity Capacity Description										
(min) (feet) (ft/ft) (ft/sec) (cfs)										
6.0						Direct Entry.				

Subcatchment3: Subarea 3

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems Page 16 8/30/2011

Runoff


Subcatchment4: Subarea 4

Runoff = 0.22 cfs @ 11.97 hrs, Volume= 0.011 af, Depth= 2.72"

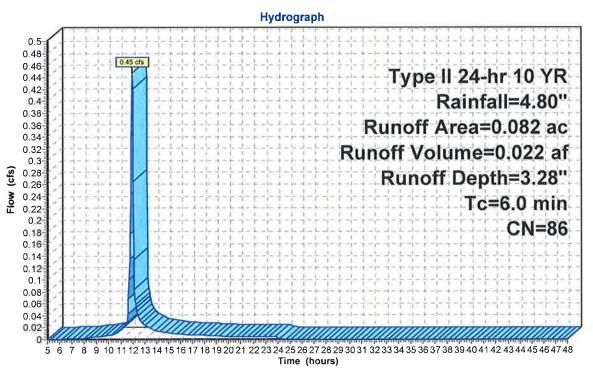
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10 YR Rainfall=4.80"

Are	a (ac)	CN	Desc	ription			
	0.044	80	, HSG D				
0.001 61 >75% Grass cover, Good, HSG B 0.002 98 Paved parking & roofs							
T (min			Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0			1	V/	\	Direct Entry,	

Subcatchment4: Subarea 4

8/30/2011

Subcatchment5: Subarea 5


Runoff = 0.45 cfs @ 11.97 hrs, Volume=

0.022 af, Depth= 3.28"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 10 YR Rainfall=4.80"

	Area	Area (ac) CN Description									
	0.026 61 >75% Grass cover, Good, HSG B										
	0.056 98 Paved parking & roofs										
_	0.082 86 Weighted Average										
	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)										
-	6.0 Direct Entry,										

Subcatchment5: Subarea 5

Runoff

Page 18 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Pond 1P: New CB (AP1)

[82] Warning: Early inflow requires earlier time span

[57] Hint: Peaked at 60.06' (Flood elevation advised)

[80] Warning: Exceeded Pond BIO by 1.61' @ 9.45 hrs (0.06 cfs)

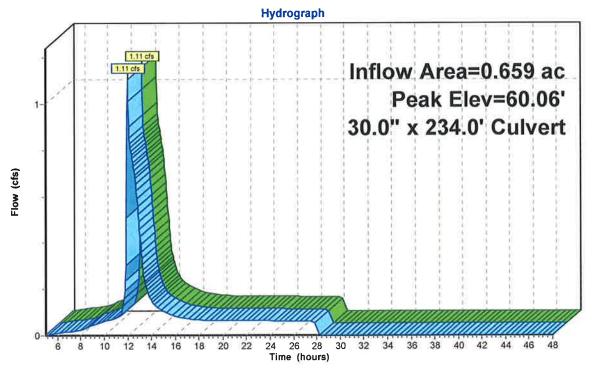
Inflow Area = 0.659 ac, Inflow Depth = 3.54" for 10 YR event Inflow = 1.11 cfs @ 12.00 hrs, Volume= 0.195 af

Outflow = 1.11 cfs @ 12.00 hrs, Volume= 0.195 af, Atten= 0%, Lag= 0.0 min

Primary = 1.11 cfs @ 12.00 hrs, Volume= 0.195 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 60.06' @ 12.00 hrs


Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= (not calculated)

#	Routing	Invert	Outlet Devices
1	Primary	57.56'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 55.76' S= 0.0077 '/' n= 0.012 Cc= 0.900

Primary OutFlow Max=1.10 cfs @ 12.00 hrs HW=60.06' TW=60.06' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.10 cfs @ 0.3 fps)

Pond 1P: New CB (AP 1)

Prepared by {enter your company name here}

Page 19

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond BIO: Bioretention w/ Overflow

Inflow Area =	0.577 ac, Inflow Depth = 3.58"	for 10 YR event
Inflow =	3.37 cfs @ 11.97 hrs, Volume=	0.172 af
Outflow =	0.77 cfs @ 12.13 hrs, Volume=	0.172 af, Atten= 77%, Lag= 10.1 min
Primary =	0.77 cfs @ 12.13 hrs, Volume=	0.172 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 62.28' @ 12.13 hrs Surf.Area= 900 sf Storage= 3,006 cf Plug-Flow detention time= 151.1 min calculated for 0.172 af (100% of inflow) Center-of-Mass det. time= 151.3 min (944.2 - 792.9)

#	Invert _	Avail.Storage	Storage Description
1	60.90'	5,006 cf	Custom Stage Data (Irregular) Listed below -Impervious
2	58.45'	882 cf	20.00'W x 45.00'L x 2.45'H Prismatoid
			2,205 cf Overall x 40.0% Voids

5,888 cf Total Available Storage

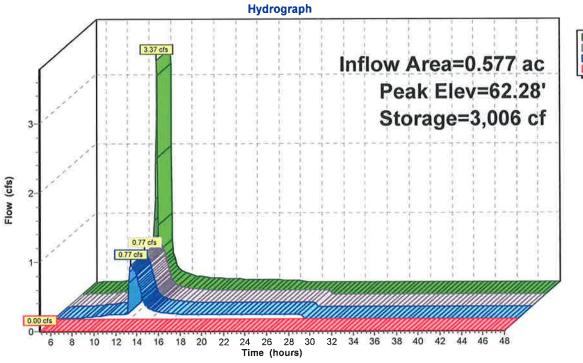
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area _(sq-ft)
60.90	830	117.0	0	0	830
62.00	1,776	165.0	1,401	1,401	1,918
63.00	3,542	357.0	2,609	4,009	9,898
63.25	4,446	410.0	996	5,006	13,134

#	Routing	Invert	Outlet Devices
1	Primary		0.003930 fpm Exfiltration over entire Surface area
2	Primary	57.72'	15.0" x 43.0' long Culvert RCP, square edge headwall, Ke= 0.500
	-		Outlet Invert= 57.56' S= 0.0037 '/' n= 0.012 Cc= 0.900
3	Device 2	61.25'	5.5" Vert. Orifice/Grate C= 0.600
4	Device 2	63.11'	1.50' x 2.83' Horiz. Orifice/Grate Limited to weir flow C= 0.600
5	Secondary	63.25'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50
			3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66
			2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=0.77 cfs @ 12.13 hrs HW=62.28' TW=60.06' (Dynamic Tailwater)

—1=Exfiltration (Exfiltration Controls 0.06 cfs)

-2=Culvert (Passes 0.71 cfs of 8.79 cfs potential flow)


-3=Orifice/Grate (Orifice Controls 0.71 cfs @ 4.3 fps)

-4=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=58.45' TW=57.59' (Dynamic Tailwater) 5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 20 8/30/2011

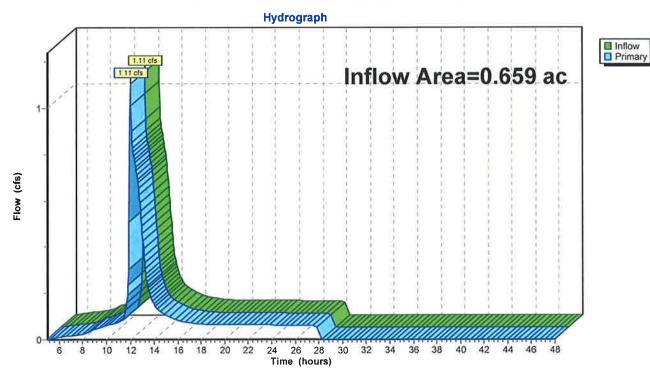
Pond BIO: Bioretention w/ Overflow

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Link 1L: Tailwater Condition = 60.06'

[80] Warning: Exceeded Pond 1P by 2.50' @ 28.10 hrs (26.43 cfs)


Inflow Area = 0.659 ac, Inflow Depth = 3.54" for 10 YR event Inflow = 1.11 cfs @ 12.00 hrs, Volume= 0.195 af

Primary = 1.11 cfs @ 12.00 hrs, Volume= 0.195 af, Atten= 0%, Lag= 0.0 min

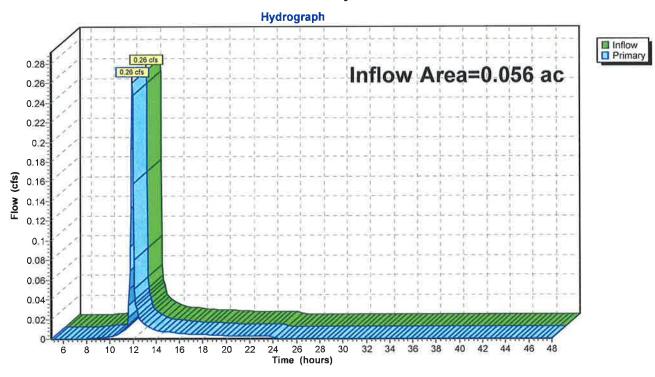
Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 60.06'

Link 1L: Tailwater Condition = 60.06'

Page 22 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Link AP3: Analysis Point 3

Inflow Area = 0.056 ac, Inflow Depth = 2.72" for 10 YR event lnflow = 0.26 cfs @ 11.97 hrs, Volume= 0.013 af

Primary = 0.26 cfs @ 11.97 hrs, Volume= 0.013 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP3: Analysis Point 3

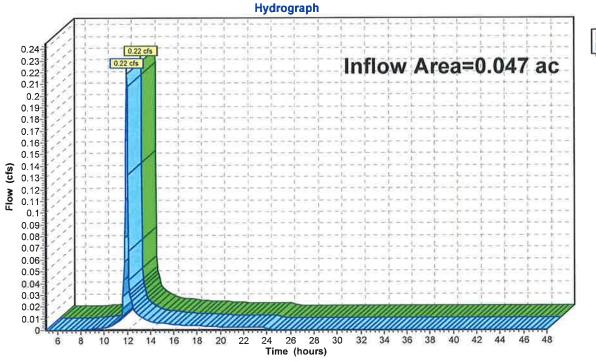
0348-Post Dev - Asbuilt Report

Prepared by {enter your company name here}

Page 23

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011


Link AP4: Analysis Point 4

Inflow Area = 0.047 ac, Inflow Depth = 2.72" for 10 YR event Inflow = 0.22 cfs @ 11.97 hrs, Volume= 0.011 af

Primary = 0.22 cfs @ 11.97 hrs, Volume= 0.011 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP4: Analysis Point 4

0348-Post Dev - Asbuilt Report

Prepared by {enter your company name here}

Page 24

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea 1 Runoff Area=0.577 ac Runoff Depth=6.65"

Tc=6.0 min CN=89 Runoff=6.06 cfs 0.320 af

Subcatchment 3: Subarea 3 Runoff Area=0.056 ac Runoff Depth=5.62"

Tc=6.0 min CN=80 Runoff=0.52 cfs 0.026 af

Subcatchment 4: Subarea 4 Runoff Area=0.047 ac Runoff Depth=5.62"

Tc=6.0 min CN=80 Runoff=0.44 cfs 0.022 af

Subcatchment 5: Subarea 5 Runoff Area=0.082 ac Runoff Depth=6.32"

Tc=6.0 min CN=86 Runoff=0.83 cfs 0.043 af

Pond 1P: New CB (AP 1) Peak Elev=60.07' Inflow=2.27 cfs 0.363 af

30.0" x 234.0' Culvert Outflow=2.27 cfs 0.363 af

Pond BIO: Bioretention w/ Overflow Peak Elev=63.21' Storage=5,737 cf Inflow=6.06 cfs 0.320 af

Primary=2.03 cfs 0.320 af Secondary=0.00 cfs 0.000 af Outflow=2.03 cfs 0.320 af

Link 1L: Tailwater Condition = 60.06' Inflow=2.27 cfs 0.363 af

Primary=2.27 cfs 0.363 af

Link AP3: Analysis Point 3 Inflow=0.52 cfs 0.026 af

Primary=0.52 cfs 0.026 af

Link AP4: Analysis Point 4 Inflow=0.44 cfs 0.022 af

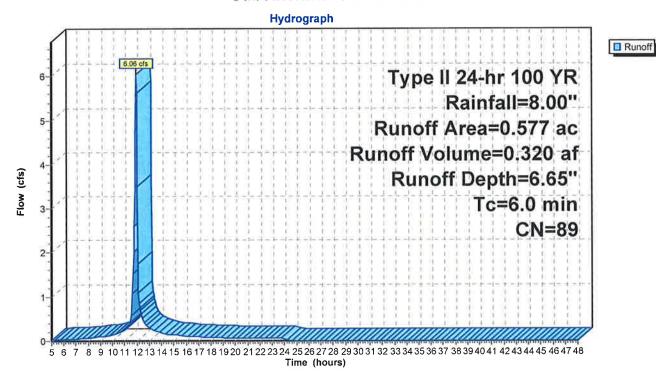
Primary=0.44 cfs 0.022 af

Total Runoff Area = 0.762 ac Runoff Volume = 0.411 af Average Runoff Depth = 6.47"

Prepared by {enter your company name here}

Page 25 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Subcatchment1: Subarea 1

Runoff = 6.06 cfs @ 11.96 hrs, Volume= 0.320 af, Depth= 6.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100 YR Rainfall=8.00"

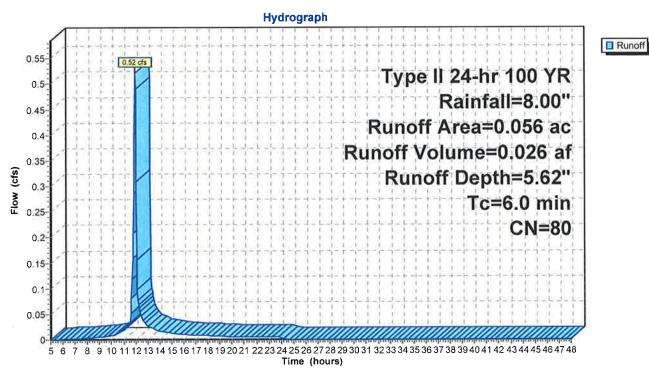
 Area	(ac)	CN	Desc	ription					
0.317 98 Paved parking & roofs									
0.232 80 >75% Grass cover, Good, HSG D									
0.028 61 >75% Grass cover, Good, HSG B									
0.577 89 Weighted Average									
Тс	Lengt		Slope	Velocity	Capacity	Description			
 (min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)				
6.0						Direct Entry,			

Subcatchment1: Subarea 1

Page 26 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Subcatchment3: Subarea 3


0.52 cfs @ 11.97 hrs, Volume= Runoff

0.026 af, Depth= 5.62"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100 YR Rainfall=8.00"

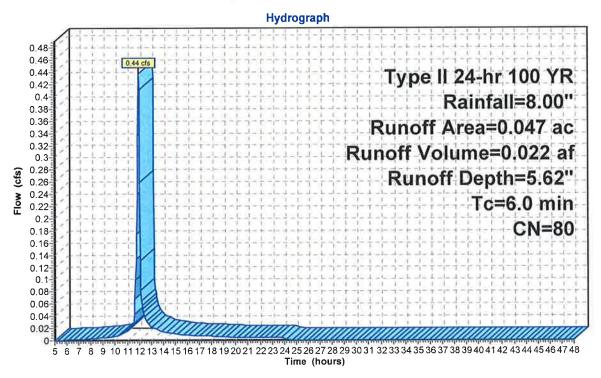
	Area (ac) CN Description									
	0.049 80 >75% Grass cover, Good, HSG D									
200	0.007 77 Woods, Good, HSG D									
- 25	0.056 80 Weighted Average									
	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)									
-	6.0	(100		(IUIL)	(10300)	(013)	Direct Entry.			

Subcatchment3: Subarea 3

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Runoff


Subcatchment4: Subarea 4

0.44 cfs @ 11.97 hrs, Volume= 0.022 af, Depth= 5.62" Runoff

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100 YR Rainfall=8.00"

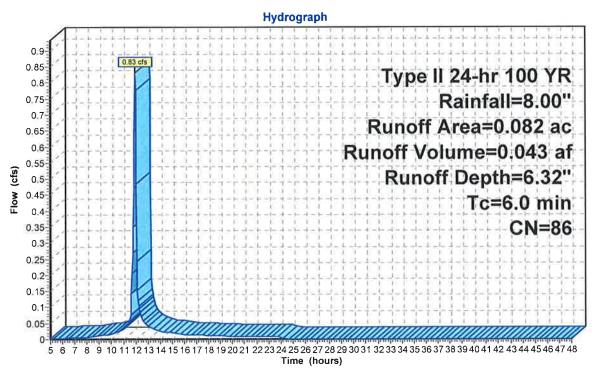
	Area	(ac)	CN	Desc	ription			
	0.044 80 >75% Grass cover, Good, HSG D							
	0.001 61 >75% Grass cover, Good, HSG B							
	0.002 98 Paved parking & roofs							
	0.	047	80	Weig	hted Aver	age		
	Тс	Lengt	h S	Slope	Velocity	Capacity	Description	
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)		
-	6.0						Direct Entry	

Subcatchment4: Subarea 4

Page 28 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Subcatchment5: Subarea 5


Runoff = 0.83 cfs @ 11.96 hrs, Volume=

0.043 af, Depth= 6.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr 100 YR Rainfall=8.00"

	Area	ea (ac) CN Description						
100	0.026 61 >75% Grass cover, Good, HSG B							
	0.	056	98	Pave	ed parking	& roofs		
.5.7	0.082 86 Weighted Average							
	Tc	Lengt		lope	,	Capacity	Description	
	(min)	(fee	t) (ft/ft)	(ft/sec)	(cfs)		
	6.0						Direct Entry,	

Subcatchment5: Subarea 5

■ Runoff

Page 29 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Pond 1P: New CB (AP 1)

[82] Warning: Early inflow requires earlier time span

[57] Hint: Peaked at 60.07' (Flood elevation advised)

[80] Warning: Exceeded Pond BIO by 1.61' @ 6.80 hrs (0.06 cfs)

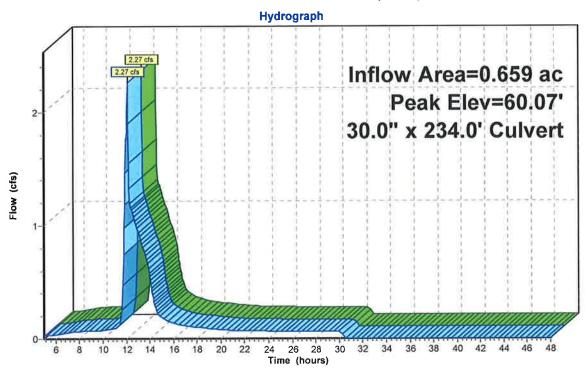
Inflow Area = 0.659 ac, Inflow Depth = 6.61" for 100 YR event Inflow = 2.27 cfs @ 12.09 hrs, Volume= 0.363 af

Outflow = 2.27 cfs @ 12.09 hrs, Volume= 0.363 af, Atten= 0%, Lag= 0.0 min

Primary = 2.27 cfs @ 12.09 hrs, Volume= 0.363 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 60.07' @ 12.10 hrs


Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= (not calculated)

#	Routing	Invert	Outlet Devices
1	Primary	57.56'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500
	•		Outlet Invert= 55.76' S= 0.0077'/' n= 0.012 Cc= 0.900

Primary OutFlow Max=2.24 cfs @ 12.09 hrs HW=60.07' TW=60.06' (Dynamic Tailwater)
1=Culvert (Barrel Controls 2.24 cfs @ 0.6 fps)

Pond 1P: New CB (AP 1)

Prepared by {enter your company name here}

Page 30

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond BIO: Bioretention w/ Overflow

[82] Warning: Early inflow requires earlier time span

0.577 ac, Inflow Depth = 6.65" for 100 YR event Inflow Area = 6.06 cfs @ 11.96 hrs, Volume= Inflow = 0.320 af Outflow =
Primary =
Secondary = 2.03 cfs @ 12.11 hrs, Volume= 0.320 af, Atten= 67%, Lag= 8.6 min 0.320 af

2.03 cfs @ 12.11 hrs, Volume= 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 63.21' @ 12.11 hrs Surf.Area= 900 sf Storage= 5,737 cf Plug-Flow detention time= 123.7 min calculated for 0.319 af (100% of inflow)

Center-of-Mass det. time= 124.2 min (903.0 - 778.8)

#	Invert	Avail.Storage	Storage Description
1	60.90'	5,006 cf	Custom Stage Data (Irregular) Listed below -Impervious
2	58.45'	882 cf	20.00'W x 45.00'L x 2.45'H Prismatoid
			2,205 cf Overall x 40.0% Voids

5,888 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
60.90	830	117.0	0	0	830
62.00	1,776	165.0	1,401	1,401	1,918
63.00	3,542	357.0	2,609	4,009	9,898
63.25	4,446	410.0	996	5,006	13,134

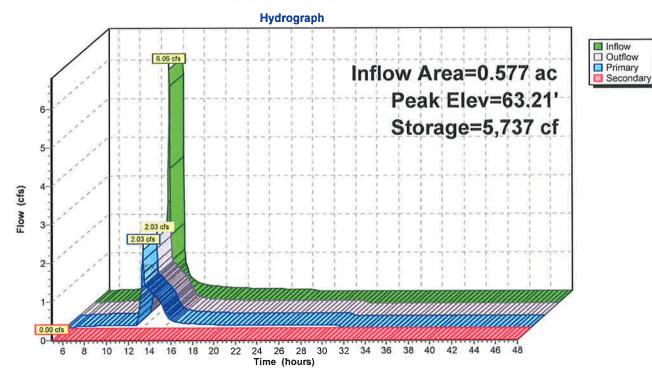
#	Routing	Invert	Outlet Devices			
1	Primary	0.00'	0.003930 fpm Exfiltration over entire Surface area			
2	Primary	57.72'	15.0" x 43.0' long Culvert RCP, square edge headwall, Ke= 0.500			
			Outlet Invert= 57.56' S= 0.0037 '/' n= 0.012 Cc= 0.900			
3	Device 2	61.25'	5.5" Vert. Orifice/Grate C= 0.600			
4	Device 2	63.11'	1.50' x 2.83' Horiz. Orifice/Grate Limited to weir flow C= 0.600			
5	Secondary	63.25'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir			
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50			
			3.00 3.50 4.00 4.50 5.00 5.50			
			Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66			
			2.66 2.67 2.69 2.72 2.76 2.83			

Primary OutFlow Max=1.98 cfs @ 12.11 hrs HW=63.21' TW=60.07' (Dynamic Tailwater)

-1=Exfiltration (Exfiltration Controls 0.06 cfs)

-2=Culvert (Passes 1.92 cfs of 10.46 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 1.04 cfs @ 6.3 fps) -4=Orifice/Grate (Weir Controls 0.88 cfs @ 1.0 fps)


-5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=58.45' TW=57.62' (Dynamic Tailwater)

Page 31 8/30/2011

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

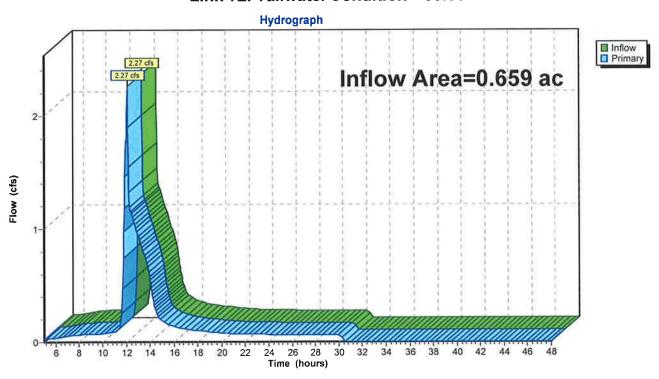
Pond BIO: Bioretention w/ Overflow

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Link 1L: Tailwater Condition = 60.06'

[80] Warning: Exceeded Pond 1P by 2.50' @ 30.35 hrs (26.43 cfs)


0.659 ac, Inflow Depth = 6.61" for 100 YR event Inflow Area = 2.27 cfs @ 12.09 hrs, Volume= 0.363 af Inflow

0.363 af, Atten= 0%, Lag= 0.0 min 2.27 cfs @ 12.09 hrs, Volume= Primary

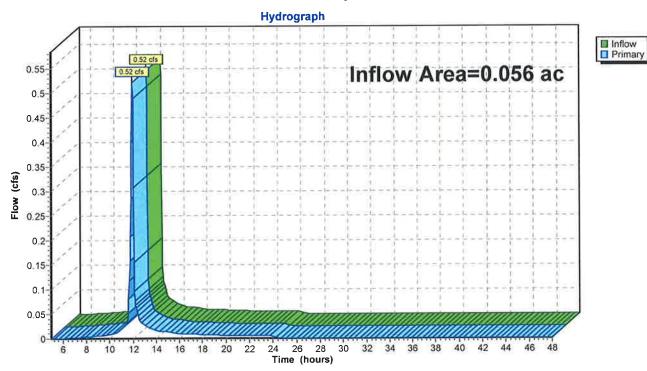
Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 60.06'

Link 1L: Tailwater Condition = 60.06'

Page 33 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Link AP3: Analysis Point 3

Inflow Area = 0.056 ac, Inflow Depth = 5.62" for 100 YR event Inflow = 0.52 cfs @ 11.97 hrs, Volume= 0.026 af

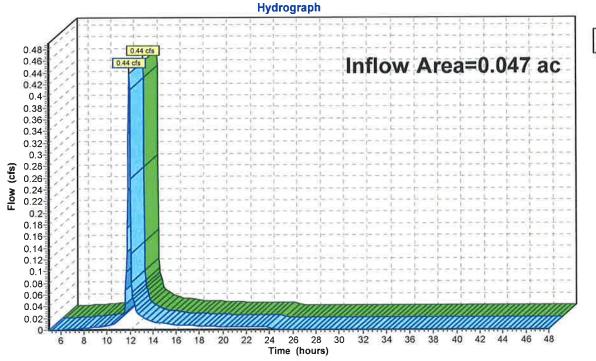
Primary = 0.52 cfs @ 11.97 hrs, Volume= 0.026 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

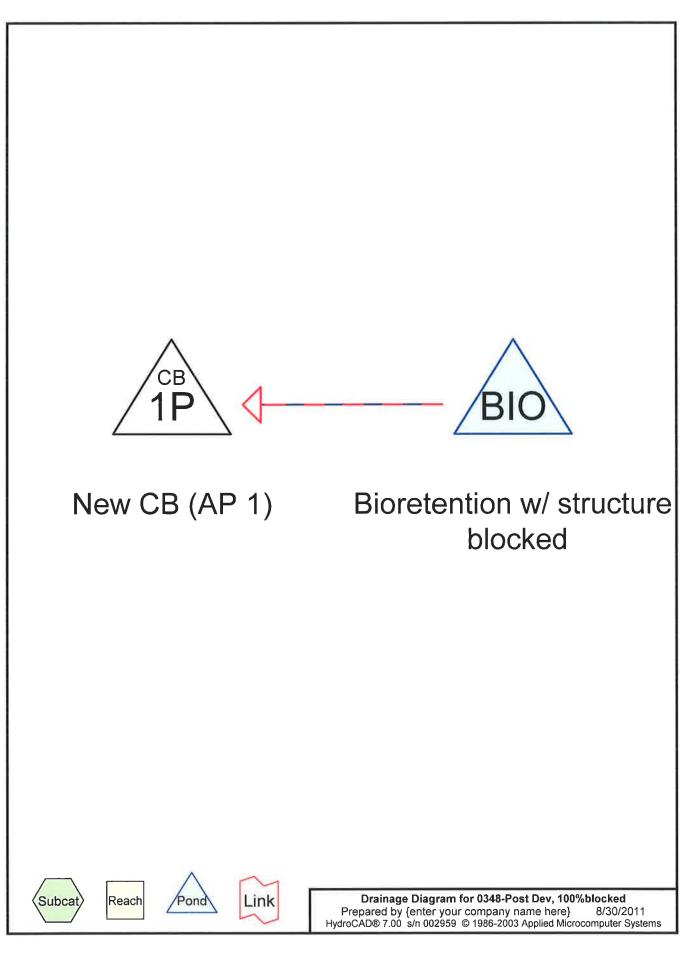
Link AP3: Analysis Point 3

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011


Link AP4: Analysis Point 4

Inflow Area = 0.047 ac, Inflow Depth = 5.62" for 100 YR event Inflow = 0.44 cfs @ 11.97 hrs, Volume= 0.022 af


Primary = 0.44 cfs @ 11.97 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Link AP4: Analysis Point 4

8/30/2011

Time span=1.00-48.00 hrs, dt=0.05 hrs, 941 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Pond 1P: New CB (AP 1) Peak Elev=57.35' Inflow=0.89 cfs 0.315 af Primary=0.89 cfs 0.315 af Secondary=0.00 cfs 0.000 af Outflow=0.89 cfs 0.315 af

Pond BIO: Bioretention w/ structure blocked Peak Elev=63.07' Storage=7,684 cf Inflow=6.06 cfs 0.322 af Primary=0.06 cfs 0.207 af Secondary=0.46 cfs 0.065 af Outflow=0.51 cfs 0.272 af

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

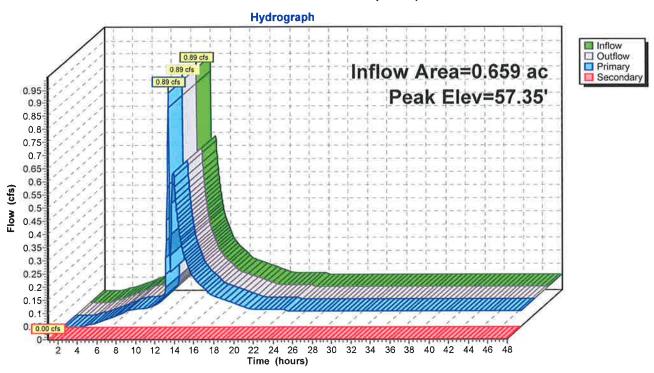
Pond 1P: New CB (AP 1)

[57] Hint: Peaked at 57.35' (Flood elevation advised)

Inflow Area =	0.659 ac, Inflow Depth = 5.73"	for 100 YR event
Inflow =	0.89 cfs @ 11.96 hrs, Volume=	0.315 af
Outflow =	0.89 cfs @ 11.96 hrs, Volume=	0.315 af, Atten= 0%, Lag= 0.0 min
Primary =	0.89 cfs @ 11.96 hrs, Volume=	0.315 af
Secondary =	0.00 cfs @ 1.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 57.35' @ 11.96 hrs

Plug-Flow detention time= (not calculated: outflow precedes inflow)


Center-of-Mass det. time= (not calculated)

#_	Routing	Invert	Outlet Devices
1	Primary	56.96'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 55.76' S= 0.0051 '/' n= 0.012 Cc= 0.900
2	Secondary	62.44'	3.00' x 4.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600

Primary OutFlow Max=0.87 cfs @ 11.96 hrs HW=57.35' (Free Discharge)
1=Culvert (Barrel Controls 0.87 cfs @ 2.7 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=56.96' (Free Discharge) 2=Orifice/Grate (Controls 0.00 cfs)

Pond 1P: New CB (AP 1)

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond BIO: Bioretention w/ structure blocked

Inflow Area =	0.577 ac, Inflow Depth = 6.69"	for 100 YR event
Inflow =	6.06 cfs @ 11.96 hrs, Volume=	0.322 af
Outflow =	0.51 cfs @ 12.47 hrs, Volume=	0.272 af, Atten= 91%, Lag= 30.6 min
Primary =	0.06 cfs @ 8.05 hrs, Volume=	0.207 af
Secondary =	0.46 cfs @ 12.47 hrs, Volume=	0.065 af

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 63.07' @ 12.47 hrs Surf.Area= 900 sf Storage= 7,684 cf Plug-Flow detention time= 717.2 min calculated for 0.271 af (84% of inflow) Center-of-Mass det. time= 649.2 min (1,424.9 - 775.7)

#	Invert	Avail.Storage	Storage Description
1	60.75'	8,938 cf	Custom Stage Data (Irregular) Listed below -Impervious
2	57.75'	1,080 cf	20.00'W x 45.00'L x 3.00'H Prismatoid
			2,700 cf Overall x 40.0% Voids

10,018 cf Total Available Storage

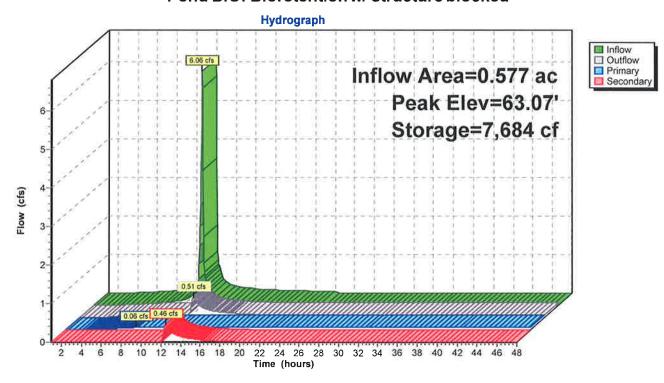
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>
60.75	830	117.0	0	0	830
61.00	920	121.0	219	219	911
61.50	1,271	140.0	545	764	1,311
62.00	3,643	225.0	1,178	1,942	3,782
63.00	4,971	337.0	4,290	6,232	8,799
63.50	5,868	421.0	2,707	8,938	13,869
# Routing	Invert C	outlet Devices			

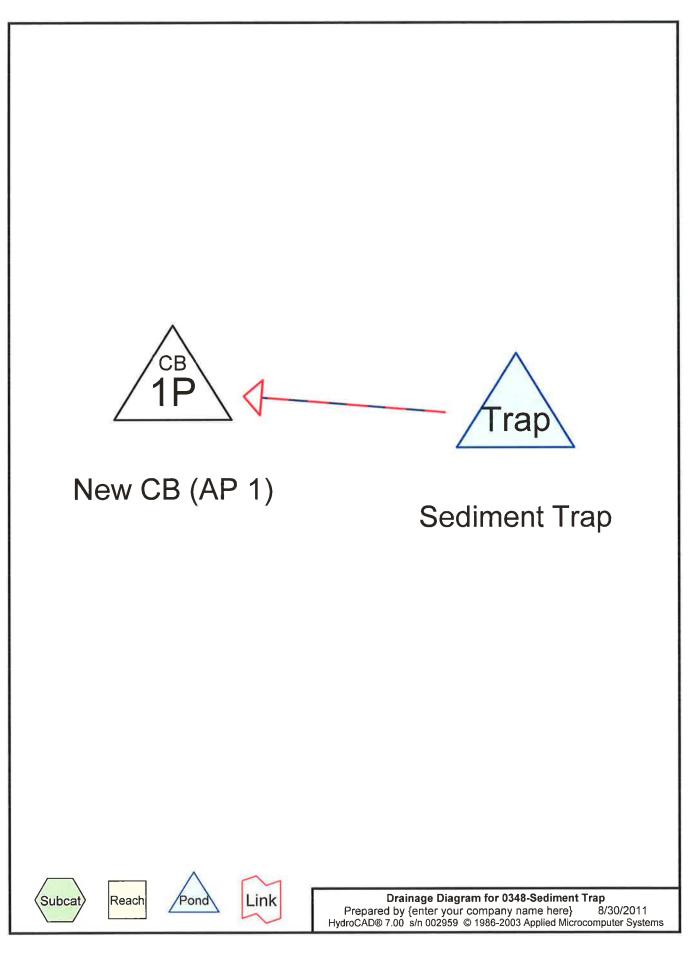
1	Primary	0.00'	0.003930 fpm Exfiltration over entire Surface area
2	Secondary	63.00'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50

3.00 3.50 4.00 4.50 5.00 5.50

Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66


2.66 2.67 2.69 2.72 2.76 2.83


Primary OutFlow Max=0.06 cfs @ 8.05 hrs HW=57.81' (Free Discharge)
1=Exfiltration (Exfiltration Controls 0.06 cfs)

Secondary OutFlow Max=0.43 cfs @ 12.47 hrs HW=63.07' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.43 cfs @ 0.6 fps)

Page 5 8/30/2011

Pond BIO: Bioretention w/ structure blocked

Prepared by {enter your company name here}

Page 2

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Time span=1.00-48.00 hrs, dt=0.05 hrs, 941 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Pond 1P: New CB (AP 1)

Peak Elev=57.11' Inflow=0.12 cfs 0.006 af

Primary=0.12 cfs 0.006 af Secondary=0.00 cfs 0.000 af Outflow=0.12 cfs 0.006 af

Pond Trap: Sediment Trap

Peak Elev=61.01' Storage=2,924 cf Inflow=1.34 cfs 0.067 af

Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond 1P: New CB (AP1)

[57] Hint: Peaked at 57.11' (Flood elevation advised)

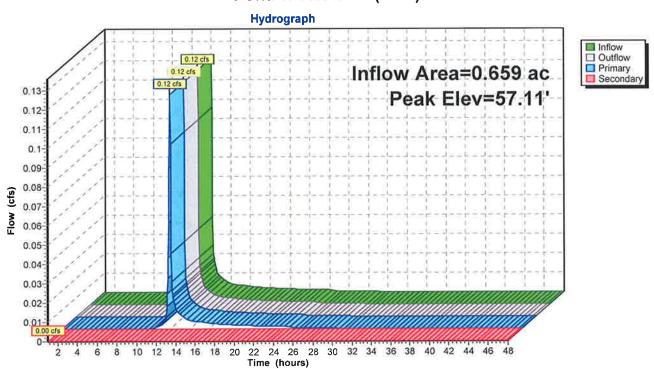
[79] Warning: Submerged Pond Trap Primary device # 1 OUTLET by 0.07'

Inflow Area =	0.659 ac, Inflow Depth = 0.11"	for quality event
Inflow =	0.12 cfs @ 11.98 hrs, Volume=	0.006 af
Outflow =	0.12 cfs @ 11.98 hrs, Volume=	0.006 af, Atten= 0%, Lag= 0.0 min
Primary =	0.12 cfs @ 11.98 hrs, Volume=	0.006 af
Secondary =	0.00 cfs @ 1.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 57.11' @ 11.98 hrs

Plug-Flow detention time= 0.0 min calculated for 0.006 af (100% of inflow)


Center-of-Mass det. time= 0.0 min (879.7 - 879.7)

#	Routing	Invert	Outlet Devices	
1	Primary	56.96'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500	
	·		Outlet Invert= 55.76' S= 0.0051 '/' n= 0.012 Cc= 0.900	
2	Secondary	62.44'	3.00' x 4.00' Horiz. Orifice/Grate Limited to weir flow C= 0.600	

Primary OutFlow Max=0.11 cfs @ 11.98 hrs HW=57.10' (Free Discharge)
—1=Culvert (Barrel Controls 0.11 cfs @ 1.5 fps)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=56.96' (Free Discharge) 2=Orifice/Grate (Controls 0.00 cfs)

Pond 1P: New CB (AP 1)

Prepared by {enter your company name here}

Page 4

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond Trap: Sediment Trap

Inflow Area = 0.577 ac, Inflow Depth = 1.40" for quality event

Inflow = 1.34 cfs @ 11.97 hrs, Volume= 0.067 af

Outflow = 0.00 cfs @ 24.18 hrs, Volume= 0.000 af, Atten= 100%, Lag= 733.0 min

Primary = 0.00 cfs @ 24.18 hrs, Volume= 0.000 af

Secondary = 0.00 cfs @ 1.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 61.01' @ 24.18 hrs Surf.Area= 2,896 sf Storage= 2,924 cf Plug-Flow detention time= 1,305.1 min calculated for 0.000 af (0% of inflow) Center-of-Mass det. time= 886.5 min (1,687.1 - 800.6)

#	Invert	Avail.Storage	Storage Description	
1	60.75'	6,134 cf	Custom Stage Data (Irregular) Listed below	
2	58.75'	2,676 cf	20.00'W x 45.00'L x 2.00'H Prismatoid Z=3.0	

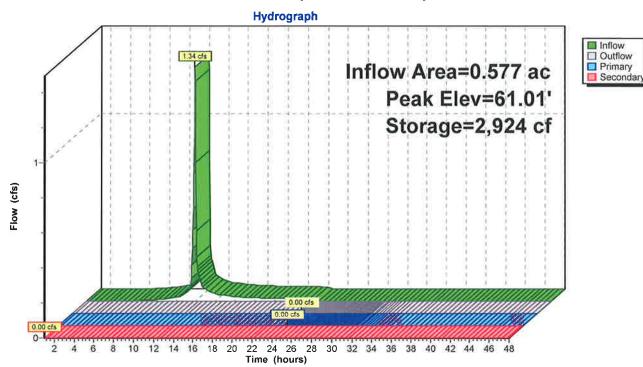
8,810 cf Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
60.75	830	117.0	0	0	830
61.00	1,068	131.0	237	237	1,108
61.50	1,271	140.0	584	821	1,314
62.00	2,001	250.0	811	1,632	4,729
63.00	3,333	345.0	2,639	4,271	9,237
63.50	4,137	398.0	1,864	6,134	12,376

#	Routing	Invert	Outlet Devices	
1	Primary	57.17'	15.0" x 25.0' long Culvert RCP, square edge headwall, Ke= 0.500	
			Outlet Invert= 57.03' S= 0.0056 '/' n= 0.012 Cc= 0.900	
2	Device 1	61.00'	4.0" Vert. Orifice/Grate C= 0.600	
3	Device 1	62.60'	1.50' x 2.83' Horiz. Orifice/Grate Limited to weir flow C= 0.600	
4	Secondary	63.00'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir	
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50	
			3.00 3.50 4.00 4.50 5.00 5.50	
			Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66	
			2.66 2.67 2.69 2.72 2.76 2.83	

Primary OutFlow Max=0.00 cfs @ 24.18 hrs HW=61.01' (Free Discharge)

1=Culvert (Passes 0.00 cfs of 10.59 cfs potential flow)


2=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.3 fps)

3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=58.75' (Free Discharge)
4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 5 8/30/2011

Pond Trap: Sediment Trap

September 25, 2007

RE: Stormwater Recharge Evaluation
Newark, New Castle County, Delaware

Dear ________

Thas completed a feasibility reconnaissance exploration for recharge of stormwater runoff at the referenced site. The Property (Tax Parcel contains approximately 0.6 acres and has been improved with a 1-story building with gravel parking. The assessment consisted of a two phased approach with the first phase comprising a visual review of three test pit excavations for soil texture and groundwater depth, as well as redoximorphic indicators (mottling, iron-manganese concretions, and gleying) of apparent seasonal soil saturation / high groundwater level. The second phase consisted of the construction of observation wells and periodic monitoring of depth to groundwater. In addition, a single-ring infiltrometer test was performed to evaluate the potential for stormwater infiltration within selected horizons identified during the site exploration. It is our understanding that New Castle County required an evaluation of the potential for additional stormwater generated by the proposed redevelopment to be recharged into the subsurface. The initial evaluation indicated indeterminate seasonal high soil saturation due to the presence of redoximorphic features throughout the soil profile and an apparent perched water table. The results of the infiltration testing indicated limited, though potentially suitable, recharge capability in the area of the proposed stormwater management basin. The following summarizes our observations and conclusions made during the field exploration activities.

On January 24 and February 22, 2007, reviewed the excavation of 3 test pits at the site, completed by a subcontractor to a subcontractor to approximate test pit locations. The test pits were excavated to depths of approximately 7.0 feet (TP-1), 8.6 feet (TP-2), and 11.0 feet (TP-3) below existing ground surface grade (bgs). Groundwater was observed in the test pits at depths of approximately 7.0 feet bgs in TP-1, 6.5 feet bgs in TP-2, and 9.0 feet bgs in TP-3. Test pit descriptive logs are attached.

A surficial layer of crushed stone, approximately 1.5 feet thick, was observed at test pits TP-1 and TP-3. The underlying soils, observed at Test Pits TP-1 and TP-3, below the crushed stone generally consisted of grey silt with varying amounts of clay ranging in depth from 7.0 feet bgs (TP-1) to approximately 8.2 feet bgs (TP-3). An approximately 1-foot thick layer of stiff, compact clay was observed at TP-1 between 2.6 feet bgs and 3.9 feet bgs. A textural change to fine to medium sand with varying amounts of silt and clay was observed at approximately 7.0 feet bgs (TP-1) and 8.2 feet bgs (TP-3).

Soils observed at Test Pit TP-2 from the ground surface to a depth of approximately 1.5 feet bgs were generally characterized as greyish brown silt with little to some fine to medium sand. Medium sand with trace to little silt and gravel, and trace clay was observed between 1.5 and 2.2 feet bgs. An apparent silt lens was observed on one side of the excavation between 2.2 feet bgs and 2.8 feet bgs. The soils observed to the termination of the test pit were characterized as variably textured sand, ranging from fine to coarse, with varying amounts of silt, clay, and gravel. See the attached descriptive test pit logs for additional information.

As indicated on the attached descriptive logs, redoximorphic features, such as mottling and low chroma (\leq 2) soil colors, were observed at test pits TP-1 and TP-3 beginning at a depth of approximately 1.5 feet bgs. At test pit TP-2, higher chroma (>4) colored soils were observed. Groundwater seepage, which is potentially indicative of the water-table at the time of excavation, was observed at depths of 7.0 feet (TP-1) 6.5 feet (TP-2), and 9.0 feet (TP-3) below ground surface grade. Based on observations made during the test pit excavations, the seasonal high water elevation appeared to be masked due to the presence of redoimorphic features throughout the profile and the presence of an apparent silt lens at test pit TP-2, which likely inhibits the infiltration of surface water resulting in impeded drainage. Therefore, it is unclear whether the observed redoximorphic features, potentially associated with seasonal high soil saturation, resulted from impeded drainage or seasonally fluctuating groundwater. However, observed soil conditions suggested greater recharge potential in the vicinity of TP-2 than at TP-1 or TP-3.

PHASE II- GROUNDWATER OBSERVATION / SEASONAL HIGH WATER ESTIMATE

On March 28, 2007, three groundwater observation wells (OW-1, OW-2, and OW-3) were constructed by the constructed of 1-inch nominal diameter polyvinyl chloride (PVC). Of Newark, Delaware, a Delaware-licensed well driller, constructed the wells in Geoprobe-type soil borings at depths of approximately 15 feet bgs (OW-1), 7 feet bgs (OW-2), and 12 feet bgs (OW-3). The wells were generally constructed to place 5 feet of No. 10 slot well screen across the first relatively permeable zone below the apparent water-table (OW-1 and OW-3), as observed in the geoprobe hole, or socketed just into apparently low-permeability soils to check for potentially "perched" groundwater conditions (OW-2). Observation wells OW-1 and OW-2 were constructed within close proximity of each other to further assess the potential "perched" groundwater condition noted during the subsurface exploration. Please see the attached soil boring logs for additional well construction details and the attached site plan for the approximate location of the observation wells.

The wells were monitored for a three month period, beginning on April 3, 2007 and ending on June 29, 2007, with depth to water measurements recorded on a weekly basis (see Table 1). The first round of readings indicated depth to water was approximately 5.9 feet bgs (OW-1), 2.4 feet bgs (OW-2), and 5.3 feet bgs (OW-3). As indicated above, there is an approximately 3.5 foot difference in depth to groundwater between the side-by-side wells OW-1 and OW-2, which suggests a "perched" groundwater condition at OW-2 (in the sand layer located at approximately 5-6 feet bgs).

then compared the observed on-site depth to groundwater in OW-1 during the project period with those for a well, designated as Db24-10/18, for which the Delaware Geological Survey (DGS) has periodically monitored groundwater fluctuation since prior to 1963 (see Tables 2 and 3). Ten Bears used the comparison for the common monitoring period and historic trends for the DGS well to develop a "projected" seasonal high soil saturation level for the property, since the soil assessment was indeterminate.

utilized monitoring data from DGS well Db-24-10/18, located in New Castle County and constructed in Columbia Formation sediments. According to DGS personnel, well Db24-10 was replaced twice during the monitoring period (in the same general location) with wells designated as Db24-17 and Db24-18. The well is currently designated on the mapping as Db24-18 and all the water level data is reported under this well.

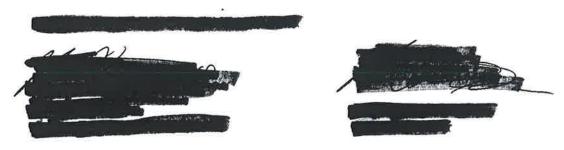
To estimate the seasonal high water level (SHWL) for estimated the "normal" SHWL for Db24-10/18, compared this level with the recent observation period, and compared the magnitude of fluctuation during the observation period for the two wells. Based on their similar geographic location and precipitation levels, the site well (OW-1) and Db24-10/18 should be at similar positions during the observation period relative to their SHWL, with the difference proportional to their relative magnitude of fluctuation.

Therefore, 1 compared the relative magnitude of fluctuation for OW-1 (the well situated in the proposed on-site stormwater management area) with Db24-18 during the monitoring period (See Figure 2). As indicated in Figure 2, the magnitude of fluctuation during the monitoring period was similar, though slightly greater for OW-1 (2.87 feet) than for Db24-18 (2.06 feet). As indicated in Figure 3, the average water level for Db24-18 during the monitoring period (9.85 feet) was slightly above the normal SHWL (10.19 feet mean of annual high water level readings since 1987). Similarly, it is anticipated that the SHWL at the site would be situated below recent on-site average a distance proportional to the relative fluctuation during the monitoring period. Based on a 2.87 feet / 2.32 feet (1.23 feet: 1 foot) proportion for fluctuation during the monitoring period and a difference of 0.34 feet (10.19 - 9.85 feet) for Db24-10/18 between SHWL and recent average, we estimate that the SHWL at the site would be situated below the recent average a distance of 0.42 feet (1.23) X 0.34 feet). This results in an estimated SHWL for OW-1 of 6.5 feet, approximately 0.42 feet below the average water level of 6.05 feet bgs observed in that well during the monitoring period. This generally corresponds with the depth (approximately 6.0 feet bgs) of redoximorphic features in soils observed during installation of monitoring well OW-1. As a conservative measure, we recommend using 6 feet as the SHWL.

INFILTRATION RATE TEST

performed an infiltration rate test within the proposed stormwater basin utilizing a single ring infiltrometer to evaluate the potential for recharge. The infiltration test was performed in general accordance with the ASTM Standard D-5125-90, Standard Guide for Comparison of Field Methods for Determining Hydraulic Conductivity in the Vadose Zone, utilizing a single ring infiltrometer. The test was performed at a depth of approximately 3.0 feet bgs near test pit TP-2. The infiltrometer test consisted of driving an approximately 18-inch diameter metal ring into the ground approximately 6 inches. Approximately 2 inches of filter sand was placed in the ring, which was then filled with approximately 10 inches of water. Water was incrementally added to the ring to maintain a relatively constant "head," with readings taken each time water was added.

In accordance with the above mentioned ASTM standard, the estimated infiltration rate for the soil is obtained when the incremental test infiltration rate reaches equilibrium. Please refer to Table 1 for the Incremental Infiltration Rate and the associated graph for the equilibrium rate. The results of the infiltration test indicated an estimated infiltration rate of 1.4 inches per hour. The State of Delaware recommends use of ½ the measured infiltration rate of infiltration tests for use in design calculations. The resulting design infiltration rate of 0.7 inches per hour is below the level of 1 inch per hour typically required by New Castle County Department of Land Use for inclusion of infiltration in stormwater calculations.



CONCLUSIONS AND RECOMMENDATIONS

Based upon a relatively shallow "projected" seasonal high soil saturation depth of approximately 6 feet bgs and an estimated design infiltration rate of 0.7 inches per hour, there is limited potential for subsurface stormwater recharge at the site. In addition, the residual soils at the site are likely sensitive to disturbances during construction. Smearing, compaction, and reworking / remolding have the potential to further limit infiltration.

Please do not hesitate to contact us if you have any questions or require further information.

Sincerely,

Enclosures: Figure 1 – Test Pit and Soil Boring Location Sketch

Test Pit Descriptive Logs

Soil Boring and Well Construction Logs

Table 1 – Depth to Water Readings for On-Site Wells

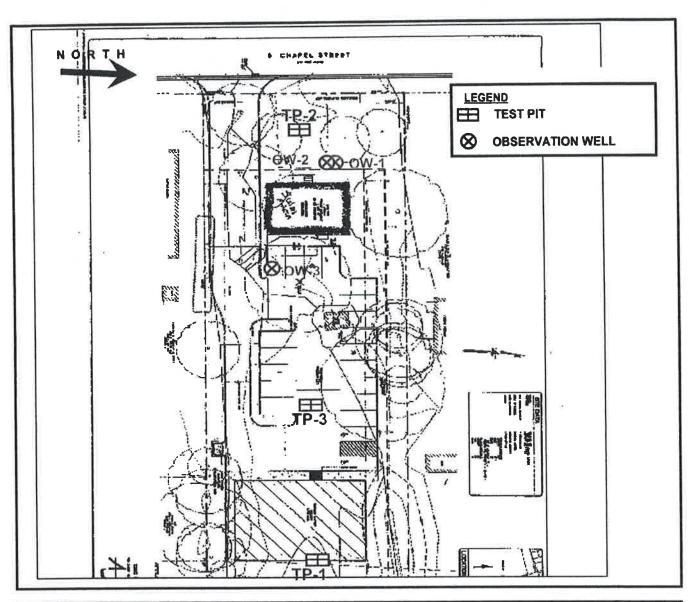

Table 2 – Historical Depth to Water Readings for DGS Well Db24-10/18
Table 3 – Comparison of Depth to Water Readings for OW-1 and Db24-10/18

Figure 2 – Recent Water Level Fluctuation Figure 3 – Depth to Water in Db24-10/18

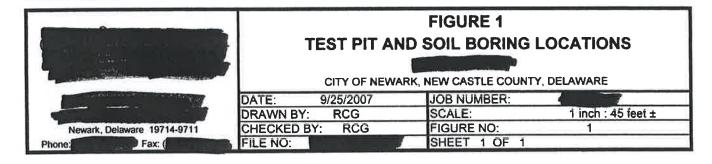

Table 4 – Infiltration Rate Test

Figure 4 – Incremental Infiltration Rate (in/hr)

TEST PIT LOG

Test Pit No. 1

Project:				Project No.	Date: 1/24/07	
Location:	2005	3		Surface Elevation	Datum	
		Excavation Equipment Rubber Tired Backhoe (Extend-a-hoe)	Weather 20-30 degrees F, windy	Logged by DPB		
Depth From	(feet)	PID (deflection units)	Generalized Soil Description			
0.0	1.4	NA	Crushed concrete / stone			
1.4	2.6		SILT, trace fine sand, blocky			
2.6	3.9		CLAY, stiff, compact			
3.9			SILT, friable			
	6.6		Low Plasticity SILT, tra	ce fine sand, gleyed with mot	tles	
7.0			Fine to medium SAND	little silt, saturated		
Notes:	. The test pit . Groundwat	was terminated er encountered a	at a depth of approxima at approximately 7.0 feet	tely 7.0 feet below the ground below the ground surface (bg	surface. (s). Test Pit No. 1	
*PID = Pho	to-ionization	detector reading	ıs are in units above bac	kground	Page 1 of 1	

TEST PIT LOG

Test Pit No. 2

Company of the last	-
Activities to the second	NAME OF TAXABLE PARTY.

Project:			Project No. 06-580.A	Date:	1/24/07	
Location:			Surface Elevation	Datum		
Earthwork Contractor	Operator		er Tired Backhoe 20-30 degrees F, windy		ogged by DPB	
Depth (feet) From To	PID (deflection units)		Generalized Soil Description			
0.0 1.5	NA	SILT, little to some, fine	to medium sand	-2		
1.5		Medium SAND, trace to	little silt, trace to little gravel	, trace clay		
2.2		Apparent SILT lens, tra	ce fine sand			
2.8		Variably textured profile for remainder of test pit. Ranged from a coarse to mediun				
		sand, to a fine to medium sand, little silt, tarce clay, trace to little gravel.				
			1.75-			
		112		1 12 12 12 11 11		
			William Willia			
			At the second se			
		•				
		<u> </u>		- Pre-Education		
Notes: 1. The test p 2. Groundwa	oit was terminated ater encountered a	at a depth of approximat at approximately 6.5 feet	tely 8.6 feet below the ground below the ground surface (bg	surface. gs).	Test Pit No. 2	
		gs are in units above bac	karnund		Page 1 of 1	

TEST PIT LOG

	D 14	N 1 .	-
Test	PIT	NΩ	- 3

			Surface Elevation	Datum	
		Operator Excavation Equipment Rubber Tired Backhoe (Extend-a-hoe) Weather Logge 20-30 degrees F, windy			
eet) To	Munsell Color		Generalized Soil Description		
1.9	NA NA	Fill - crusher run and pu	ulverized concrete		
4.0	2.5Y 4/2			.5Y 6/6 mottles, 15-20% distin	
6.0	G1 6N to 7N			Matter Aces	
8.2	2.5 Y 6/3 to 6/4	SILT, little fine sand, tra	ace clay (10YR 6/8 mottles, 2	20-25% distinct)	
****	10 YR 5/8 to 6/8	1000000			
he test n	it was terminated a	t a depth of approximate	alv 11 feet below the ground s	surface.	
	eet) To 1.9 4.0 6.0	eet) Munsell Color 1.9 NA 4.0 2.5Y 4/2 6.0 G1 6N to 7N 8.2 2.5 Y 6/3 to 6/4 10 YR 5/8 to 6/8	Rubber Tired Backhoe (Extend-a-hoe) eet) Munsell Color 1.9 NA Fill - crusher run and put 4.0 2.5Y 4/2 SILT, little to some fine (portions SILT, trace fine 4.0 G1 6N to 7N SILT, little to trace clay (2.5Y 6/8 mottles, 20% 4.2 2.5 Y 6/3 to 6/4 SILT, little fine sand, trace fine 4.0 YR 5/8 to 6/8 Fine to medium SAND, (little to some gravel, the test pit was terminated at a depth of approximate 4.1 depth of approximate 4.2 depth of approximate 4.3 depth of approximate	Rubber Tired Backhoe (Extend-a-hoe) Munsell Generalized Soil Description To Color 1.9 NA Fill - crusher run and pulverized concrete 4.0 2.5Y 4/2 SILT, little to some fine sand (portions SILT, trace fine sand G1 6N to 5N color, 2 6.0 G1 6N to 7N SILT, little to trace clay, trace to little fine to medium (2.5Y 6/8 mottles, 20% distinct & 10YR 6/8 mottles, 2 8.2 2.5 Y 6/3 to 6/4 SILT, little fine sand, trace clay (10YR 6/8 mottles, 2)	

Page 1 of 1

SOIL	-RORING	DESCRIPTIVE	L	OG

Boring	OW-1
DUILING	O44-1

	- amount of the	3 MAN HARTIN	No.				Page	<u>1</u> or	1
Proj	ect Nam	ne		******		Project Location		Project I	Number
			ř			The state of the same of the s			A.08
Drill	ng Age	ncy				Driller	Date Started:		/2007
					Date Finished:		/2007		
	Drilling Equipment					Drilling Procedures		Logged	
Truc	k Mount	ed Ge	oprobe			2" Diameter Continuous Macroco	ore	DF	В
Weather Surface Condi Sunny Maintained Law						Datum			
_	San	nple	St	rata	T			Ren	narks
Spl.	Dept			th (ft)	Rec'y	Sample Desc	ription	PID*	Sample/
#	From	To	From	То	(ft)				Time
1	0	4	0	3.1	3.1	Brown to light brown SILT, trace	to little fine sand		
						trace to little clay, wet approxima	itely 2.5 feet		
2	4	8	4		2.9	SAME, distinct mottling observed, trace gravel, trace clay			
				5					
			5			Light tan fine to medium SAND,	little silt, trace clay, wet	ļ	
				6					
			6			Light grey to tan SILT with distic	nt mottles, trace fine san	d	
				8		trace gravel, compact			
3	8	12	8		3.7	SAME - saturated 8'-9.5'			
				9.5					
			9.5			Gray SILT, trace to little mica, tra	ace clay		
	40	45	40		1.5			-	
4	12	15	12	-	1.5	Orange fine to medium SAND, to	race silt, trace gravel		
			-	1000	1	(saturated)		 	
				+	-			 	
ll l			1	1		1		. [

Notes

- 1. Boring terminated at 15 feet below the existing ground surface (bgs).
- 2. Saturated soils observed at 2.5 feet bgs.
- 3. Observation well constructed in open borehole as follows:

No. 20 slot well screen from 10' to 15' (1-inch nominal diameter, schedule 40 PVC) solid casing from 10' to stick up above ground surface (1-inch nominal diameter, shedule 40 PVC)

No. 2 filter sand from 15' to 8'

granular bentonite hole plug 8' to surface

^{*} PID = Photo-ionization detector, readings are in deflection units above background.

du m	100 01 00 00
	Application of the

SOIL-BORING DESCRIPTIVE LOG

Boring	OW-2

Con	Contract of the last							Page	<u>1</u> of	1
Proi	ect Nan	ne				Project Location	17		Project	Number
			ř		8	1 - N	4			- Charles
Drilling Agency						Driller		Date Started:	3/28	/2007
•								Date Finished:	3/28	/2007
	Drilling Equipment				10011	Drilling Procedures			Logged	
Truc	k Moun	ted Ge	oprobe			2" Diameter Continuous Macro	core		DF	ъВ
Wea Sun	i ther ny				ce Condi ained Lav		Surfac	ce Elevation	Datum	
	San	nple	St	rata					Ren	narks
Spl.		h (ft)	Dep	th (ft)	Rec'y	Sample Des	scription		PID*	Sample/
#	From		From		(ft)				1	Time
	NA - D	rove w	ell instal	lation to	ools to 7	feet without sampling - well local	tion 1' fro	om OW-1 - see O	W-1	
	log for	soil de	scription	is						
										700.541.554
										112421240
						4 4 4 4 4		- Alex A		
			1							
										-
				1						
	Boring Observ No. 20 solid ca No. 2 fi	ration v slot we asing fr ilter sar	vell consell scree form 2' to and from	structed in from to stick u 7' to 1.5	in open 2' to 7' (1 p above	existing ground surface (bgs). borehole as follows: I-inch nominal diameter, schedu ground surface (1-inch nominal			>)	

^{*} PID = Photo-ionization detector, readings are in deflection units above background.

Boring	OW-3
-	

Page

1 of

SOIL-BORING DESCRIPTIVE LOG

Project Name Drilling Agency						Project Location		Project N	umber	
					e	Driller Date Started:			/2007 /2007	
						Drilling Procedures	Date Finished:	Logged		
rilli ruck	rilling Equipment ruck Mounted Geoprobe					2" Diameter Continuous Macrocore		DPB		
	leather Surface Con unny Maintained La			Liona	rface Elevation	Datum				
Spl.	Sam	h (ft)	Dep	ata th (ft)	Rec'y	Sample Descript	ion	Ren PID*	Sample Time	
# 1	From	То	From		(ft)	au Till Sand Inner	mine essenie material	 	1 11110	
1	0	4	0	1	2.5	Brown SILT, trace fine sand, trace	nica, organic material	 		
_			-			(grass, roots)				
			1	2		Orange-brown SILT, little to trace fine sand, trace grave				
						trace clay		-		
				Orange-brown fine to medium SAN	ID, trace silt, apparent					
						iron concretions		-		
2	4	8	4	4.3	4	SAME				
		4.3 7 Light gray (with mottles) SILT, trace to little fine sa		e to little fine sand,						
					-	trace clay		-		
	-		7			Orange-brown fine to coarse SAN	D, trace to little silt,			
						trace gravel		-		
3	8	12	+-	-	2.3	SAME	ü—————————————————————————————————————			
	H	+	+-		_					

Notes

- 1. Boring terminated at 12 feet below the existing ground surface (bgs).
- 2. Saturated soils observed at 9.5 feet bgs.
- 3. Observation well constructed in open borehole as follows: No. 20 slot well screen from 7' to 12' (1-inch nominal diameter, schedule 40 PVC) solid casing from 7' to stick up above ground surface (1-inch nominal diameter, shedule 40 PVC) No. 2 filter sand from 12' to 6' granular bentonite hole plug 6' to surface

^{*} PID = Photo-ionization detector, readings are in deflection units above background.

TABLE 1 DEPTH TO WATER READINGS FOR ON-SITE WELLS

STORMWATER RECHARGE EVALUATION

NEWARK, DELAWARE

Date	OW-1	OW-2	OW-3
4/3/2007	5.92	6.8	5.33
4/12/2007	5.58	2.05	5.37
4/20/2007	4.54	2.33	4.56
4/30/2007	5.04	3.07	4.84
5/7/2007	5.55	4.32	5.39
5/10/2007	5.66	4.48	5.51
5/14/2007	5.87	4.74	5.71
5/23/2007	6.16	5.22	6.03
6/6/2007	7.41	5.33	6.28
6/22/2007	6.79	6.09	6.66
6/29/2007	6.98	6.44	6.86

NOTE:

Depths reported in feet below ground surface grade.

TABLE 2 HISTORICAL DEPTH TO WATER READINGS FOR DGS WELL Db24-10/18

STORMWATER RECHARGE EVALUATION

NEWARK, DELAWARE

DATE	DB24-10 DTW
1/6/1987	12.58
2/4/1987	11.49
2/27/1987	11.24
3/9/1987	10.65
4/1/1987	11.10
4/23/1987	10.82
5/1/1987	10.89
6/1/1987	11.24
6/29/1987	12.04
7/30/1987	12.99
8/31/1987	13.85
10/2/1987	14.32
11/2/1987	14.80
12/1/1987	15.12
1/5/1988	14.54
1/29/1988	14.35
2/28/1988	12.59
4/1/1988	12.29
5/2/1988	12.48
5/25/1988	11.72
6/30/1988	12.15
8/3/1988	13.16
9/1/1988	13.69
9/30/1988	15.25
10/31/1988	14.88
12/2/1988	14.90
1/2/1989	14.59
1/31/1989	14.18
2/27/1989	13.71
3/31/1989	12.12
4/28/1989	11.11
5/25/1989	9.67
6/30/1989	9.23
8/1/1989	7.37
9/1/1989	9.60
9/28/1989	10.23
10/31/1989	9.86
11/30/1989	10.84
1/26/1990	11.61
2/28/1990	9.66
3/29/1990	10.96
4/27/1990	10.01
5/31/1990	10.08
7/3/1990	9.97
8/6/1990	11.06
8/31/1990	10.97
9/28/1990	12.62
10/30/1990	13.51

DATE	DB24-10 DTW
2/28/1991	11.87
3/29/1991	11.08
5/1/1991	10.30
5/31/1991	11.13
6/24/1991	12.00
7/31/1991	13.15
9/5/1991	13.96
10/1/1991	14.43
11/4/1991	14.99
11/19/1991	15.18
11/25/1991	15.28
12/18/1991	15.18
1/8/1992	15.11
1/31/1992	15.29
2/27/1992	15.34
4/1/1992	14.32
5/4/1992	13.69
5/29/1992	13.92
6/30/1992	13.87
8/3/1992	14.47
9/1/1992	14.79
9/29/1992	15.13
11/5/1992	15.40
12/2/1992	15.28
1/5/1993	14.02
1/29/1993	12.77
3/1/1993	12.12
3/30/1993	8.87
4/29/1993	7.42
6/2/1993	9.14
7/1/1993	10.23
8/3/1993	11.59
8/18/1993	11.58
8/30/1993	12.46
10/1/1993	13.79
11/3/1993	14.40
12/9/1993	12.69
1/5/1994	11.87
1/31/1994	11.27
3/8/1994	10.03
4/1/1994	7.82
5/2/1994	8.07
6/1/1994	8.93
7/1/1994	10.35
8/1/1994	11.44
9/1/1994	11.94
9/29/1994	12,60
10/28/1994	13.39

DATE	DB24-10 DTW
2/27/1995	13.64
3/28/1995	12.77
4/3/1995	12.64
4/28/1995	12.91
6/2/1995	13.25
6/30/1995	13.61
7/25/1995	14.09
8/16/1995	14,45
9/1/1995	14.75
9/27/1995	15.14
10/9/1995	15.35
10/25/1995	15.31
11/1/1995	15,10
11/28/1995	14.07
1/4/1996	13.26
1/29/1996	12.11
2/29/1996	11.33
3/27/1996	10.79
4/26/1996	8.95
6/6/1996	9.52
7/3/1996	9.83
8/2/1996	10.24
8/27/1996	10.22
10/1/1996	11.38
11/7/1996	11.05
12/5/1996	10.61
1/7/1997	8.52
1/28/1997	9.19
3/5/1997	9.61
3/31/1997	9.29
5/5/1997	8.92
6/3/1997	9.85
6/30/1997	10.72
7/29/1997	11.74
9/5/1997	12.86
10/3/1997	13.52
11/6/1997	14.36
12/3/1997	14.75
1/5/1998	14.95
1/28/1998	14.44
3/2/1998	12.76
4/2/1998	10.50
5/6/1998	10.96
6/4/1998	10.66
7/2/1998	11.40
7/28/1998	12.16
9/1/1998	13.19
9/28/1998	13.90

TABLE 2 HISTORICAL DEPTH TO WATER READINGS FOR DGS WELL Db24-10/18

STORMWATER RECHARGE EVALUATION

NEWARK, DELAWARE

DATE	DB24-10 DTW
11/30/1990	14.05
1/2/1991	13.77
2/1/1991	11.55
1/28/1999	16.00
2/23/1999	15.66
4/1/1999	14.20
4/30/1999	13.53
5/26/1999	13.54
6/29/1999	13.86
7/19/1999	14.16
7/30/1999	14.37
8/11/1999	14.65
8/30/1999	15.07
9/28/1999	14.78
11/2/1999	14.52
12/3/1999	14.82
1/4/2000	14.42
1/18/2000	14.40
2/16/2000	14.17
3/14/2000	13.17
4/17/2000	10.44
5/12/2000	10.53
6/16/2000	11.89
7/14/2000	12.14
8/14/2000	12.87
9/26/2000	13.70
10/23/2000	13.95
11/17/2000	14.38
12/15/2000	14.95
1/16/2001	15.05
2/22/2001	14.14
3/12/2001	13.54
4/18/2001	11.76
5/17/2001	11.94
6/8/2001	11.71
7/2/2001	11.51
7/16/2001	11.82
9/17/2001	13.38
10/15/2001	14.04
11/14/2001	14.78
12/18/2001	15.53

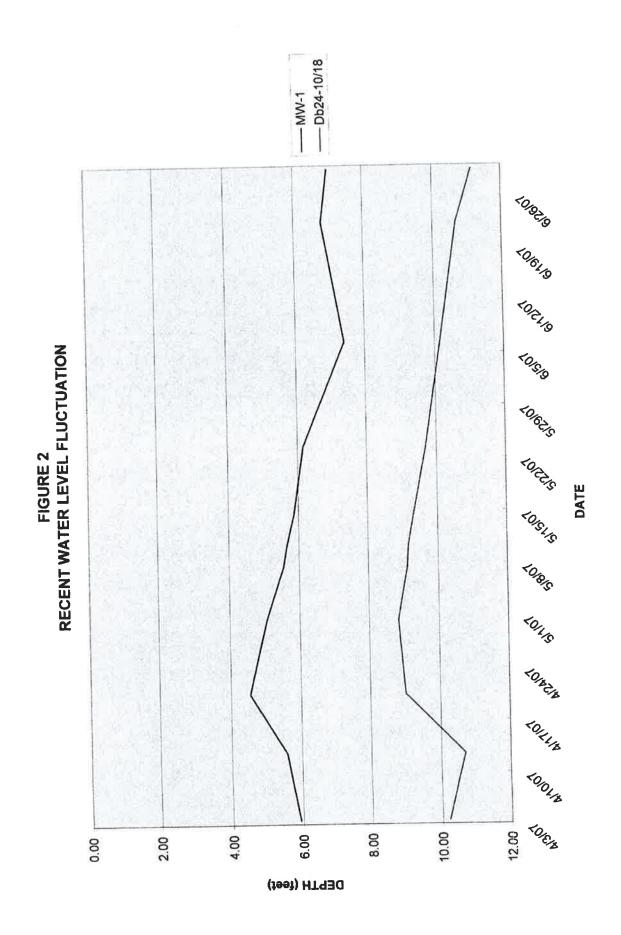
DATE	DB24-10 DTW
12/13/1994	14.19
1/4/1995	14.33
1/30/1995	13.80
1/17/2002	16.02
2/18/2002	16.23
3/13/2002	16.40
4/11/2002	16.18
5/9/2002	16.00
6/12/2002	15.92
7/5/2002	15.78
7/15/2002	15.91
8/12/2002	16.27
8/28/2002	16.47
9/11/2002	16.56
10/2/2002	16.83
11/1/2002	16.55
12/1/2002	15.37
1/1/2003	13.17
2/1/2003	12.56
3/1/2003	10.27
4/1/2003	8.80
5/1/2003	8.19
6/1/2003	7.70
7/1/2003	7.87
8/1/2003	9.02
9/1/2003	9.43
10/1/2003	9.23
11/1/2003	8.96
12/1/2003	8.08
1/1/2004	8.18
2/1/2004	8.81
3/1/2004	9.36
4/1/2004	8.67
5/1/2004	8.54
6/1/2004	8.57
7/1/2004	8.31
8/1/2004	8.02
9/1/2004	9.19
10/1/2004	8.82
11/1/2004	9.47
12/1/2004	8.59

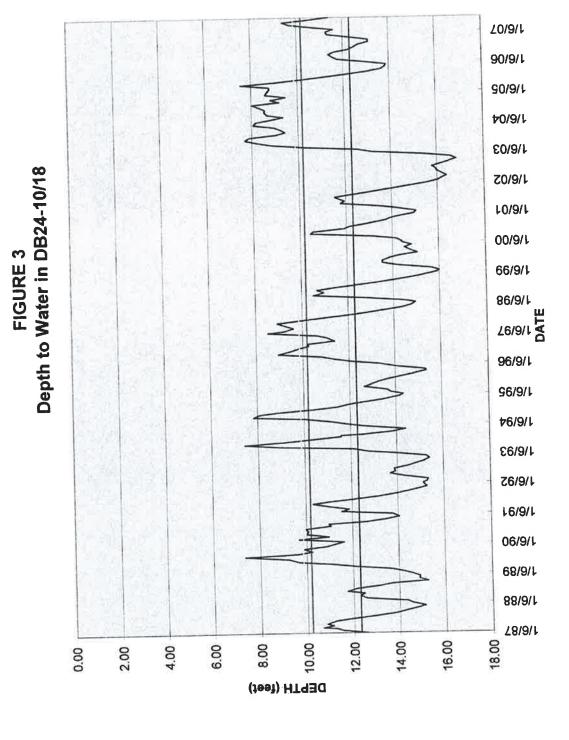
DATE	DB24-10 DTW
10/26/1998	14.57
11/23/1998	15.14
1/5/1999	15.90
1/1/2005	8.66
2/1/2005	8.77
3/1/2005	8.76
4/1/2005	7.54
5/1/2005	8.94
6/1/2005	10.09
7/1/2005	11.11
8/1/2005	12.09
9/1/2005	13.00
10/1/2005	13.62
11/1/2005	13.80
12/1/2005	13.87
1/1/2006	12.93
2/1/2006	11.75
3/1/2006	11.51
4/1/2006	11.36
5/1/2006	11.60
6/1/2006	12.22
7/1/2006	12.46
8/1/2006	12.64
9/1/2006	13.10
10/1/2006	13.10
11/9/2006	11.96
12/1/2006	11.32
1/1/2007	11.26
2/1/2007	11.59
3/1/2007	10.69
4/1/2007	9.68
5/1/2007	9.39
6/1/2007	10.49
7/1/2007	11.40

- NOTES:

 1. Depths reported in feet below ground surface grade.
- 2. As readings were recorded on a monthly basis for the majority of the historical record (through 2002), later readings were reduced through monthly averages.

TABLE 3 COMPARISON OF DEPTH TO WATER READINGS FOR OW-1 AND Db24-10/18

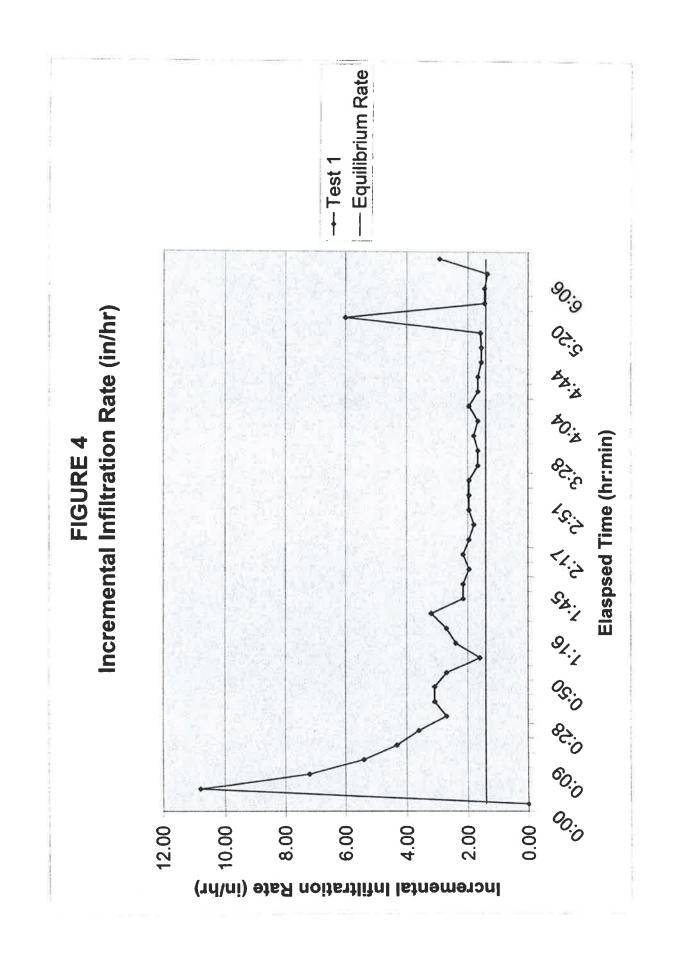

STORMWATER RECHARGE EVALUATION

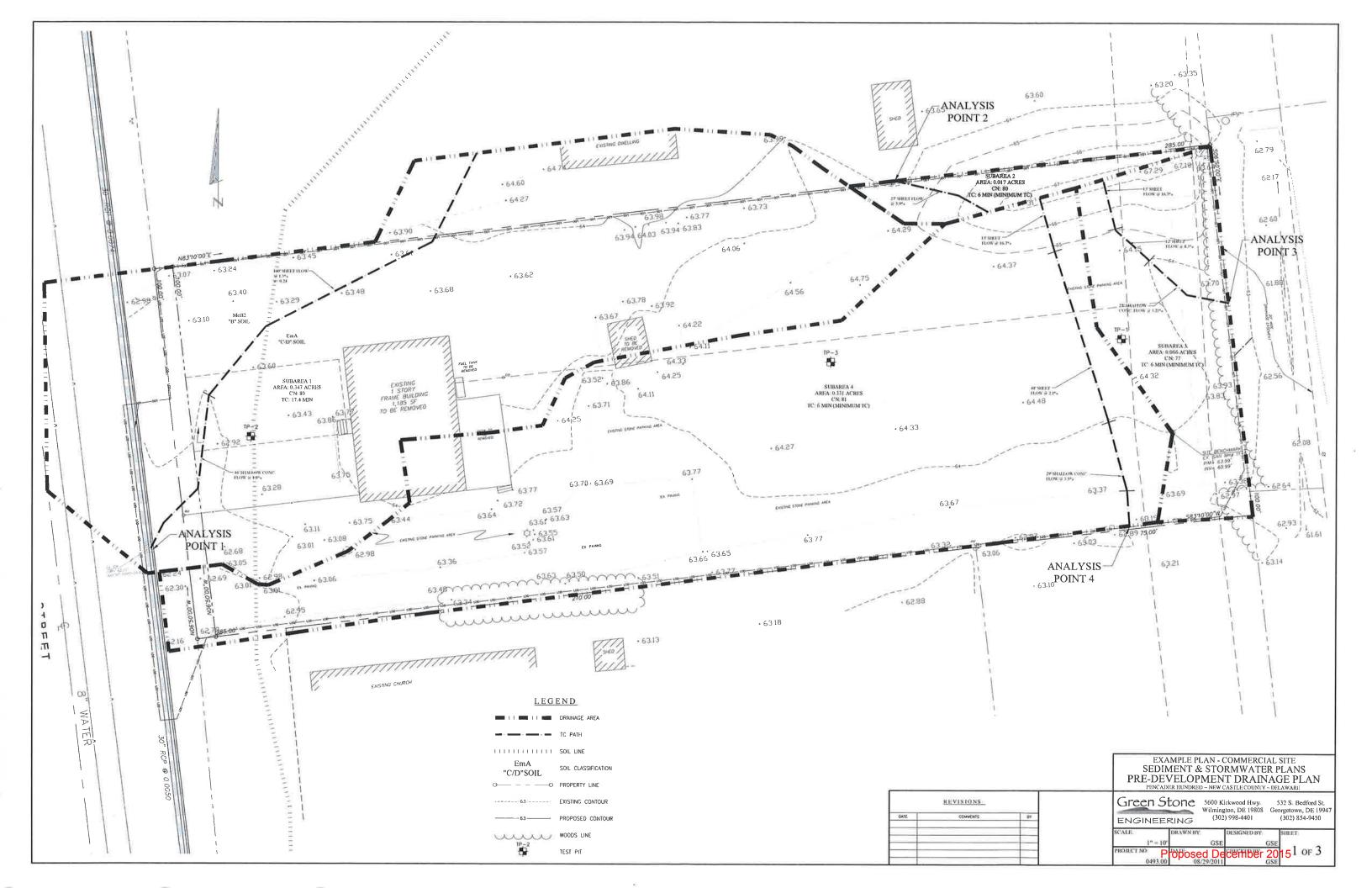

NEWARK, DELAWARE

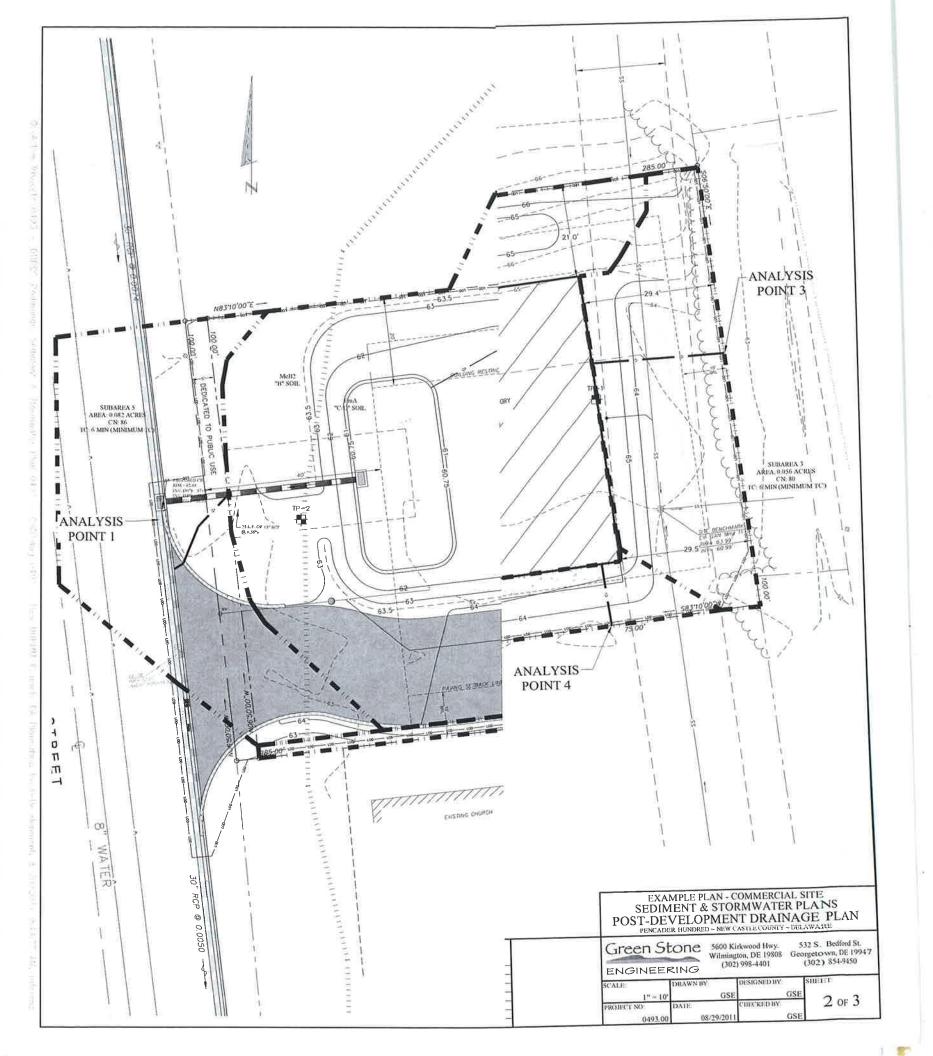
Date	OW-1	Db24-10/18
4/3/2007	5.92	10.20
4/12/2007	5.58	10.69
4/20/2007	4.54	9.00
4/30/2007	5.04	8.82
5/7/2007	5.55	9.10
5/10/2007	5.66	9.14
5/14/2007	5.87	9.30
5/23/2007	6.16	9.68
6/6/2007	7.41	10.15
6/22/2007	6.79	10.67
6/29/2007	6.98	11.14

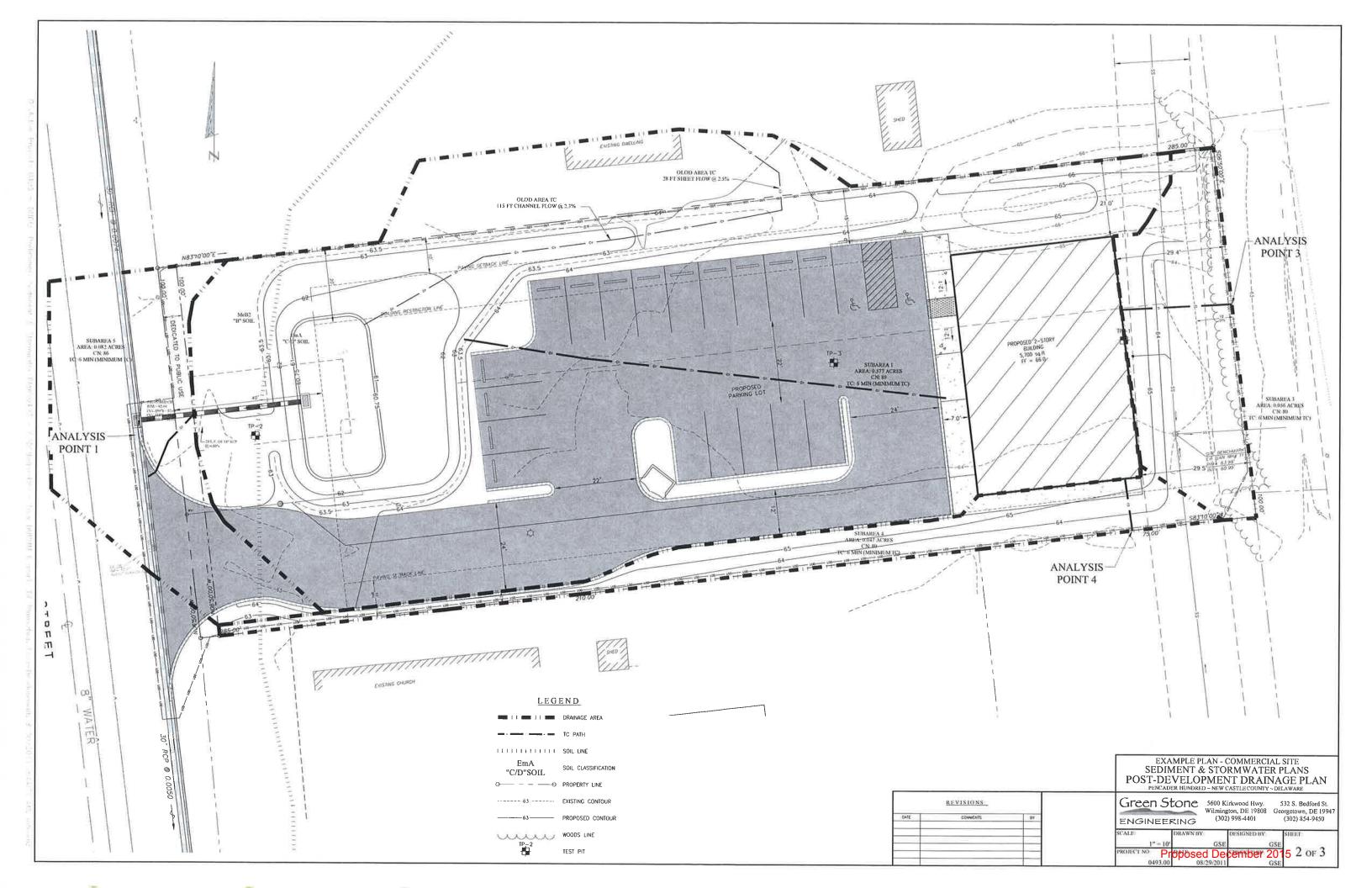
NOTES:

- Depths reported in feet below ground surface grade.
- While DGS reported readings on an approximate daily basis, for comparison purposes, only those taken on dates corresponding with on-site readings are shown here.

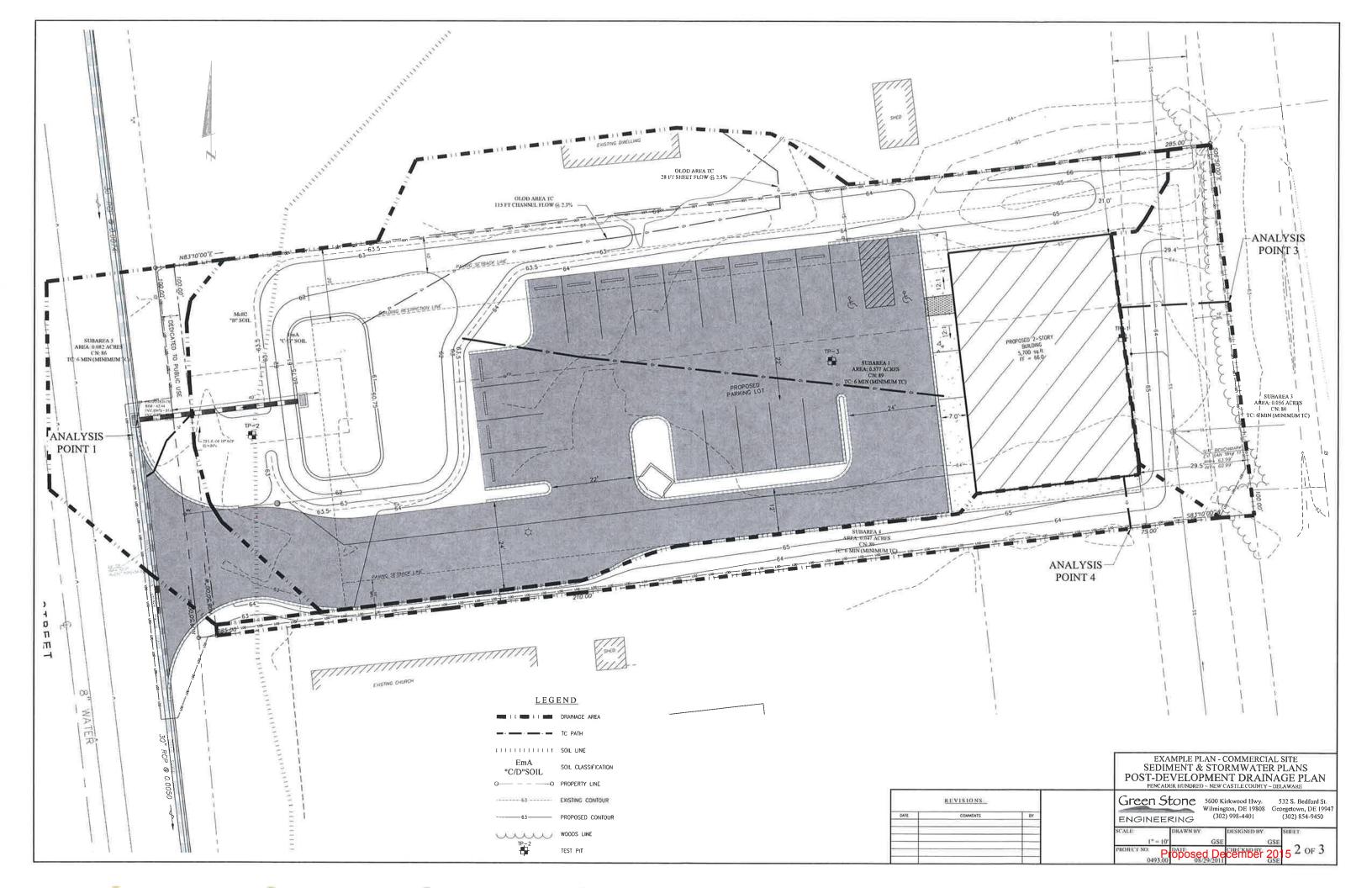





TABLE 4 INFILTRATION RATE TEST


NEWARK, DELAWARE

Time	Time Difference	Run Time	Incremental Infiltration (ft)	Incremental Infiltration (In)	Incremental Infiltration Rate (In/hr)
9:56	0:00	0:00	0	0	
9:58	0:02	0:02	0.03	0.36	10.80
10:01	0:03	90:0	0.03	0.36	7.20
10:05	0:04	60:0	0.03	0.36	5.40
10:10	0:05	0:14	0.03	0.36	4.32
10:16	90:00	0:50	0.03	0.36	3.60
10:24	0:08	0:28	0.03	0.36	2.70
10:31	0:07	0:35	0.03	0.36	3.09
10:38	0:07	0:42	0.03	0.36	3.09
10:46	0:08	0:20	0.03	0.36	2.70
10:55	0:0	0:28	0.02	0.24	1.60
11:04	0:09	1:08	0.03	0.36	2.40
11:12	0:08	1:16	0.03	0.36	2.70
11:21	60:0	1:25	0.04	0.48	3.20
11:31	0:10	1:35	0.03	0.36	2.16
11:41	0:10	1:45	0.03	0.36	2.16
11:52	0:11	1:56	0.03	0.36	1.96
12:02	0:10	2:06	0.03	0.36	2.16
12:13	0:11	2:17	0.03	0.36	1.96
12:25	0:12	2:29	0.03	0.36	1.80
12:36	0:11	2:40	0.03	0.36	1.96
12:47	0:11	2:51	0.03	0.36	1.96
12:58	0:11	3:02	0.03	0.36	1.96
13:11	0:13	3:15	0.03	0.36	1.66
13:24	0:13	3:28	0.03	0.36	1.66
13:36	0.12	3:40	0.03	0.36	1.80
13:49	0:13	3:53	0.03	0.36	1.66
14:00	0:11	40.4	0.03	0.36	1.96
14:13	0:13	4.17	0.03	0.36	1.66
14:26	0:13	4:30	0.03	0.36	1.66
14:40	0:14	4:44	0.03	0.36	1.54
14:54	0:14	4:58	0.03	0.36	1.54
15:10	0:16	5:14	0.04	0.42	1.58
15:16	90:00	5:20	0.05	9.0	00.9
15:31	0:15	5:35	0.03	0.36	1.44
15:46	0:15	5:50	0.03	0.36	1.44
16:02	0:16	90:9	0.03	0.36	1.35
16:18	0:16	6:22	0.07	0.78	2.93



Appendix 3

DURMM v2 Model using the Constructed/As-Built Stormwater Management Facilities

PROJECT: Example Plan - Commercial Site DRAINAGE SUBAREA ID: Subarea 1 LOCATION (County): New Castle UNIT HYDROGRAPH: STD

CONTRIBUTING AREA RUNOFF CURVE NUMBER (C.A.

	RCN) WORKSHE			Curv	e Numb	ers for	Hydrolo	gic Soil	Туре	
Cover Type	Treatment	Hydrologic	A		В		C		C	
		Condition	Acres	RCN	Acres	RCN	Acres	RCN	Acres	RCN
	RICULTURAL LANDS									
Fallow	Bare soil	****		77		86		91		94
	Crop residue (CR)	poor		76		85		90		93
	Crop residue (CR)	good		74		83		88		90
Row Crops	Straight row (SR)	poor		72		81		88		91
	Straight row (SR)	good		67		78		85		89
	SR + Crop residue	poor		71		80		87		90
	SR + Crop residue	good		64		75		82		85
	Contoured (C)	poor		70		79		84	100	88
	Contoured (C)	good		65		75		82		86
	C + Crop residue	poor		69		78		83		87
	C + Crop residue	good		64		74		81		85
	Cont & terraced(C&T)	poor		66		74		80	10	82
	Cont & terraced(C&T)	good		62		71		78		81
	C&T + Crop residue	poor		65		73		79		81
	C&T + Crop residue	good		61		70	7	77		80
Small Grain	Straight row (SR)	poor		65		76		84	1	88
	Straight row (SR)	good		63		75		83		87
	SR + Crop residue	poor		64		75		83		86
	SR + Crop residue	good		60		72		80		84
	Contoured (C)	poor		63		74		82		85
	Contoured (C)	good		61		73		81		84
	C + Crop residue	poor		62		73		81		84
	C + Crop residue	good		60		72		80		83
	Cont & terraced(C&T)	poor		61		72		79		82
	Cont & terraces(C&T)	good		59		70		78		81
	C&T + Crop residue	poor		60		71		78		81
	C&T + Crop residue	good		58		69		77		80
Close-seeded	Straight row	poor		66		77		85		89
or broadcast	Straight row	good		58		72		81		85
legumes or	Contoured	poor		64		75		83		85
rotation	Contoured	good		55		69		78		83
meadow	Cont & terraced	роог	- 1	63		73		80		83
	Cont & terraced	good		51		67		76		80
OTHER AGRICUL	TURAL LANDS									
	Pasture, grassland or range	poor		68		79		86		89
		fair		49		69		79		84
		good		39		61		74		80
	Meadow -cont, grass (non grazed)		-	30		58		71		78
	Brush - brush, weed, grass mix	poor		48		67		77		83
		fair		35		56		70		77
		good		30		48		65		73
	Woods - grass combination	poor		57		73		82		86
	3	fair		43		65		76		82
		good		32		58		72		79
	Woods	poor		45		66		77		83
		fair		36		60		73		79
		good		30		55		70		77
	Farmsteads	9000		59		74		82		86
	Tamologos			00				- 02		00
FULLY DEVELOP	ED URBAN AREAS (Veg Established)									
FULLY DEVELOP	s,parks etc.)			_						
FULLY DEVELOP			- 100	68		79		86		89
FULLY DEVELOP	s,parks etc.)			49		69		86 79		84
	s,parks etc.) Poor condition; grass cover < 50%				0.03	_			0.23	_
FULLY DEVELOP	s,parks etc.) Poor condition; grass cover < 50% Fair condition; grass cover 50% to 75 %		0.32	49	0.03	69		79	0.23	84

Streets and roads		1		- 1	
Paved; curbs and storm sewers		98	98	98	98
Paved; open ditches (w/right-of-way)		83	89	92	93
Gravel (w/ right-of-way)		76	85	89	91
Dirt (w/ right-of-way)		72	82	87	89
Urban Districts	Avg % impervious				
Commercial & business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size	Avg % impervious				
1/8 acre (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acre	12	46	65	77	82
USER DEFINED					
Subarea Contributing Area	per Soil Type (ac)	0.32	03	0 0	0.23
UPSTREAM CONTRIBUTING AREAS	Subarea ID A	Acres RCN			
Upstream Contributing Area 1 Upstream Contributing Area 2 Upstream Contributing Area 3					
Upstream Contributing Area 4					
	Total Co	ontributing Area	(ac) 0.	58	
	Weighted Runoff C	Curve Number (R	CN)	89	

PROJECT: Example Plan - Commercial Site DRAINAGE SUBAREA ID: Subarea 1 LOCATION (County): New Castle UNIT HYDROGRAPH: STD

LIMIT OF DISTURBANCE (LOD) WORKSHEE				
Step 1 - Subarea LOD Data	HSG A	HSG B	HSG C	HSG D
1,1 HSG Area Within LOD (ac)		0.03		0.55
1.2 Pre-Developed Woods/Meadow Within LOD (ac)				
1.3 Pre-Developed Impervious Within LOD (ac)				
1.4.a Post-Developed Imperviousness Within LOD, Option #1 (ac); OR				0.32
1.4.b Post-Developed Imperviousness Within LOD, Option #2 (%)	0%	0%	0%	58%
Step 2 - Subarea LOD Runoff Calculations				
2.1 RCN per HSG	0.00	61.00	0.00	90.47
2.2 RPv per HSG (in.)	0.00	0.58	0,00	1.98
2.3 Target Runoff per HSG (in.)	0.00	0.58	0,00	1.39
2.4 Cv Weighted Unit Discharge per HSG (cfs/ac)	0.00	0.75	0.00	0,75
2,5 Fv Weighted Unit Discharge per HSG (cfs/ac)	0,00	2.25	0,00	2.25
2.6 Subarea LOD (ac)		0.	58	
2,7 Subarea Weighted RCN			.95	
2.8 Subarea Weighted RPv (in.)		1.		
2.9 Subarea Weighted Target Runoff (in.)		1.	35	
Step 3 - Upstream LOD Areas (from previous DURMM Report as applicable)	Area 1	Area 2	Area 3	Area 4
3,1 Upstream Subarea ID				
3.2 Upstream LOD Area (ac)				
3.3 Target Runoff for Upstream Area (in.)				
3.4 Adjusted CN after all reductions				
3.5 Adjusted RPv (in.)		-		
3.6 Adjusted Cv (in.)				
3.7 Adjusted Fv (in _i)				
Step 4 - RPv Calculations for Combined LOD				
4.1 Combined LOD (ac)		0.	58	
4.2 Weighted RCN		88	.95	
4.3 Weighted RPv (in.)			90	
4.4 Weighted Target Runoff (in.)		1.		
4.5 Estimated Annual Runoff (in.)			.55	
4.6 Reg'd Runoff Reduction within LOD (in.)			56	
4.7 Req'd Runoff Reduction within LOD (%)			1%	
Step 5 - Cv Unit Discharge				
5. LOD Allowable Unit Discharge (cfs/ac)				0.75
				5.75
Step 6 - Fv Unit Discharge				
6. LOD Allowable Unit Discharge (cfs/ac)				2.25
6. LOD Allowable Offit Discharge (cisyac)				2,23

PROJECT: DRAINAGE SUBAREA ID:

T: Example Plan - Commercial Site
Subarea 1

LOCATION (County): New Castle
UNIT HYDROGRAPH: STD

OUTSIDE LIMIT OF DISTURBANCE (OLOD)

WORKSHEET

Step 1 - Site Data

- 1.1 Total Contributing Area (ac)
- 1.2 C.A. RCN
- 1.3 LOD Area (ac)
- 1.4 LOD RCN
- 1.5 Outside LOD Area (ac)
- 1.6 Outside LOD RCN

N/A	
N/A	
N/A	
N/A	
N/A	, T
N/A	

Step 2 - Time of Concentration

FLOW TYPE

Sheet

Shallow Concentrated

Open Channel

	2.1	2.2	2.3	2.4	2.5	2.6
	LENGTH	SLOPE	SURFACE	MANNINGS	VELOCITY	TRAVEL
	(feet)	(ft./ft.)	CODE	"n"	(ft./sec.)	TIME (hrs)
-[28	0.025	f	0.24	N/A	0.08
- [*********	N/A	0.00
ĺ					N/A	0.00
Ī				N/A		0.00
- [N/A		0.00
1				N/A		0.00
ı	115	3	N/A	0.03	6.1	0.01
- [N/A			0.00
-			N/A			0.00
Ī			N/A			0.00
1			N/A			0.00

2.7 Time of Concentration (Tc)

0.10 hrs

Sheet Flow Surface Codes

- a Smooth Surface
- b fallow (no residue)
- c cultivated < 20% Res.
- d cultivated > 20% Res.e grass range, short
- f grass, dense
- g grass, bermuda h woods, light
- i woods, dense
- j range, natural

Shallow Concentrated Surface Codes

- u unpaved surface
- p paved surface

Step 3 - Peak Discharge

- 3.1 Unit Hydrograph Type
- 3.2 Frequency (yr)
- 3.3 24-HR Rainfall, P (in.)
- 3.4 Initial Abstraction, Ia (in.)
- 3.5 la/P ratio
- 3.6 Unit Peak Discharge, qu (csm/in)
- 3.7 Runoff (in.)
- 3.8 Peak Discharge, qp (cfs)
- 3.9 Equiv. unit peak discharge (cfs/ac)

ST	D.
10	100
4.8	
#N/A	#N/A
#N/A	#N/A
#N/A	#N/A
#VALUE!	#VALUE!
#VALUE!	#VALUE!
0.00	0.00

PROJECT:		Example Plan - Commercial Site									
DRAINAGE SUBAREA ID:											T
LOCATION (County): RESOURCE PROTECTION EVENT (RPv) WORKSHEET	y): New Castle										7
		8MP1		BMP 2		BMP 3	N8	BMP 4		BMP 5	
	Туре	Bioretention w/underdrain	Type	1	Type	1	Type	1	Type	. 1	27
Step 1 - Calculate Initial RPv 1,1 Total contributing area to BMP (ac)	Data 0.58		Data 0.58		Data 0.58	THE STATE OF	Data 0.58		Data 0.58		1=3
1.2 Reserved 1.3 Initial RCN 1.4 RPv for Contributing Area (in.)	1.90										
1.5 Req'd RPv Reduction for Contributing Area (in.) 1.6 Req'd RPv Reduction for Contributing Area (%) 1.7 RPv allowable discharge rate (cfs)	29%										
Step 2 - Adjust for Retention Reduction											l
2.1 Storage volume (cu. ft.)	5888		100		4/10		100		47.00		3
2.2 Retention reduction allowance (%)2.3 Retention reduction volume (ac-ft)	0.07		N/A		N/A		N/A N/A		N/A		
 2.4 Retention reduction volume (in.) 2.5 Runoff volume after retention reduction (in.) 	1.40		N/A		N/A		N/A N/A		N/A		
2,6 Adjusted CN*	58.70		N/A		N/A		N/A		N/A		
Step 3 - Adjust for Annual Runoff Reduction											
3,1 Annual CN (ACN)	88.95		N/A		N/A		N/A N/A		N/A		
 Annual runol (In.) Proportion A/B soils in BMP footprint (%) 	960		W/W		V/N		2/11		W/W		
3.4 Annual runoff reduction allowance (%)	26.54		N/A		N/A		N/A		N/A		
3,6 Adjusted ACN	88.95		N/A		N/A		N/A		N/A		-1,
3.7 Annual Runoff Reduction Allowance for RPv (in.)	0.02		N/A		N/A		N/A		N/A		
Step 4 - Calculate RPv with BMP Reductions											I
4.1 RPv runoff volume after all reductions (in.)	1.43		N/A		N/A		N/A		N/A		3
4.2 Total RPv runoff reduction (%)	74%		N/A		N/A		N/A		N/A		Ų
4.4 Adjusted CN after all reductions	58.70		N/A		N/A		N/A		N/A		
4.5 Equivalent TR-55 RCN for H&H modeling	68.20		N/A		N/A		N/A		N/A		, A
ליס עבל מובמתרנוסון ווובן:	5		4/4		4	J					1
Step						lo de	77.74		17.74		Γ
	A/A		N/A		N/A		N/A		N/A		
5.3 Total Offset Volume (cu.ft.)	N/A		N/A		N/A		N/A	100	N/A		

PROJECT	PROJECT: Example Plan - Commercial Site	lan - Comm	nercial Site																	
DRAINAGE SUBAREA ID: Subarea 1	Subarea 1																			
LANDUSE TYPE: Commercial	Commerci	ial																		
TMDL WATERSHED: Christina River	Christina F	River																		
TOTAL MAXIMUM DAILY LOAD (TMDL) WORKSHEET																	:			
			BMP 1			BN	BMP 2				BMP 3				BMP 4				BMP 5	
	Type:	Biore	Bioretention w/underdrain	nderdrain	Type:		ē:		Type:				Type:	ě	10		Type:	81	3	
Step 1 - Calculate Annual Runoff Volume	Data	TN	TP	155	Data	TN	41	TSS	Data	N.	TP	155	H	TN ES	TP	TSS	H	T.	T.	155
1.1 Total contributing area to BMP (ac) 1.2 Initial RCN 1.3 Annual runoff volume (in.) 1.4 Annual runoff volume (liters)	0.58 89 26.55 1.58E+06	ministra									To all					8.1				
Step 2 - Calculate Annual Pollutant Load																				
2.1 EMC (mg/L) 2.2 Load (mg/yr)	Ÿ	3.17E+06	0.27	5 9.50E+07	ماه								-\ -\ -\							H
2.4 Stormwater Load (lb/ac/yr)		12.03	1.62	361	175	4.81	0.81	92		#N/A	#N/A	W/\#	A	#N/A	A/N# A	A/N# A/	4	#N/A	A/N#	#N/A
Step 3 - Adjust for Runoff Reduction																				
3.1 BMP Runoff Reduction (%)	74%				N/A				N/A		×		N/A		ŀ	1	N/A		1	ŀ
3.2 BMP Removal Efficiency (%) 3.3 Adjusted load (lb/ac/yr)		4.81	% 50% 11 0.81	74%	20	#N/A	#N/A #N/A	#N/A #N/A		#N/A #N/A	#N/A	#N/A #N/A	N d	#N/A #N/A	A #N/A	A #N/A	d d	#N/A	#N/A	#N/A
Step 4 - Calculate Pollutant Reduction						3										3				
4.1 TMDL (lb/ac/yr)		5.70		0.35 N/A		5.70	0.35 N/A	N/A		5.70		0.35 N/A			5.70	0.35 N/A		S	5.70 0.	0.35 N/A
4.2 Reduction met?		Ж	No	УÓ		#W/W#	#N/A	OK		#N/A	#W/A	ò		#N/A	A #N/A	A OK	×	₩#	A/V#	ŏ
Step 5 - Determine TMDL Offset																9				
5.1 TMDL Shortfall (lb/ac/yr)		000	0.46	9	0	#N/A	#N/A	0	_	#N/A	A/N#		0	A/N#	A/NH A	A	0	A/N#	A/N#	
5.2 TMDL Shortfall (%)		%0		% 0%	9	#N/A	#N/A	#N/A		#N/A	#N/A	#N/A	4	#N/A	A #N/A	A #N/A	/A	#N/A	A/N#	#N/A
5,3 Residual RPv Volume (in)		0.49	9 0.49	9 0.49	m	N/A	N/A	N/A		N/A	N/A	N/A		N/A	N/A	N/A		N/A	N/A	N/A
5.4 Req'd Additional RR to meet TMDL (in)*		0.00	0.28	00.00	0	#N/A	#N/A	#N/A	, A	#N/A	#N/A	#N/A	d	#N/A	-	A/N# A	A/	#N/A	W/N#	Ē
5.5 Req'd Additional RR to meet TMDL (cu.ft./ac)	1		0 1004	7	0	#N/A	#N/A	#N/A		#N/A	A/N#	#N/A	ď	#N/A	-	A/N# A	/A	#N/A		
5 6 Total Offset Volume (cuff.)			582	2	15	#N/A	A/N#	A/N#		#N/A	A/Na	EN/A	, d	A/N#		A BN/A	/A	Y/N#	A/N#	ANNA

	- 1	TO ME IN CONTRACT TO A CONTRACT OF THE PERSON OF THE PERSO								
PROJECT:	- 4	Example Plan - Commercial Site								
DRAINAGE SUBAREA ID:	Subarea 1									
LOCATION (County):	: New Castle									
CONVEYANCE EVENT (CV) WORKSHEET										
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5
	Tvme	Bioretention	Tung	31	Tuna	3)	Tripor		Trees	
	, Abo.	w/undergrann	. Ahe.		:adk		1 Abe.	1	iype:	2
Step 1 - Calculate Initial Cv	Data		Data		Data		Data		Data	
L.L Total contributing area to bivin (ac)	0.58		0.08		0.38		0.58		86.0	
1.2 Initial RCN	88.95									
1,3 10-YR Rainfall (in.)	4.8									
1,4 Cv runoff volume (in.)	3.58									
1.5 LOD allowable unit discharge (cfs/ac)	0.75									
1.6 Famiv unit discharge outside LOD (cfs/ac)	000									
1.7 Cv allowable discharge rate (cfs)	0.44									
Step 2 - Adjust for Retention Reduction										
2-1 Storage volume (cu. ft.)	5888 00		000		000	No. of Lot, House, St. Co., St	000		000	
2.2 Storage volume (ac-ft)	0.14		0000		000		000		000	
2.3 Storage volume (in)	2.80		00.0		000		000		8	
2.4 Runoff volume after reduction (in.)	0.78		0.78		WW/W		WW/A		#M/A	
2 5 CN*	53.16		53.16		A/N#		A/N#		Alway A	
	04:00		24.00		CANA		W/Ma		W/AIA	
Step 3 - Adjust for Annual Runoff Reduction										
3.1 Ripoff reduction allowance (%)	790		√N##		V/N#		#10/0		HNIA	
2.2. Amount remode off after reduction (in)	2 50		V/ N#		V/ W#		MA1/A		WI IV	
2.2 Adjusted ACM	2000		V/N#		C/NH		4/14#		WW.	
3.3 Aujusteu Aciv	00.33		¥/N/#		#IV/H		W/N#		WIN/W	
3.4 Event-based runoff reduction (in.)	0.00		#N/A		#N/A		#N/A		#N/A	
Step 4 - Calculate Cv with BMP Reductions	0.									
4.1 Cv runoff volume after all reductions (in.)	0.78		#N/A		#N/A		#N/A		#N/A	
And Total Commodification (9/1)	700%		MAI/A		44V/V		#W17v		*****	
4.2 Total CV runoff reduction (%)	/078		HN/A		HIV/A		#N/A		HIVA	

PROJECT:		Example Plan - Commercial Site									
DRAINAGE SUBAREA ID:	: Subarea 1										
LOCATION (County):	: New Castle	e									
FLOODING EVENT (Fv) WORKSHEET											
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5	_
	Type:	Bioretention W/underdrain	Type:	11	Tvne:	91	Type:	1	Type:		_
Step 1 - Calculate Initial Fv	Data		Data		Data		Data		Data		
1.1 Total contributing area to BIVIP (ac) 1.2 Initial RCN	88.95		0.58		0.58		0.58		0.58		
1.3 100-YR Rainfall (in.)	8.0		i d								
1.4 Fv runoff volume (in.)	6.68										
1.5 LOD allowable unit discharge (cfs/ac)	2.25						Exc.				
1.6 Equiv. unit discharge outside LOD (cfs/ac)	0.00								100		
1.7 Fv allowable discharge rate (cfs)	1.31										_
Step 2 - Adjust for Retention Reduction											
2.1 Storage volume (cu. ft.)	5888.00		00.0		0.00		00:0		00:00		_
2,2 Storage volume (ac-ft)	0.14		0.00		0:00		0.00		0.00		
2.3 Storage volume (in.)	2.80		0.00		00.00		0.00		0.00		
2.4 Runoff volume after reduction (in.)	3.88		3.88		#N/A		#N/A		#N/A		
2.5 CN ÷	16.91		16.91		#N/A		#N/A	1	#N/A		_
Step 3 - Adjust for Annual Runoff Reduction											
3.1 Runoff reduction allowance (%)	%0		#N/A	1 1 1 1 1 1 1	#N/A		#N/A		#N/A		_
3.2 Annual runoff after reduction (in.)	6.68		#N/A		#N/A		#N/A		#N/A		
3,3 Adjusted ACN	88.95		#N/A		#N/A		#N/A		#N/A		
3.4 Event-based runoff reduction (in.)	0.00		#N/A		#N/A		#N/A		#N/A		_
Step 4 - Calculate Fv with BMP Reductions											
4.1 Fy runoff volume after all reductions (in.)	3.88		A/N#		#N/A		A/N#		#N/A		
4.2 Total Fv runoff reduction (%)	45%		#N/A		#N/A		#N/A		#N/A		
4.3 Adjusted RCN for H&H modeling	64.91		#N/A		#N/A		#N/A		#N/A		
					-						7

PROJECT:

DRAINAGE SUBAREA ID:

TMDL Watershed:

Example Plan - Commercial Site Subarea 1

DURMM OUTPUT WORKSHEE	T				
ite Data				DURM	M v2.beta.1108
Contributing Area to BMPs (ac.)	0.58				
C.A. RCN	89				
Subarea LOD (ac.)	0.58				
Upstream Subarea ID	0	(ol	0
Upstream Subarea LOD (ac.)	0.00	0.00	-	0.0	0
Combined LOD with Upstream Areas (ac.)	0.58				
Combined RCN with Upstream Areas (ac.)	88.95				
TMDL-TN (lb/ac/yr)	5.70				
TMDL-TP (lb/ac/yr)	0.35				
TMDL-TSS (lb/ac/yr)	N/A				
BMP Selection	BMP 1	BMP 2	T BMP 3	BMP 4	BMP 5
Sim delection			1		1
	Bioretention	220	1944	242	344
	w/underdrain				
esource Protection Event (RPV)					
RPv for Contributing Area (in.)	1.90				
Reg'd RPv Reduction for Contributing Area (in.)	0.56				
Req'd RPv Reduction for Contributing Area (%)	29%				
C.A. allowable discharge rate (cfs)	0.05				
Unmanaged Polluant load, TN (lbs/ac/yr)	12.03				
, , , , , ,					
Unmanaged Polluant load, TP (lbs/ac/yr) Unmanaged Polluant load, TSS (lbs/ac/yr)	1.62 361				
BMP Runoff Reduction Performance	BMP 1	BMP 2	BMP 3	BMP 4	T 2040.5
				I KIVIP 4	BMP 5
RPv runoff volume after all reductions (in.)	0.49	N/A	N/A	N/A	N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.)	0.49 1.42	N/A N/A	N/A N/A	N/A N/A	N/A N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%)	0.49 1.42 74%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met?	0.49 1.42	N/A N/A	N/A N/A	N/A N/A	N/A N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance	0.49 1.42 74% OK	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr)	0.49 1.42 74% OK	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A ************************
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr)	0.49 1.42 74% OK 4.81 0.81	N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A *N/A	N/A N/A N/A N/A *N/A	N/A N/A N/A N/A **N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr)	0.49 1.42 74% OK	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A ************************
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements	0.49 1.42 74% OK 4.81 0.81 92	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr)	0.49 1.42 74% OK 4.81 0.81	N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.)	0.49 1.42 74% OK 4.81 0.81 92	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.)	0.49 1.42 74% OK 4.81 0.81 92	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.)	0.49 1.42 74% OK 4.81 0.81 92 N/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs)	0.49 1.42 74% OK 4.81 0.81 92 N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A N/A #N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance	0.49 1.42 74% OK 4.81 0.81 92 N/A 3.58 0.44 BMP 1	N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A #N/A BMP 4	N/A N/A N/A N/A N/A #N/A #N/A BMP 5
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs)	0.49 1.42 74% OK 4.81 0.81 92 N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A N/A #N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.)	0.49 1.42 74% OK 4.81 0.81 92 N/A 3.58 0.44 BMP 1	N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A #N/A BMP 4	N/A N/A N/A N/A N/A #N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.)	0.49 1.42 74% OK 4.81 0.81 92 N/A 3.58 0.44 BMP 1 0.78	N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A #N/A BMP 4	N/A N/A N/A N/A N/A #N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.) Fooding Event (Fv) Fv runoff volume (in.)	0.49 1.42 74% OK 4.81 0.81 92 N/A 3.58 0.44 BMP 1 0.78	N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A #N/A BMP 4	N/A N/A N/A N/A N/A #N/A #N/A #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TS (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.) cooding Event (Fv) Fv runoff volume (in.) Stds-based allowable discharge (cfs)	0.49 1.42 74% OK 4.81 0.81 92 N/A 3.58 0.44 BMP 1 0.78	N/A N/A N/A N/A #N/A #N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A BMP 3 #N/A	N/A N/A N/A N/A #N/A #N/A #N/A BMP 4 #N/A	N/A N/A N/A N/A #N/A #N/A #N/A BMP 5 #N/A
RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.)	0.49 1.42 74% OK 4.81 0.81 92 N/A 3.58 0.44 BMP 1 0.78	N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A	N/A N/A N/A N/A N/A #N/A #N/A #N/A BMP 4	N/A N/A N/A N/A N/A #N/A #N/A BMP 5

Christina River

Adjusted Subarea Data for Downstream DURMM Modeling

Adjusted Fv (in.)

, 23, 22, 24, 24, 24, 26, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20	mouting
Contributing Area (ac.)	0.58
C.A. RCN	89
LOD Area (ac.)	0.58
Weighted Target Runoff (in.)	1.35
Adjusted CN after all reductions	58.70
Adjusted RPv (in.)	0.49
Adjusted Cv (in.)	

Adjusted Subarea Data for H&H Modeling

Resource Protection Event, RPv Conveyance Event, Cv Flooding Event, Fv

Rain (in.)	RCN
2.7	N/A
4.8	53.16
8	64.91

PROJECT: Example Plan - Commercial Site DRAINAGE SUBAREA ID: Subarea 3 LOCATION (County): New Castle UNIT HYDROGRAPH: STD

CONTRIBUTING AREA RUNOFF CURVE NUMBER (C.A.

	RCN) WORKSHE						Hydrolog			
Cover Type	Treatment	Hydrologic	A		В		C		D	
		Condition	Acres	RCN	Acres	RCN	Acres	RCN	Acres	RCN
SULTIVATED AGR	RICULTURAL LANDS									
allow	Bare soil			77		86		91		94
	Crop residue (CR)	poor		76		85		90		93
	Crop residue (CR)	good		74		83		88		90
Row Crops	Straight row (SR)	роог		72		81		88		91
	Straight row (SR)	good		67		78		85		89
	SR + Crop residue	poor		71		80		87		90
	SR + Crop residue	good		64		75		82		85
	Contoured (C)	poor		70		79		84		88
	Contoured (C)	good		65		75		82		86
	, ,	•	_	69		78		83		87
	C + Crop residue	poor					-			_
	C + Crop residue	good		64		74		81		85
	Cont & terraced(C&T)	poor		66		74		80		82
	Cont & terraced(C&T)	good		62		71		78		81
	C&T + Crop residue	poor		65		73		79		81
	C&T + Crop residue	good		61		70		77		80
Small Grain	Straight row (SR)	poor		65		76		84		88
	Straight row (SR)	good		63		75		83		87
	SR + Crop residue	poor		64		75		83		86
	SR + Crop residue	good		60		72		80		84
	Contoured (C)	poor		63		74		82		85
	` '	i de la companya de		61		73		81		84
	Contoured (C)	good		-				_		_
	C + Crop residue	poor		62		73		81		84
	C + Crop residue	good		60		72		80		83
	Cont & terraced(C&T)	poor		61		72		79		82
	Cont & terraces(C&T)	good		59		70		78		81
	C&T + Crop residue	poor		60		71		78		81
	C&T + Crop residue	good		58		69		77		80
Close-seeded	Straight row	poor		66		77		85		89
or broadcast	Straight row	good		58		72		81	13	85
legumes or	Contoured	poor		64		75		83		85
rotation	Contoured	good		55		69		78		83
	Cont & terraced	=		63		73		80		83
meadow		poor	_	51		67		76		80
	Cont & terraced	good		51		07		76		00
THER ACRICIII I	TUDAL LANDS									
OTHER AGRICULT										_
ı	Pasture, grassland or range	poor	5.7	68		79		86		89
		fair		49		69		79		84
		good		39		61		74		80
ľ	Meadow -cont, grass (non grazed)	****		30		58		71	-	78
F	Brush - brush, weed, grass mix	poor		48		67		77		83
	•	fair		35		56		70		77
		good		30		48		65		73
,	Woods - grass combination	poor		57		73		82		86
	vvoods - grass combination	fair		43		65		76		82
				32		58		72		79
		good				_				_
		•						77		83
,	Woods	poor		45		66				
V	Woods	•		36		60		73		79
,	Woods	poor				60 55		73 70	0.007	77
	Woods Farmsteads	poor fair		36		60		73	0.007	77
FULLY DEVELOPE	Farmsteads ED URBAN AREAS (Veg Established)	poor fair good		36 30		60 55		73 70	0.007	77
FULLY DEVELOPE	Farmsteads ED URBAN AREAS (Veg Established) s,parks etc.)	poor fair good		36 30 59		60 55 74		73 70 82	0.007	77 86
FULLY DEVELOPE	Farmsteads ED URBAN AREAS (Veg Established) s,parks etc.) Poor condition; grass cover < 50%	poor fair good		36 30 59		60 55 74 79		73 70 82 86	0.007	77 86 89
1	Farmsteads ED URBAN AREAS (Veg Established) s,parks etc.) Poor condition; grass cover < 50% Fair condition; grass cover 50% to 75 %	poor fair good		36 30 59 68 49		60 55 74 79 69		73 70 82 86 79		77 86 89 84
F ULLY DEVELOPE Open space (Lawns	Farmsteads ED URBAN AREAS (Veg Established) s,parks etc.) Poor condition; grass cover < 50%	poor fair good		36 30 59		60 55 74 79		73 70 82 86	0.007	77 86 89
FULLY DEVELOPE	Farmsteads ED URBAN AREAS (Veg Established) s,parks etc.) Poor condition; grass cover < 50% Fair condition; grass cover 50% to 75 %	poor fair good		36 30 59 68 49		60 55 74 79 69		73 70 82 86 79		77 86 89 84

Streets and roads		1		1	
Paved; curbs and storm sewers		98	98	98	98
Paved; open ditches (w/right-of-way)		83	89	92	93
Gravel (w/ right-of-way)		76	85	89	91
Dirt (w/ right-of-way)		72	82	87	89
Urban Districts	Avg % impervious				
Commercial & business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size	Avg % impervious				
1/8 acre (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acre	12	46	65	77	82
USER DEFINED					
Subarea Contributing Area	a per Soil Type (ac)	0	0	0	056
UPSTREAM CONTRIBUTING AREAS	Subarea ID	Acres RCN			
Upstream Contributing Area 1					
Upstream Contributing Area 2					
Upstream Contributing Area 3					
Upstream Contributing Area 4					
	Tota	l Contributing Area	(ac) 0.	.06	
	Weighted Runo	off Curve Number (F	CN)	80	

LOCATION (County): **New Castle** UNIT HYDROGRAPH: STD LIMIT OF DISTURBANCE (LOD) WORKSHEET Step 1 - Subarea LOD Data HSG A HSG B HSG C HSG D 1.1 HSG Area Within LOD (ac) 0.056 1.2 Pre-Developed Woods/Meadow Within LOD (ac) 0.007 1.3 Pre-Developed Impervious Within LOD (ac) 1.4.a Post-Developed Imperviousness Within LOD, Option #1 (ac); OR 1.4.b Post-Developed Imperviousness Within LOD, Option #2 (%) 0% 0% 0% 0% Step 2 - Subarea LOD Runoff Calculations 2.1 RCN per HSG 0.00 0.00 0.00 80.00 0.00 0.00 0.00 1.39 2.2 RPv per HSG (in.) 0.00 0.00 2.3 Target Runoff per HSG (in.) 0.00 1.32 2.4 Cv Weighted Unit Discharge per HSG (cfs/ac) 0.00 0.00 0.00 0.70 2.5 Fv Weighted Unit Discharge per HSG (cfs/ac) 0.00 0.00 0.00 2.13 2.6 Subarea LOD (ac) 0.06 80.00 2.7 Subarea Weighted RCN 2.8 Subarea Weighted RPv (in.) 1.39 2.9 Subarea Weighted Target Runoff (in.) 1.32 Step 3 - Upstream LOD Areas (from previous DURMM Report as applicable) Area 1 Area 2 Area 3 Area 4 3.1 Upstream Subarea ID 3.2 Upstream LOD Area (ac) 3.3 Target Runoff for Upstream Area (in.) 3.4 Adjusted CN after all reductions 3.5 Adjusted RPv (in.) 3.6 Adjusted Cv (in.) 3.7 Adjusted Fv (in.) Step 4 - RPv Calculations for Combined LOD 4.1 Combined LOD (ac) 0.06 4.2 Weighted RCN 80.00 4.3 Weighted RPv (in.) 1.39 4.4 Weighted Target Runoff (in.) 1.32 4.5 Estimated Annual Runoff (in.) 18.32 4.6 Reg'd Runoff Reduction within LOD (in.) 0.06 4.7 Req'd Runoff Reduction within LOD (%) 5% Step 5 - Cv Unit Discharge 5. LOD Allowable Unit Discharge (cfs/ac) 0.70

Step 6 - Fv Unit Discharge

6. LOD Allowable Unit Discharge (cfs/ac)

PROJECT:

DRAINAGE SUBAREA ID:

Example Plan - Commercial Site

Subarea 3

2.13

PROJECT: **DRAINAGE SUBAREA ID:**

Example Plan - Commercial Site

LOCATION (County):

Subarea 3 New Castle STD

UNIT HYDROGRAPH: **OUTSIDE LIMIT OF DISTURBANCE (OLOD)**

WORKSHEET

Step 1 - Site Data

1.1 Total Contributing Area (ac)

1.2 C.A. RCN

1.3 LOD Area (ac)

1.4 LOD RCN

1.5 Outside LOD Area (ac)

1.6 Outside LOD RCN

N/A	
N/A	

Step 2 - Time of Concentration

FLOW TYPE

Sheet

Shallow Concentrated

Open Channel

	2.1	2.2	2.3	2.4	2.5	2.6
	LENGTH	SLOPE	SURFACE	MANNINGS	VELOCITY	TRAVEL
	(feet)	(ft./ft.)	CODE	"n"	(ft./sec.)	TIME (hrs)
ſ					N/A	0.00
ſ					N/A	0.00
Ī					N/A	0.00
ſ	-			N/A		0.00
ſ				N/A	********	0.00
				N/A		0.00
ſ			N/A			0.00
Ī			N/A			0.00
ſ			N/A			0.00
Ī			N/A			0.00
ſ			N/A			0.00

2.7 Time of Concentration (Tc)

0.00 hrs

Sheet Flow Surface Codes

- a Smooth Surface
- b fallow (no residue)
- c cultivated < 20% Res.
- d cultivated > 20% Res.
- e grass range, short

f grass, dense g grass, bermuda

- h woods, light
- j range, natural

Shallow Concentrated Surface Codes

- u unpaved surface p paved surface
- i woods, dense

Step 3 - Peak Discharge

- 3.1 Unit Hydrograph Type
- 3.2 Frequency (yr)
- 3.3 24-HR Rainfall, P (in.)
- 3.4 Initial Abstraction, Ia (in.)
- 3.5 Ia/P ratio
- 3.6 Unit Peak Discharge, qu (csm/in)
- 3.7 Runoff (in.)
- 3.8 Peak Discharge, qp (cfs)
- 3.9 Equiv. unit peak discharge (cfs/ac)

ST	D.
10	100
4.8	8
#N/A	#N/A
#N/A	#N/A
#N/A	#N/A
#VALUE!	#VALUE!
#VALUE!	#VALUEI
0.00	0.00

											11.2
PROJECT:		Example Plan - Commercial Site									
DOCATION (COUNTY): DESCRIBE BROTECTION EVENT PRAIL MODECUEFT											-
NESCONCE PROTECTION CAENT (NEW) WOMANIET		8MP1		BMP 2		BMP 3		BMP 4		BMPS	_
	Type	Impervious	Type	1	Type		Туре		Type	1	
ep 1 - Calculate Initial RPv 1.1 Total contributing area to BMP (ac)	Data 0.06		Data 0.06		Data 0.06		Data 0.06		Data 0.06		
1.2 Reserved 1,3 Initial RCN 1.4 RPv for Contributing Area (in)	80.00										
1.5 Req'd RPV Reduction for Contributing Area (in.) 1.6 Req'd RPV Reduction for Contributing Area (%) 1.7 RPv allowable discharge rate (cfs)	0.06 5% 0.00										
ep 2 - Adjust for Retention Reduction											e 15
2.1 Storage volume (cu. ft.) 2.2 Retention reduction allowance (%) 2.3 Retention reduction volume (ac-ft) 2.4 Retention reduction volume (in.) 2.5 Runoff volume after retention reduction (in.)	0.00		N/A N/A N/A		N/A N/A N/A		N/A N/A N/A		N/A N/A N/A		
2.6 Adjusted CN*	80.00		N/A		N/A		N/A		N/A		
ep 3 - Adjust for Annual Runoff Reduction 3.1 Annual CN (ACN) 3.2 Annual runoff (in.)	80.00		N/A N/A		N/A N/A		N/A N/A		N/A N/A		
3.3 Proportion A/B suits in BMP footprint (%) 3.4 Annual runnff reduction allowance (%) 3.5 Annual runnff after reduction (in)	10%		N/A N/A		N/A N/A		N/A N/A		N/A N/A		
3,6 Adjusted ACN 3,7 Annual Runoff Reduction Allowance for RPv (in.)	0.12		N/A N/A		N/A N/A		N/A N/A		N/A N/A		
ep 4 - Calculate RPv with BMP Reductions 4.1 RPv runoff volume after all reductions (in.)	1.27		N/A		N/A		N/A		N/A		
4,2 Total RPv runoff reduction (in.) 4,3 Total RPv runoff reduction (%)	9%		N/A N/A		N/A N/A		N/A N/A		N/A N/A		
4,4 Adjusted CN after all reductions 4,5 Equivalent TR-55 RCN for H&H modeling 4,6 Req'd reduction met?	83.93 OK		N/A N/A		N/A N/A		N/A N/A		N/A N/A		
ep 5 - Determine Runoff Reduction Offset											p 14
5.1 Runoff Reduction Shortfall (in.) 5.2 Runoff Reduction Shortfall (cu.ft./ac) 5.3 Total Offset Volume (cu.ft.)	N/A N/A N/A		N/A N/A		N/A N/A	14	N/A N/A N/A		N/A N/A N/A	A 17 - 18	

Step 4 - Calculate RPv with BMP Reductions

Step 3 - Adjust for Annual Runoff Reduction

Step 1 - Calculate Initial RPv

Step 2 - Adjust for Retention Reduction

PROJECT	PROJECT: Example Plan - Commercial Site	an - Comme	rcial Site																		
DRAINAGE SUBAREA ID: Subarea 3	Subarea 3																				T
LANDUSE TYPE: Commercial	Commercia	7																			
TMDL WATERSHED: Christina River	Christina Ri	iver																			
TOTAL MAXIMUM DAILY LOAD (TMDL) WORKSHEET																					
		BN	BMP 1			BN	BMP 2				BMP 3				BMP 4				BMP 5		Γ
	Туре:	Imperv	Impervious disconnection	nection	Type:		:4:		Type:		ı		Туре:	725	3		Type:	789	1		
Step 1 - Calculate Annual Runoff Volume	Data	TN	TP	TSS	Data	TN	d1	TSS	Data	TN	TP	155	Data	TN	TP	TSS	Data	NI D	179		LSS
1.1 Total contributing area to BMP (ac) 1.2 Initial RCN 1.3 Annual runoff volume (in.) 1.4 Annual runoff volume (liters)	0.06 80 18.32 1.05E+05								15-1X)				4	4.7	
Step 2 - Calculate Annual Pollutant Load																					
2.1 EMC (mg/L)		2.00	0.27	09												y 11			100		
2.4 Stormwater Load (lb/ac/yr)	Į.	8.30				7.47	1.01	224		#N/A	#N/A	#N/A	T	#N/A	A/N#	A/N#	4	#N/A	A #N/A	-	#N/A
Step 3 - Adjust for Runoff Reduction																					
3.1 BMP Runoff Reduction (%)	10%				N/A				N/A		181		N/A				N/A		II.		Γ
3.2 BMP Removal Efficiency (%)		10%				#N/A	#N/A	#N/A		#N/A	#N/A	#N/A	1	#N/A	A/N# K	A/N# A	4	#N/A	A/N# K		#N/A
3,3 Adjusted load (lb/ac/γr)		7.47	101	224		#N/A	#N/A	#N/A	8	#N/A	#N/A	#N/A		#N/A	A/N# A	A/N# A	4	#N/A	A/N#	Н	#N/A
Step 4 - Calculate Pollutant Reduction			-																		
4.1 TMDL (Ib/ac/yr)		5.70		N/A			0.35 N/A	N/A		5.70		0.35 N/A	I	5	0	35 N/A		2	5.70 0	0.35 N/A	
4.2 Reduction met?		No	No	ÖK		A/N#	#N/A	ŏ	1	#N/A	#N/A	ŏ		#N/A	A/N# Y	Y OK		#N/A	A WN/A		OK
Step 5 - Determine TMDL Offset																					
5.1 TMDL Shortfall (lb/ac/yr)		1.17	0.66	0		#N/A	#N/A	0		#N/A	#N/A		0	#N/A	A/N# A	-	0	#N/A	A #N/A	-	0
5.2 TMDL Shortfall (%)		24%	95%	950		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	A/N# X	A #N/A	d	#N/A	A/N# A		#N/A
5.3 Residual RPv Volume (in)		1.27	1.27	1.27			N/A	N/A		N/A	N/A	N/A		N/A	N/A	N/A		N/A	N/A	A/N	
5.4 Req'd Additional RR to meet TMDL (in)*		0.30		0.00		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	A #N/A	A #N/A	ď	#N/A	A #N/A		#N/A
5.5 Req'd Additional RR to meet TMDL (cu.ft./ac)		1093	m	0		#N/A	#N/A	#N/A		#N/A	#N/A	/N#		#N/A	A/NB K	A/N#	8	#N/A	A #N/A	-	#N/A
5.6 Total Offset Volume (cu.ft.)		19	168	0		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	A #N/A	A HN/A	47	#N/A	A HN/A	H	#N/A

	- 1	Man Commonweal City								
TACOLCI.	┸	cyample right - Colline cial site								
DRAINAGE SUBAREA ID:	Subarea 3									
LOCATION (County):	New Castle	e								
CONVEYANCE EVENT (Cv) WORKSHEET										
		BMP 1		BMP 2		BMP 3		BMP 4		8MP S
	Type:	Impervious	Type:	(8	Type:	ï	Type:	1	Type:	()
Step 1 - Calculate Initial Cv	Data		Data		Data		Data		Data	
 1.1 Total contributing area to BMP (ac) 	90.0		90.0		90.0		90.0		90.0	
1.2 Initial RCN	80.00									
1.4 Cv runoff volume (in.)	27.2		Ĭ						le l	
1.5 LOD allowable unit discharge (cfs/ac)	0.70		V.							
1.6 Equiv. unit discharge outside LOD (cfs/ac)	0.00									
 1.7 Cv allowable discharge rate (cfs) 	0.04									
Step 2 - Adiust for Retention Reduction										
2.1 Storage volume (cu. ft.)	00:00		0.00		0.00		0.00		00.0	
2.2 Storage volume (ac-ft)	0.00		00.0		0.00		0.00		00:00	
2.3 Storage volume (in.)	0.00		00'0		00:00		00:0		0:00	
2.4 Runoff volume after reduction (in.)	2.72		2.66		#N/A		#N/A		#N/A	
2,5 CN*	80.00		79.39		#N/A		#N/A		#N/A	
Step 3 - Adiust for Annual Runoff Reduction										
3.1 Runoff reduction allowance (%)	2%		#N/A		#N/A		#N/A		#N/A	
3.2 Annual runoff after reduction (in.)	2.66		#N/A		#N/A		#N/A		#N/A	
3,3 Adjusted ACN	79.39	10	#N/A		#N/W		#N/A		#N/A	
3,4 Event-based runoff reduction (in.)	0.05		#N/A		#N/A		#N/A		#N/A	
Step 4 - Calculate Cv with BMP Reductions										
4.1 Cv runoff volume after all reductions (in.)	2.66		#N/A		#N/A		#N/A		#N/A	
4.2 Total Cv runoff reduction (%)	7%		#N/A		#N/A		#N/A		#N/A	
4.3 Adjusted RCN for H&H modeling	79.39		#N/A		#N/A		#N/A		#N/A	

PROJECT:		Example Plan - Commercial Site									Г
DRAINAGE SUBAREA ID:	Subarea 3										
LOCATION (County):	New Castle	e									
FLOODING EVENT (Fv) WORKSHEET											
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5	
		Impervious									T
	Type:	disconnection	Type:	ı	Type:	•	Type:	1	Type:	(1	- }}
Step 1 - Calculate Initial Fv	Data		Data		Data		Data		Data		1
1.1 Total contributing area to BMP (ac)	90.0		90'0		90'0		90.0		90:0		-
1.2 Initial RCN	80.00							2 2 2			
1,3 100-YR Rainfall (in.)	8.0										
1.4 Fv runoff volume (in.)	5.63										
1.5 LOD allowable unit discharge (cfs/ac)	2.13										
1.6 Equiv unit discharge outside LOD (cfs/ac)	00.0										Į.
1.7 Fv allowable discharge rate (cfs)	0.12										
											1
Step 2 - Adjust for Retention Reduction											
2,1 Storage volume (cu. ft.)	00:0		00:00		00:00		0.00		0000		Γ
2,2 Storage volume (ac-ft)	00.0		0.00		0.00		00:00		00'00		
2,3 Storage volume (in.)	00:00		0.00		00.00		00:00		0.00		ı
2.4 Runoff volume after reduction (in.)	5.63		5,63		#N/A		#N/A		#N/A		
2.5 CN*	80.00		80.00		#N/A		#N/A		#N/A		
											ı
step 5 - Aujust Joi Aminui Runoll Reduction											ſ
3.1 Runoff reduction allowance (%)	%0		W/N#		#N/A		#N/A		#N/A		
3.2 Annual runoff after reduction (in.)	5,63		#N/A		#N/A		#N/A		#N/A		
3.3 Adjusted ACN	80.00		#N/A		#N/A		#N/A		#N/A		
3.4 Event-based runoff reduction (in.)	00.00		#N/A		#N/A		#N/A		#N/A		
											ı
Step 4 - Calculate Fv with BMP Reductions											
4.1 Fv runoff volume after all reductions (in.)	5.63		#N/A		#N/A		#N/A		#N/A		10
4.2 Total Fv runoff reduction (%)	%0		#N/A		#N/A		#N/A		#N/A		
4.3 Adjusted RCN for H&H modeling	80.00		#N/A		#N/A		#W/W		#W/A		1

PROJECT:

DRAINAGE SUBAREA ID:

Subarea 3

Christina River

Example Plan - Commercial Site

TMDL Watershed:

DURMM OUTPUT WORKSHEET

DOMINING OUTPUT WORKS	NEET				
Site Data				DURMM	v2.beta.110802
Contributing Area to BMPs (ac.)	0.056				
C.A. RCN	80				
Subarea LOD (ac.)	0.056				
Upstream Subarea ID	0	0	0	0	
Upstream Subarea LOD (ac.)	0.00	0.00	0.00	0.00	
Combined LOD with Upstream Areas (ac.)	0.06				
Combined RCN with Upstream Areas (ac.)	80.00				
TMDL-TN (lb/ac/yr)	5.70				
TMDL-TP (lb/ac/yr)	0.35				
TMDL-TSS (lb/ac/yr)	N/A				
BMP Selection	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
	Impervious disconnection			55:	(M)

0.12 N/A

9% N/A

N/A

ОК

Resource Protection Event (RPV)

Req'd RPv Reduction for Contributing Area (in.)

Req'd RPv Reduction for Contributing Area (%)

C.A. allowable discharge rate (cfs)

Unmanaged Polluant load, TN (lbs/ac/yr)

Unmanaged Polluant load, TP (lbs/ac/yr)

Unmanaged Polluant load, TSS (lbs/ac/yr)

BMP Runoff Reduction Performance

RPv runoff volume after all reductions (in.)

Total RPv runoff reduction (in.)

Total RPv runoff reduction (%)

Reg'd runoff reduction met?

BMP TMDL Performance

Adjusted pollutant load, TN (lb/ac/yr)

Adjusted pollutant load, TP (lb/ac/yr)

Adjusted pollutant load, TSS (lb/ac/yr)

Offsets Requirements

RPv Offset (cu. ft.)

0.06 5% 0.00 8.30 1.12 249 BMP 1 BMP 2 BMP 3 BMP 4	
0.06 5% 0.00 8.30 1.12	\neg
0.06 5% 0.00 8.30	
0.06 5% 0.00	
0.06	
0.06	
1.00	
1.39	

N/A

N/A

7.47	#N/A	#N/A	#N/A	#N/A
1.01	#N/A	#N/A	#N/A	#N/A
224	#N/A	#N/A	#N/A	#N/A

N/A

N/A

N/A

N/A

W	N/A	N/A	N/A	N/A	N/A
---	-----	-----	-----	-----	-----

Conveyance Event (Cv)

Cv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Cv runoff volume after all reductions (in.)

2.72				
0.04				
BMP 1	BMP 2	BMP 3	BMP 4	BMP 5

Flooding Event (Fv)

Fv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Fv runoff volume after all reductions (in.)

5.63				
0.12				
BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
5.63	#N/A	#N/A	#N/A	#N/A

Adjusted Subarea Data for Downstream DURMM Modeling

Contributing Area (ac.)	0.06
C.A. RCN	80
LOD Area (ac.)	0.06
Weighted Target Runoff (in.)	1.32
Adjusted CN after all reductions	77.63

BMP 5

N/A

N/A

N/A

N/A

Adjusted RPv (in.) Adjusted Cv (in.) Adjusted Fv (in.)

Adjusted Subarea Data for H&H Modeling

Resource Protection Event, RPv Conveyance Event, Cv Flooding Event, Fv

Rain (in.)	RCN
2.7	N/A
4.8	79.39
8	80.00

PROJECT: Example Plan - Commercial site DRAINAGE SUBAREA ID: Subarea 4 LOCATION (County): New Castle

UNIT HYDROGRAPH: STD

CONTRIBUTING AREA RUNOFF CURVE NUMBER (C.A.

	RCN) WORKSHE	t I		Curv	e Numb	ers for	nyarolo	gic Soii	Type	
Cover Type	Treatment	Hydrologic	А		В		C		D	
		Condition	Acres	RCN	Acres	RCN	Acres	RCN	Acres	RCN
CULTIVATED A	GRICULTURAL LANDS									
allow	Bare soil			77		86		91		94
	Crop residue (CR)	poor		76		85		90		93
	Crop residue (CR)	good		74		83		88		90
Row Crops	Straight row (SR)	poor		72		81		88		91
NOW Grops	Straight row (SR)	good		67		78		85		89
	SR + Crop residue	=		71		80	-	87		90
	<u>.</u>	poor		64		75		82		85
	SR + Crop residue	good		70		79		84		88
	Contoured (C)	poor	-	65		75	-	82		86
	Contoured (C)	good								
	C + Crop residue	poor		69		78		83		87
	C + Crop residue	good		64		74		81		85
	Cont & terraced(C&T)	poor		66		74		80		82
	Cont & terraced(C&T)	good		62		71		78		81
	C&T + Crop residue	poor		65		73		79		81
	C&T + Crop residue	good		61		70		77		80
Small Grain	Straight row (SR)	poor		65	_	76		84		88
	Straight row (SR)	good		63		75		83		87
	SR + Crop residue	poor		64		75		83		86
	SR + Crop residue	good		60		72		80		84
	Contoured (C)	poor		63		74		82		85
	Contoured (C)	good		61		73		81		84
	C + Crop residue	poor		62		73		81		84
	C + Crop residue	good		60		72		80		83
	Cont & terraced(C&T)	poor		61		72		79		82
	Cont & terraces(C&T)	good		59		70		78		81
	C&T + Crop residue	poor		60		71		78		81
	C&T + Crop residue	good	Ti.	58		69		77		80
Close-seeded	Straight row	poor	7	66		77		85		89
or broadcast	Straight row	good		58		72		81		85
legumes or	Contoured	poor		64		75		83		85
-	Contoured	· ·		55		69	-	78		83
rotation	Cont & terraced	good		63		73	-	80		83
meadow		poor		51		67		76		80
	Cont & terraced	good		31		07		10		00
OTHER ACRICI	ILTURAL LANDS									
OTTIER AGRICE				00 1		T 70				1 00
	Pasture, grassland or range	poor		68		79		86		89
		fair		49		69		79		84
		good	1	39		61		74		80
	Meadow -cont, grass (non grazed)	****		30		58		71		78
	Brush - brush, weed, grass mix	poor		48		67		77		83
		fair		35		56		70		77
		good		30		48		65		73
	Woods - grass combination	poor		57		73		82		86
		fair		43		65		76		82
		good		32		58		72		79
	Woods	poor	+ = -	45		66		77		83
		fair		36		60		73		79
		good		30		55		70		77
	Farmsteads	****		59		74		82		86
	PED URBAN AREAS (Veg Established)									
Open space (Lav	vns,parks etc.)					,	,			
	Poor condition; grass cover < 50%			68		79		86		89
	Fair condition; grass cover 50% to 75 %			49		69		79		84
	Good condition; grass cover > 75%			39	0.001	61		74	0.044	80
Impervious Areas										

Streets and roads		1			ĺ	
Paved; curbs and storm sewers		98	98	98	9	8
Paved; open ditches (w/right-of-way)		83	89	92	9	3
Gravel (w/ right-of-way)		76	85	89	9	1
Dirt (w/ right-of-way)		72	82	87		9
Urban Districts	Avg % impervious					_
Commercial & business	85	89	92	94	9	5
Industrial	72	81	88	91	9	3
Residential districts by average lot size	Avg % impervious					_
1/8 acre (town houses)	65	77	85	90	9	2
1/4 acre	38	61	75	83	8	7
1/3 acre	30	57	72	81	8	6
1/2 acre	25	54	70	80	8	5
1 acre	20	51	68	79	8	4
2 acre	12	46	65	77	8	2
USER DEFINED						
Subarea Contributing Area p	er Soil Type (ac)	0 0.	003	0	0.044	_
UPSTREAM CONTRIBUTING AREAS	Subarea ID	Acres RCN				
Upstream Contributing Area 1						
Upstream Contributing Area 2						
Upstream Contributing Area 3						
Upstream Contributing Area 4						
	Tota	I Contributing Are	a (ac)	0.05		
	Weighted Rune	off Curve Number (RCN)	80		

DRAINAGE SUBAREA ID: Subarea 4 LOCATION (County): **New Castle** UNIT HYDROGRAPH: STD LIMIT OF DISTURBANCE (LOD) WORKSHEET Step 1 - Subarea LOD Data HSG A HSG B HSG C HSG D 1.1 HSG Area Within LOD (ac) 0.001 0.046 1.2 Pre-Developed Woods/Meadow Within LOD (ac) 1.3 Pre-Developed Impervious Within LOD (ac) 1.4.a Post-Developed Imperviousness Within LOD, Option #1 (ac); OR 0.002 1.4.b Post-Developed Imperviousness Within LOD, Option #2 (%) 0% 0% 0% 4% Step 2 - Subarea LOD Runoff Calculations 2.1 RCN per HSG 0.00 61.00 80.78 0.00 2.2 RPv per HSG (in.) 0.00 0.58 0.00 1.43 2.3 Target Runoff per HSG (in.) 0.00 0.58 0.00 1.39 2.4 Cv Weighted Unit Discharge per HSG (cfs/ac) 0.00 0.75 0.00 0.75 2.5 Fv Weighted Unit Discharge per HSG (cfs/ac) 0.00 2.25 0.00 2.25 2.6 Subarea LOD (ac) 0.05 2.7 Subarea Weighted RCN 80.36 2.8 Subarea Weighted RPv (in.) 1.41 2.9 Subarea Weighted Target Runoff (in.) 1.37 Step 3 - Upstream LOD Areas (from previous DURMM Report as applicable) Area 1 Area 2 Area 3 Area 4 3.1 Upstream Subarea ID 3.2 Upstream LOD Area (ac) 3.3 Target Runoff for Upstream Area (in.) 3.4 Adjusted CN after all reductions 3.5 Adjusted RPv (in.) 3.6 Adjusted Cv (in.) 3.7 Adjusted Fv (in.) Step 4 - RPv Calculations for Combined LOD 4.1 Combined LOD (ac) 0.05 4.2 Weighted RCN 80.36 4.3 Weighted RPv (in.) 1.41 4.4 Weighted Target Runoff (in.) 1.37 18.61 4.5 Estimated Annual Runoff (in.) 4.6 Req'd Runoff Reduction within LOD (in.) 0.04 4.7 Req'd Runoff Reduction within LOD (%) Step 5 - Cv Unit Discharge

5. LOD Allowable Unit Discharge (cfs/ac)

6. LOD Allowable Unit Discharge (cfs/ac)

Step 6 - Fv Unit Discharge

PROJECT:

Example Plan - Commercial site

0.75

2.25

PROJECT: Example Plan - Commercial site

DRAINAGE SUBAREA ID: Subarea 4

LOCATION (County): New Castle

UNIT HYDROGRAPH: STD

OUTSIDE LIMIT OF DISTURBANCE (OLOD)

WORKSHEET

Step 1 - Site Data

- 1.1 Total Contributing Area (ac)
- 1.2 C.A. RCN
- 1.3 LOD Area (ac)
- 1.4 LOD RCN
- 1.5 Outside LOD Area (ac)
- 1.6 Outside LOD RCN

N/A
N/A

Step 2 - Time of Concentration	2.1	2.2	2.3	2.4	2.5	2.6
	LENGTH	SLOPE	SURFACE	MANNINGS	VELOCITY	TRAVEL
LOW TYPE	(feet)	(ft./ft.)	CODE	"n"	(ft./sec.)	TIME (hrs)
Sheet				*********	N/A	0.00
					N/A	0.00
					N/A	0.00
Shallow Concentrated				N/A	- nacestalises	0.00
		-		N/A		0.00
				N/A		0.00
Open Channel			N/A			0.00
			N/A			0.00
			N/A			0.00
			N/A			0.00
			N/A			0.00

2.7 Time of Concentration (Tc)

0.00 hrs

Sheet Flow Surface Codes

- a Smooth Surface
- b fallow (no residue)
- c cultivated < 20% Res.
- d cultivated > 20% Res.
- e grass range, short

f grass, dense

- g grass, bermuda h woods, light
- i woods, dense
- j range, natural

Shallow Concentrated Surj

u unpaved surface p paved surface

Step 3 - Peak Discharge

- 3.1 Unit Hydrograph Type
- 3.2 Frequency (yr)
- 3.3 24-HR Rainfall, P (in.)
- 3.4 Initial Abstraction, la (in.)
- 3.5 la/P ratio
- 3.6 Unit Peak Discharge, qu (csm/in)
- 3.7 Runoff (in.)
- 3.8 Peak Discharge, qp (cfs)
- 3.9 Equiv. unit peak discharge (cfs/ac)

ST	D
10	100
4.8	8
#N/A	#N/A
#N/A	#N/A
#N/A	#N/A
#VALUE!	#VALUE!
#VALUE!	#VALUE!
0.00	0.00

Proposed	Decem	ber 2015
----------	-------	----------

PROJECT:		Example Plan - Commercial site									
DRAINAGE SUBAREA ID:	Ш										
LOCATION (County): RESOURCE PROTECTION EVENT (RPv) WORKSHEET	New Castle										
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5	Г
	Type	Impervious	Туре		Туре	ı	Туре		Туре		
Step 1 - Calculate Initial RPv 1.1 Total contributing area to BMP (ac) 1.2 Resemed	Data 0.05		Data 0.05		Data 0.05		Data 0.05		Data 0.05		
1,3 initial RCN 1,4 RPV for Contributing Area (in.) 1,5 Req'd RPV Reduction for Contributing Area (in.) 1,6 Req'd RPV Reduction for Contributing Area (%) 1,7 RPV allowable discharge rate (cfs)	80.36 1.41 0.04 3% 0.00										
Step 2 - Adjust for Retention Reduction											1
2,1 Storage volume (cu. ft.) 2,2 Retention reduction allowance (%)	%0		N/A		N/A		N/A		N/A		
2.3 Retention reduction volume (ac-ft)2.4 Retention reduction volume (in.)	00:00		N/A N/A		N/A N/A		N/A N/A		N/A N/A		
 Runoff volume after retention reduction (in.) Adjusted CN* 	1.41		N/A N/A		N/A N/A		N/A N/A		N/A N/A		18
Step 3 - Adjust for Annual Runoff Reduction											
3.1 Annual CN (ACN) 3.2 Annual runoff (in.)	80.36		N/A N/A		N/A N/A		N/A N/A		N/A N/A		
3.3 Proportion A/B soils in BMP footprint (%) 3.4 Annual runoff reduction allowance (%)	10%		N/A		N/A		N/A		N/A		
3.5 Annual funoff after reduction (in.) 3.6 Adjusted Adjusted And 3.5 Annual Brinoff Reduction Allowance for PBv (in.)	77.98		N/A A/A		N/A N/A		N/A N/A		N/A N/A		
	***				O/A		C/N		0/6		1
Step 4 - Larguiste Arv with BMP Reductions 4.1 RPv runoff volume after all reductions (in.)	1.29		N/A		N/A		N/A		N/A		
4,2 Total RPv runoff reduction (in.) 4,3 Total RPv runoff reduction (%)	9%		N/A A/A		N/A N/A		N/A N/A		N/A N/A		
4.4 Adjusted CN after all reductions	77.98		N/A		N/A		N/A		N/A		
4.5 Equivalent IR-55 RCN for fixel modeling 4.6 Reg'd reduction met?	OK OK		N/A		N/A		N/A		N/A		
Step 5 - Determine Runoff Reduction Offset											i
5.1 Runoff Reduction Shortfall (in.) 5.2 Runoff Reduction Shortfall (cu.ft./ac) 5.3 Tokal Office Values (in. ft.)	N/A N/A		N/A N/A	1000	N/A N/A		N/A N/A		N/A N/A		
5.3 Total Onset Volume (cu.rr.)	W/M		N/N		W/W		N/M		salas I		٦

PROJECTS	PROJECT: Example Plan - Commercial site	lan - Comn	nercial site																	
DRAINAGE SUBAREA ID: Subarea 4	Subarea 4	1																		
TMDL WATERSHED: Christina River	Christina F	diver	h																	I
TOTAL MAXIMUM DAILY LOAD (TMDL) WORKSHEET																				
		9	BMP 1			BMP 2	P 2			8	BMP 3		L	8	BMP 4			8MP 5	s	Ī
	Type:	Impe	Impervious disconnection	nnection	Type:		3		Type:		1		Type:				Type:		1	
Step 1 - Calculate Annual Runoff Volume	Data	IN	TP	T55	Data	TN	TP	TSS	Data	TN	TP	TSS	Data	TN	TP	155	Data	TN	TP	TSS
1,1 Total contributing area to BMP (ac) 1,2 Initial RCN 1,3 Annual runoff volume (in.) 1,4 Annual runoff volume (liters)	0.05 80 18.61 8,99E+04												M. T							
Step 2 - Calculate Annual Pollutant Load																				
2.1 EMC (mg/L) 2.2 Load (mg/yr)	-	2.00 1.80E+05	0 0.27 5 2.43E+04	7 60 4 5.39E+06					3.4	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						A.				1
2.4 Stormwater Load (lb/ac/yr)		8.44	1.14	4 253		7.59	1.02	228	N.	#N/A	#N/A	#N/A		#N/A	#N/A	#N/A	= 8	#N/A	#N/A	#N/A
Step 3 - Adjust for Runoff Reduction 3.1 BMP Runoff Reduction (%)	10%				N/A				N/A				MA				4/4			
3,2 BMP Removal Efficiency (%)	19	10%	10%			#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		HN/A	#N/A	#N/A	W/A1	#N/A	#N/A	#N/A
3,3 Adjusted load (lb/ac/yr)		7.59	9] 1.02	2 228		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A
Step 4 - Calculate Pollutant Reduction																				
4.1 TMDL (lb/ac/yr)		5.70		0.35 N/A		5.70	0.35 N/A	N/A		5.70	0.35	0.35 N/A		5.70		0.35 N/A		5.70	0.35 N/A	1/A
4.2 Reduction met?		No	No	ŏ		N/A	#N/A	οK		#N/A	#N/A	ŏ		#N/A	#N/A	УО		#N/A	#N/A	OK
Step 5 - Determine TMDL Offset																				
5.1 TMDL Shortfall (lb/ac/yr)		1.89	9 0.67	2 0		#N/A	#N/A	0		#N/A	#N/A		0	#N/A	#N/A	0		#N/A	#N/A	0
5.2 TMDL Shortfall (%)		25%	%99 9	%0 9		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	A/N#	#N/A
5,3 Residual RPv Volume (in)		1.29	1.29	1.29			N/A	N/A		N/A	N/A	N/A		N/A	N/A.	N/A		N/A	N/A I	N/A
5,4 Req'd Additional RR to meet TMDL (in)*		0.32	J	0.00		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A
5,5 Req'd Additional RR to meet TMDL (cu.ft./ac)		1163		0		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A
5.6 Total Offset Volume (cu.ft.)		55	144	0 0		BN/A	BN/A	BN/A		#N/A	#N/A	WN/A		BN/A	#N/A	#N/A		#N/A	BN/A	KN/A

PROJECT:	1 1	Example Plan - Commercial site								
DRAINAGE SUBAREA ID:	Subarea 4									
LOCATION (County):	: New Castle	0								
CONVEYANCE EVENT (CV) WORKSHEET										
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5
	Tunor	Impervious	Tune	35	Tomes	Ri	Tomor		1	
Step 1 - Calculate Initial Cv	Data		Data		Data		Data		Data	
1.1 Total contributing area to BMP (ac)	0.05		0.05		0.05		0.05		0.05	
1.2 Initial RCN	80.36									
1.3 10-YR Rainfall (in.)	80,						1			To the second
1.4 Cv runoff volume (in.)	2.75									
1.5 LOD allowable unit discharge (cfs/ac)	0.75								· k	
1.b Equiv. unit discharge outside LOD (cfs/ac)	0.00							7		
ca anomapic discussed (cis)	100									
Step 2 - Adjust for Retention Reduction										
2.1 Storage volume (cu. ft.)	00'0		0.00		00:00		0.00		0.00	
2.2 Storage volume (ac-ft)	0.00		0.00		0.00		0.00		0.00	
2.3 Storage volume (in.)	0.00		0.00		0.00		00:0		0.00	
2.4 Runoff volume after reduction (in.)	2.75		2.70		#N/A		#N/A		#N/A	
2.5 CN*	80.36		79.75		#N/A		#N/A		#N/A	
Step 3 - Adjust for Annual Runoff Reduction										
3.1 Runoff reduction allowance (%)	2%		#N/A		#N/A	7 7 7 7	#N/A		#N/A	
3,2 Annual runoff after reduction (in.)	2.70		#N/A		#N/A		#N/A		#N/A	
3.3 Adjusted ACN	79.75		#N/A		#N/A		#N/A		#N/A	
5.4 Event-based runon reduction (in.)	0.00		#WA		#N/A		HN/A		#N/A	
Step 4 - Calculate Cv with BMP Reductions										
4.1 Cv runoff volume after all reductions (in.)	2.70		#N/A		#N/A	X .	#N/A	X I I I I	#N/A	
4.2 Total Cv runoff reduction (%)	2%		#N/A		#N/A		#N/A		#N/A	
4.3 Adjusted RCN for H&H modeling	79.75		#N/A		#N/A	- N	#N/A		#N/A	

PROJECT		Example Plan - Commercial cite									Г
DRAINAGE SUBAREA ID:	1100		ł				ľ				-
LOCATION (County):	Ш	a									
FLOODING EVENT (Fv) WORKSHEET											ì
		BMP 1		BMP 2		BMP 3		BMP 4		8MP 5	
	Tvne	Impervious	Tvne	9	Tvne	- 1	Tvnp		Type:	3	
	, Abe.	disconnection	, Abre.		, Aber						Т
Step 1 - Calculate Initial Fv 11 Total contributing area to RMP (ac)	Data	2 11	Data		Data		Data		Data		
1.2 Initial RCN	80.36										
1,3 100-YR Rainfall (in.)	8.0						4				
1.4 Fy runoff volume (in.)	2.67										
1.5 LOD allowable unit discharge (cfs/ac)	2.25										
1.6 Equiv unit discharge outside IOD (cfs/sc)	000							1			
1.7 Fy allowable discharge rate (cfs)	0.11										
											1
Step 2 - Adjust for Retention Reduction											
2,1 Storage volume (cu. ft.)	0.00		00'0		00.00		0.00		0.00		
2,2 Storage volume (ac-ft)	0.00		00:00		00.0		0.00		0.00		
2,3 Storage volume (in.)	0.00		0.00		0.00		0.00		0.00		
2.4 Runoff volume after reduction (in.)	2.67		5.67	1	#N/A		#N/A		#N/A		
2,5 CN*	80.36		80.36		#N/A		#N/A		#N/A		7
Step 3 - Adjust for Annual Runoff Reduction											
3.1 Runoff reduction allowance (%)	%0		#N/A		#N/A		#N/A		#N/A		
3.2 Annual runoff after reduction (in.)	5.67		#N/A		#N/A		#N/A		#N/A		
3.3 Adjusted ACN	80.36		#N/A		#N/A		#N/A		#N/A		
3,4 Event-based runoff reduction (in.)	0.00		#N/A		#N/A		#N/A		#N/A		- 11
											î
Step 4 - Calculate Fv with BMP Reductions											r
4.1 Fy runoff volume after all reductions (in.)	2.67		#N/A		#N/A		#N/A		#N/A		
4.2 Total Fv runoff reduction (%)	%0		#N/A		#N/A		#N/A		#N/A		

PROJECT: Example Plan - Commercial site DRAINAGE SUBAREA ID: Subarea 4 TMDL Watershed: Christina River

DURMM OUTPUT WORKSHEE	T.				
Site Data				DURMM	v2.beta.110802
Contributing Area to BMPs (ac.)	0.047	ľ			
C.A. RCN	80				
Subarea LOD (ac.)	0.047				
Upstream Subarea ID	0	C	0	(
Upstream Subarea LOD (ac.)	0.00	0.00	0.00	0.00	
Combined LOD with Upstream Areas (ac.)	0.05				-
Combined RCN with Upstream Areas (ac.)	80.36				
TMDL-TN (lb/ac/yr)	5.70				
TMDL-TP (lb/ac/yr)	0.35				
TMDL-TSS (lb/ac/yr)	N/A				
BMP Selection	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
	lana antique				1
	Impervious disconnection	844	·	:===	**
	disconnection				
Resource Protection Event (RPV)					
RPv for Contributing Area (in.)	1.41	l			
Req'd RPv Reduction for Contributing Area (in.)	0.04				
Req'd RPv Reduction for Contributing Area (%)	3%				
C.A. allowable discharge rate (cfs)	0.00				
Unmanaged Polluant load, TN (lbs/ac/yr)	8.44				
Unmanaged Polluant load, TP (lbs/ac/yr)	1.14				
Unmanaged Polluant load, TSS (lbs/ac/yr)	253	•			
BMP Runoff Reduction Performance	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
BMP Runoff Reduction Performance	BMP 1				
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.)	BMP 1 1.29	N/A	N/A	N/A	N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.)	BMP 1 1.29 0.12	N/A N/A	N/A N/A	N/A N/A	N/A N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%)	BMP 1 1.29 0.12 9%	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.)	BMP 1 1.29 0.12	N/A N/A	N/A N/A	N/A N/A	N/A N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance	1.29 0.12 9% OK	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr)	9% OK	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr)	BMP 1 1.29 0.12 9% OK 7.59	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A *N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr)	9% OK	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A	N/A N/A N/A N/A #N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements	9% OK 7.59 1.02 228	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A **N/A #*N/A #*N/A	N/A N/A N/A N/A N/A #N/A #N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr)	BMP 1 1.29 0.12 9% OK 7.59	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A **N/A #*N/A #*N/A	N/A N/A N/A N/A N/A #N/A #N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.)	9% OK 7.59 1.02 228	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A **N/A #*N/A #*N/A	N/A N/A N/A N/A N/A #N/A #N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.)	9% OK 7.59 1.02 228	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A **N/A #*N/A #*N/A	N/A N/A N/A N/A N/A #N/A #N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.)	9% OK 7.59 1.02 228	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A **N/A #*N/A #*N/A	N/A N/A N/A N/A N/A #N/A #N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs)	9% OK 7.59 1.02 228 N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance	1.29 0.12 9% OK 7.59 1.02 228 N/A 2.75 0.04 BMP 1	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A MN/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A *N/A #N/A #N/A *N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs)	9% OK 7.59 1.02 228 N/A	N/A N/A N/A N/A N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A N/A #N/A #N/A N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.)	1.29 0.12 9% OK 7.59 1.02 228 N/A 2.75 0.04 BMP 1	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A MN/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A *N/A #N/A #N/A *N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.)	BMP 1 1.29 0.12 9% OK 7.59 1.02 228 N/A 2.75 0.04 BMP 1 2.70	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A MN/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A *N/A #N/A #N/A *N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.) Flooding Event (Fv) Fv runoff volume (in.)	1.29 0.12 9% OK 7.59 1.02 228 N/A 2.75 0.04 BMP 1 2.70	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A MN/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A *N/A #N/A #N/A *N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.) Flooding Event (Fv) Fv runoff volume (in.) Stds-based allowable discharge (cfs)	1.29 0.12 9% OK 7.59 1.02 228 N/A 2.75 0.04 BMP 1 2.70	N/A N/A N/A N/A #N/A #N/A #N/A #N/A #N/A	N/A N/A N/A N/A #N/A #N/A M N/A	N/A N/A N/A N/A #N/A #N/A #N/A BMP 4 #N/A	N/A N/A N/A N/A N/A #N/A #N/A #N/A BMP 5 #N/A
BMP Runoff Reduction Performance RPv runoff volume after all reductions (in.) Total RPv runoff reduction (in.) Total RPv runoff reduction (%) Req'd runoff reduction met? BMP TMDL Performance Adjusted pollutant load, TN (lb/ac/yr) Adjusted pollutant load, TP (lb/ac/yr) Adjusted pollutant load, TSS (lb/ac/yr) Offsets Requirements RPv Offset (cu. ft.) Conveyance Event (Cv) Cv runoff volume (in.) Stds-based allowable discharge (cfs) BMP Performance Cv runoff volume after all reductions (in.) Flooding Event (Fv) Fv runoff volume (in.)	1.29 0.12 9% OK 7.59 1.02 228 N/A 2.75 0.04 BMP 1 2.70	N/A N/A N/A N/A #N/A #N/A #N/A #N/A BMP 2 #N/A	N/A N/A N/A N/A #N/A #N/A MN/A	N/A N/A N/A N/A #N/A #N/A #N/A	N/A N/A N/A N/A *N/A #N/A #N/A *N/A

Contributing Area (ac.)	0.05
C.A. RCN	80
LOD Area (ac.)	0.05
Weighted Target Runoff (in.)	1.37
Adjusted CN after all reductions	77.98

Adjusted RPv (in.) Adjusted Cv (in.) Adjusted Fv (in.)

Adjusted Subarea Data for H&H Modeling

Resource Protection Event, RPv Conveyance Event, Cv Flooding Event, Fv

Rain (in.)	RCN
2.7	N/A
4.8	79.75
8	80.36

PROJECT: Example Plan - Commercial Site DRAINAGE SUBAREA ID:

Subarea 5 New Castle

LOCATION (County): UNIT HYDROGRAPH: STD

CONTRIBUTING AREA RUNOFF CURVE NUMBER (C.A.

Cover Type	RCN) WORKSHEE	Hydrologic	A		В		Hydrolo			,
Cover Type	rreatment	Condition	Acres	RCN	Acres	RCN	Acres	RCN	Acres	RCN
CULTIVATED AG	RICULTURAL LANDS	Collaition	Hores	11014	Aures	11014	710700	71071	710700	7107
Fallow	Bare soil			77		86		91		94
1 411011	Crop residue (CR)	poor		76		85		90		93
	Crop residue (CR)	good		74		83		88		90
Row Crops	Straight row (SR)	poor		72		81		88		91
tow crops	Straight row (SR)	good		67		78		85		89
		-		71		80		87		90
	SR + Crop residue	poor		64		75		82		85
	SR + Crop residue	good		70		79		84		88
	Contoured (C)	роог								_
	Contoured (C)	good		65		75	_	82		86
	C + Crop residue	poor		69		78		83		87
	C + Crop residue	good		64		74		81		85
	Cont & terraced(C&T)	poor		66		74		80		82
	Cont & terraced(C&T)	good		62		71		78		81
	C&T + Crop residue	poor		65		73		79		81
	C&T + Crop residue	good		61		70		77		80
Small Grain	Straight row (SR)	poor		65		76		84		88
	Straight row (SR)	good		63		75		83		87
	SR + Crop residue	poor		64		75		83		86
	SR + Crop residue	good		60		72		80		84
	Contoured (C)	роог		63		74		82		85
	Contoured (C)	good		61		73	ic in the	81		84
	C + Crop residue	poor		62		73		81		84
	C + Crop residue	good		60		72		80		83
	Cont & terraced(C&T)	poor		61		72		79		82
	Cont & terraces(C&T)	good		59		70		78		81
	C&T + Crop residue	poor		60		71	_	78	_	81
	·			58		69		77		80
01	C&T + Crop residue	good	_	66		77		85	_	89
Close-seeded	Straight row	poor		58		72		81		85
or broadcast	Straight row	good	_			75	-	83		_
legumes or	Contoured	poor		64		69	_	78		85 83
rotation	Contoured	good		55						_
meadow	Cont & terraced	poor	_	63		73		80		83
	Cont & terraced	good		51		67		76		80
OTHER AGRICU	LTURAL LANDS									
	Pasture, grassland or range	poor		68		79		86		89
	r abtaro, gracolaria or rango	fair		49		69		79		84
		good		39		61		74		80
	Meadow -cont, grass (non grazed)	good		30		58		71		78
				48		67	-	77		83
	Brush - brush, weed, grass mix	poor fair		35	-	56		70		77
			_	30	-	48	-	65		73
	14. 15.	good				73	 	82		86
	Woods - grass combination	poor	-	57		_	-		-	_
		fair		43	-	65		76		82
		good		32		58		72	_	79
	Woods	poor		45		66		77		83
		fair		36		60		73	_	79
		good		30		55		70		77
	Farmsteads	****	, ii	59		74		82		86
FULLY DEVELO	PED URBAN AREAS (Veg Established)									
Open space (Law	ns,parks etc.)					,				,
	Poor condition; grass cover < 50%			68		79		86		89
	Fair condition; grass cover 50% to 75 %			49		69		79		84
	Good condition; grass cover > 75%			39	0.026	61		74		80
Impervious Areas				1 00	O OEC	1 00	T	0.0		00
	Paved parking lots, roofs, driveways			98	0.056	98		98		98

Streets and roads		1			
Paved; curbs and storm sewers	(1	98	98	98	98
Paved; open ditches (w/right-of-wa	ıy)	83	89	92	93
Gravel (w/ right-of-way)		76	85	89	91
Dirt (w/ right-of-way)		72	82	87	89
Urban Districts	Avg % impervious				
Commercial & business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size	Avg % impervious				
1/8 acre (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acre	12	46	65	77	82
USER DEFINED					
Subarea Contributing A	Area per Soil Type (ac)	0 0.	082	0	0
UPSTREAM CONTRIBUTING AREAS	Subarea ID	Acres RCN			
Upstream Contributing Area 1					
Upstream Contributing Area 2					
Upstream Contributing Area 3					
Upstream Contributing Area 4					
	Total	Contributing Area	a (ac) 0	.08	
	Weighted Runof	f Curve Number (RCN)	86	

PROJECT:	Example	Pian - Comm	ierciai Site	
DRAINAGE SUBAREA ID:	Subarea 5	5		
LOCATION (County):	New Cast	le		
UNIT HYDROGRAPH:	STD			
LIMIT OF DISTURBANCE (LOD) WORKSHEET				
Step 1 - Subarea LOD Data	HSG A	HSG B	HSG C	HSG D
1.1 HSG Area Within LOD (ac)		0.035		0.0035
1.2 Pre-Developed Woods/Meadow Within LOD (ac)				
1.3 Pre-Developed Impervious Within LOD (ac)				
1.4.a Post-Developed Imperviousness Within LOD, Option #1 (ac); OR		0.02		0.0022
1.4.b Post-Developed Imperviousness Within LOD, Option #2 (%)	0%	57%	0%	63%
step 2 - Subarea LOD Runoff Calculations				
2.1 RCN per HSG	0.00	82.14	0.00	91.31
2.2 RPv per HSG (in.)	0.00	1.50	0.00	2.03
2.3 Target Runoff per HSG (in.)	0.00	0.58	0.00	1,39
2.4 Cv Weighted Unit Discharge per HSG (cfs/ac)	0.00	0.75	0.00	0.75
2.5 Fv Weighted Unit Discharge per HSG (cfs/ac)	0.00	2.25	0.00	2.25
2.6 Subarea LOD (ac)	5.50	0.0		
2.7 Subarea Weighted RCN		82.9		
2.8 Subarea Weighted RPv (in.)		1.5		
2.9 Subarea Weighted Nev (iii.)		0.6		
2.5 Sabarca Weighted Farget Nation (iii.)		0.0		
tep 3 - Upstream LOD Areas (from previous DURMM Report as applicable)	Area 1	Area 2	Area 3	Area 4
3.1 Upstream Subarea ID				
3.2 Upstream LOD Area (ac)				
3.3 Target Runoff for Upstream Area (in.)				
3.4 Adjusted CN after all reductions				
3.5 Adjusted RPv (in.)				
3.6 Adjusted Cv (in.)				
3.7 Adjusted Fv (in.)				
tep 4 - RPv Calculations for Combined LOD				
4.1 Combined LOD (ac)		0.0)4	
4.2 Weighted RCN		82.9	98	
4.3 Weighted RPv (in.)		1.5	5	
4.4 Weighted Target Runoff (in.)	74. Y. W.	0.6	6	
4.5 Estimated Annual Runoff (in.)		20.8	82	
4.6 Reg'd Runoff Reduction within LOD (in.)	7 5 5	8.0		- 74
4.7 Reg'd Runoff Reduction within LOD (%)		589		
tep 5 - Cv Unit Discharge				
5. LOD Allowable Unit Discharge (cfs/ac)				0.75

Step 6 - Fv Unit Discharge

6. LOD Allowable Unit Discharge (cfs/ac)

PROJECT: Example Plan - Commercial Site

2.25

PROJECT: **DRAINAGE SUBAREA ID:**

Subarea 5 New Castle STD

Example Plan - Commercial Site

LOCATION (County): UNIT HYDROGRAPH:

OUTSIDE LIMIT OF DISTURBANCE (OLOD)

WORKSHEET

Step 1 - Site Data

1.1 Total Contributing Area (ac)

1.2 C.A. RCN

1.3 LOD Area (ac)

1.4 LOD RCN

1.5 Outside LOD Area (ac)

1.6 Outside LOD RCN

0.08	
86	
0.038	1
83	
0.043	
89	

Step 2 - Time of Concentration

FLOW TYPE

Sheet

Shallow Concentrated

Open Channel

	2.1	2.2	2.3	2.4	2.5	2.6
	LENGTH	SLOPE	SURFACE	MANNINGS	VELOCITY	TRAVEL
	(feet)	(ft./ft.)	CODE	"n"	(ft./sec.)	TIME (hrs)
				**********	N/A	0.00
				**********	N/A	0.00
					N/A	0.00
1				N/A		0.00
1				N/A		0.00
I				N/A		0.00
İ			N/A			0.00
			N/A			0.00
I			N/A			0.00
			N/A			0.00
[N/A	_		0.00

2.7 Time of Concentration (Tc)

0.00 hrs

Sheet Flow Surface Codes

- a Smooth Surface
- b fallow (no residue)
- c cultivated < 20% Res. d cultivated > 20% Res.
- e grass range, short
- f grass, dense
- g grass, bermuda
- h woods, light i woods, dense
- j range, natural

Shallow Concentrated Surface Codes

- unpaved surface p paved surface

Step 3 - Peak Discharge

- 3.1 Unit Hydrograph Type
- 3.2 Frequency (yr)
- 3.3 24-HR Rainfall, P (in.)
- 3.4 Initial Abstraction, Ia (in.)
- 3.5 la/P ratio
- 3.6 Unit Peak Discharge, qu (csm/in)
- 3.7 Runoff (in.)
- 3.8 Peak Discharge, qp (cfs)
- 3.9 Equiv. unit peak discharge (cfs/ac)

ST	D
10	100
4.8	
0.247	0.247
0.05	0.03
#NUM!	#NUM!
3.60	6.71
#NUM!	#NUM!
#NUM!	#NUMI

PROJECT:		Example Plan - Commercial Site									
DRAINAGE SUBAREA ID:	Subarea 5 New Castle										11
RESOURCE PROTECTION EVENT (RPV) WORKSHEET											100
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5	
	Type	Impervious	Type	Filter strip	Type	1.8	Туре	f a	Туре		
Step 1 - Calculate Initial RPv 1.1 Total contributing area to BMP (ac) 1.2 Reserved 1.3 Initial RPv or Contributing Area (in.) 1.4 RPv for Contributing Area (in.) 1.5 Req'd RPv Reduction for Contributing Area (in.) 1.6 Req'd RPv Reduction for Contributing Area (%) 1.7 RPv allowable discharge rate (cfs)	Data 0.08 86.27 1,73 0.42 24% 0.00		0.08 0.08		0.08		0.08		Data 0.08		
Step 2 - Adjust for Retention Reduction											
2.1 Storage volume (cu. ft.) 2.2 Retention reduction allowance (%) 2.3 Retention reduction volume (ac-ft) 2.4 Retention reduction volume (in.) 2.5 Runoff volume after retention reduction (in.) 2.6 Adjusted CN*	0.00 0.00 0.00 1.73 86.27		0% 0.00 0.00 1.58 83.71		N/A N/A N/A N/A		N/A N/A N/A N/A N/A		N/A N/A N/A N/A N/A		
Step 3 - Adjust for Annual Runoff Reduction											II.
3,1 Annual CN (ACN) 3,2 Annual runoff (in.) 3,3 Proportion A/B soils in BMP footprint (%)	23.85		21.47		N/A N/A		N/A N/A		N/A N/A		
3.4 Annual runoff reduction allowance (%) 3.5 Annual runoff after reduction (in.) 3.6 Admissed ACN	21.47		18.25		N/A N/A		N/A N/A		N/A N/A		
3.7 Annual Runoff Reduction Allowance for RPV (in.)	0.14		0.34		N/A		N/A		N/A		-
Step 4 - Calculate RPv with BMP Reductions	İ										
4.1 RPv runoff volume after all reductions (in.) 4.2 Total RPv runoff reduction (in.)	1.58		1.38		N/A		N/A N/A		N/A		
4.3 Total RPv runoff reduction (%)	8%		20%		N/A		N/A		N/A		
4.4 Adjusted CN after all reductions	83.71		79.91		N/A		N/A		N/A		
4.5 Equivalent TR-55 RCN for H&H modeling 4.6 Req'd reduction met?	88.40 No		85.63 No		N/A N/A		A/N A/N		A/N A/A		
Con E. Date and Description Offices											
Sep 5 - Determine Randy Reduction Offset 5.1 Runoff Reduction Shortfall (in.)	0.28		0.07		N/A		N/A		N/A		
5.2 Runoff Reduction Shortfall (cu.ft./ac) 5.3 Total Offset Volume (ru ft.)	1000		270		N/A		N/A		N/A		
בים וסגמו כווספי גכומווים (בתיוני)	70		6.60		where:		w/w		W/M		

PROJECT: Example Pl DRAINAGE SUBAREA ID: Subarea S	Example Pl Subarea S	PROJECT: Example Plan - Commercial Site BAREA ID: Subarea 5	ercial Site																	
LANDUSE TYPE: Commercial	Commercia	31																		
TMDL WATERSHED: Christina River	Christina R	iver																		
TOTAL MAXIMUM DAILY LOAD (TMDL) WORKSHEET		We	BMP 1			BMP 2		-		BW	BMP 3				BMP 4		L	60	BMPS	
									,								1			
Sten 1 - Calculate Annual Runoff Volume	Oata	Imperv	Impervious disconnection		Type:	TN	Filter strip	755	Type:	N.L	1 4	755	Type:	W.L.	1 01	755	Type:	N.L	1 2	TEC
1.1 Total contributing area to BMP (ac)	0.08	61					12			200		3								3
1.3 Annual runoff volume (in.) 1.4 Annual runoff volume (liters)	23.85 2.01E+05							30					X				i.			
Step 2 - Calculate Annual Pollutant Load																				
2.1 EMC (mg/L) 2.2 load (mg/xr)		2.00 4.02E+05	0.27 5.43F+04	60 1.21F+07												1 3		25. M		
2.4 Stormwater Load (lb/ac/yr)		10.81	1.46	324	_	9.73	1.31	292		8.27	1.12		248	#N/A	#N/A	#N/A		#N/A	#N/A	#N/A
Step 3 - Adjust for Runoff Reduction																				
3.1 BMP Runoff Reduction (%)	10%	7000	2000	7000	15%	1001	103.4	N	N/A	47,500	AND THE PERSON NAMED IN	and the	N/A	1000	ŀ	-	N/A		***************************************	47.000
3.3 Adjusted load (lb/ac/yr)		9.73		292	I.	8.27	1.12	248		#N/A	A/N#	#N/A	T	#N/A	#IN/A	#N/A		#N/A	#N/A	#N/A
Step 4 - Calculate Pollutant Reduction															ł	1				
4.1 TMDL (Ib/ac/vr)		5,70	0.35 N/A	¥.		5.70	0.35 N/A	A		5.70	0.35	0.35 N/A	-	5.70		0.35 N/A	L	5.70	0.35 N/A	N/A
4.2 Reduction met?	10.0	No	No	ОК		No	No	ò		#N/A	#N/A	ò		#N/A	#N/A	OK		#N/A	#N/A	OK
Step 5 - Determine TMDL Offset																				
5.1 TMDL Shortfall (lb/ac/yr)		4.03	96'0	0		2.57	0.77	0		#N/A	#N/A		0	#N/A	#N/A		0	A/N#	#N/A	
5.2 TMDL Shortfall (%)		41%	73%	%0		31%	%69	%0		#N/A	#N/A	#N/A		#N/A	-	#N/A		#N/A	#N/A	#N/A
5.3 Residual RPv Volume (in)		1.58	1.58	1.58		1.38	1.38	1.38	اکا	N/A N/	N/A	N/A		N/A	N/A	N/A		N/A	N/A	N/A
5,4 Req'd Additional RR to meet TMDL (in)*		99'0	1.16	00.00		0.43	0.95	0.00	1000	#N/A	#N/A	A/N#		#N/A	#N/A	#N/A	1000	#N/A	#N/A	#N/A
5.5 Req'd Additional RR to meet TMDL (cu.ft./ac)		2383	4219	0		1561	3447	0		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A		#N/A	#N/A	#N/A
5.6 Total Offset Volume (cu.ft.)	į	195	346	0		128	283	0		A/NE	A/Na	A/NE	đ	A/N#	A/Na	A/N#		A/N#	A/N#	A/N#

PROJECT:		Example Plan - Commercial Site									
DRAINAGE SUBAREA ID:		2									_
LOCATION (County):	New Castle	ie									1
CONVEYANCE EVENT (Cv.) WORKSHEET	1										1
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5	_
	Type:	Impervious disconnection	Type:	Filter strip	Type:		Type:	71	Type:	1/4	
Step 1 - Calculate Initial Cv	Data		Data		Data		Data		Data		
 Total contributing area to BMP (ac) 	0.08		0.08		80.0		0.08		0.08		
1.2 Initial RCN	86.27		X								
1.3 10-YR Rainfall (in.)	8.8										
1.4 CV runori volume (in.)	3.31										
1.5 LOD allowable unit discharge (cfs/ac)	0.75										
 Equivalent discharge outside LOD (cfs/ac) 	#NOM!										
 1.7 Cv allowable discharge rate (cfs) 	#NUM!										- 14
Chan 3 Adirest for Debandion Dedication											
חבל ל בחלת או להן עבובווותון עבמתרוותון											ı
2.1 Storage volume (cu. ft.)	0.00		0.00		00:00		00:00		0.00		
2.2 Storage volume (ac-ft)	00:00		0.00		00'0		0.00		0.00		
2.3 Storage volume (in.)	0.00		0.00		00:00		00:00		0.00		
2.4 Runoff volume after reduction (in.)	3.31		3.24		3.18		#N/A		#N/A		
2.5 CN*	86.27		85.59		84.92		#N/A		#N/A	S. S. S.	
Cton 2 - Adjust for Annual Dunoff Badustion											
2 1 Burnett reduction allowance (97)	700		200		47,145		4/497		*******		Г
2.3 Appendix of Section (%)	2 34		2.10		HIVA HIVA		A/VH		A/N#		
S.z. Alindal Idiloli altel Feducion (m.)	3.24		3.10		A/N#		HN/A		#N/A		
3.3 Adjusted ACN	85.59		84.92		#N/A		#N/A		#N/A		
3.4 Event-based runoff reduction (in.)	0.07		0.13		#N/A		#N/A		#N/A		
Cons A Calculate County DAM Dadustine											
SIEP 4 - CALCUIALE CV WILLI DIVIR REGULLIOUS											9
4.1 Cv runoff volume after all reductions (in.)	3.24		3.18		#N/A		#N/A		#N/A		
4.2 Total Cv runoff reduction (%)	5%		4%		#N/A		#N/A		#N/A		
4.3 Adjusted RCN for HS.H modeling	85.50		24.97		#W/A		4M/A		4W1/A		_

PROJECT:		Example Plan - Commercial Site									
DRAINAGE SUBAREA ID:											
LOCATION (County):	: New Castle	ė									
FLOODING EVENT (Fv) WORKSHEET	,										
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5	
		Impervious									
	Type:	disconnection	Type:	Filter strip	Type:	1	Type:	31	Type:	1	
Step 1 - Calculate Initial Fv	Data		Data		Data		Data		Data		
 1.1 Total contributing area to BMP (ac) 	0.08		0.08		80.0		0.08		80.0		b
1.2 Initial RCN	86.27										
1.3 100-YR Rainfall (in.)	8.0										
1.4 Fv runoff volume (in.)	6.36										
1.5 LOD allowable unit discharge (cfs/ac)	2.25										
1 6 Equiv unit discharge quitside LOD (cfs/ac)	#WILINA!				,						
1.7 Fy allowable discharge rate (cfs)	#NOW!										
											ı
Step 2 - Adjust for Retention Reduction											
2,1 Storage volume (cu.,ft.)	0.00		00'0		00.00		0.00		00:00		
2,2 Storage volume (ac-ft)	0.00		00'0		0.00		0:00		0.00		1115
2.3 Storage volume (in.)	0.00		00'0		0.00		0.00		0.00		
2.4 Runoff volume after reduction (in.)	6.36		6.36		6.36		#N/A		#N/A		
2,5 CN*	86.27		86.27		86.27		#N/A		#N/A	N COLUMN	
											ĺ
otep 3 - Aujust joi Aminani Aurioji Neutritori											Γ
3.1 Kunoff reduction allowance (%)	%		%0		#N/A		#N/A		#N/A		
3.2 Annual runoff after reduction (in.)	6.36		6.36		#N/A		#N/A		#W/A		
3,3 Adjusted ACN	86.27		86.27		#N/A		#N/A		#N/A		
3,4 Event-based runoff reduction (in.)	0.00		00'0	The state of the s	#N/A		#N/A		#N/A	3 5	
											Î
Step 4 - Calculate Fv with BMP Reductions											Ì
4.1 Fv runoff volume after all reductions (in.)	98'9		98'9		#N/A		#N/A		#N/A		
4.2 Total Fv runoff reduction (%)	%0		%0		#W/A		#W/A		#N/A		
A D Aditated DON for U.O. I modeling	20.00		70.00		V/ 1417		V/ WIT		41/4		
4.3 Aujusteu nun ioi nom iioueiilig	17.00		77.00		#IN/A		W/NIH		#IN/H		

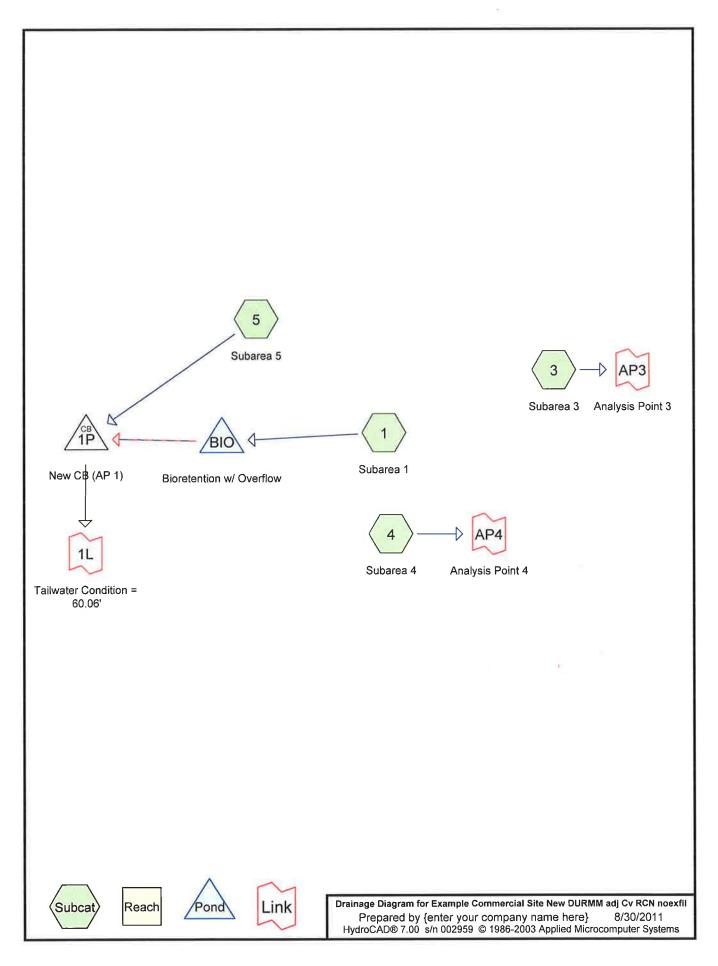
PROJECT: DRAINAGE SUBAREA ID:

Example Plan - Commercial Site Subarea 5

TMDL Watershed: Christina River

	christina River				
DURMM OUTPUT WORKSHE	ET				
Site Data				DURMM	v2.beta.110802
Contributing Area to BMPs (ac.)	0.082				
C.A. RCN	86				
Subarea LOD (ac.)	0.0385				
Upstream Subarea ID	0	0		0	
Upstream Subarea LOD (ac.)	0.00	0.00	0.00	0.00]
Combined LOD with Upstream Areas (ac.)	0.04				
Combined RCN with Upstream Areas (ac.)	82.98				
TMDL-TN (lb/ac/yr)	5.70				
TMDL-TP (lb/ac/yr)	0.35				
TMDL-TSS (lb/ac/yr)	N/A				
BMP Selection	BMP 1	BMP 2	ВМР 3	BMP 4	BMP 5
	Impervious				
	disconnection	Filter strip	***	#8	(Att
Resource Protection Event (RPV)	<u> </u>		l		
RPv for Contributing Area (in.)	1.73				
Req'd RPv Reduction for Contributing Area (in.)	0.42				
Req'd RPv Reduction for Contributing Area (%)	24%				
C.A. allowable discharge rate (cfs)	0.00				
Unmanaged Polluant load, TN (lbs/ac/yr)	10.81				
Unmanaged Polluant load, TP (lbs/ac/yr)	1.46				
Unmanaged Polluant load, TSS (lbs/ac/yr)	324				
BMP Runoff Reduction Performance	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
RPv runoff volume after all reductions (in.)	1.58	1.38	N/A	N/A	N/A
Total RPv runoff reduction (in.)	0.14	0.34	N/A	N/A	N/A
Total RPv runoff reduction (%)	8%	0.20	N/A	N/A	N/A
Req'd runoff reduction met?	No	No	N/A	N/A	N/A
BMP TMDL Performance			***	-1	
Adjusted pollutant load, TN (lb/ac/yr)	9.73	8.27	#N/A	#N/A	#N/A
Adjusted pollutant load, TP (lb/ac/yr)	1.31	1.12	#N/A	#N/A	#N/A
Adjusted pollutant load, TSS (lb/ac/yr)	292	248	#N/A	#N/A	#N/A
Offsets Requirements					
RPv Offset (cu. ft.)	82	22	N/A	N/A	N/A
Conveyance Event (Cv)					
Cv runoff volume (in.)	3.31				
Stds-based allowable discharge (cfs)	#NUM!				
BMP Performance	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
Cv runoff volume after all reductions (in.)	3.24	3.18		#N/A	#N/A
	····				
Flooding Event (Fv)					
Fv runoff volume (in.)	6.36				
Stds-based allowable discharge (cfs)	#NUM!				
BMP Performance	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
Fv runoff volume after all reductions (in.)	6.36	6.36	#N/A	#N/A	#N/A
Adjusted Subarea Data for Downstream DURMM Ma	deling				
Contributing Area (ac.)	0.08				

Contributing Area (ac.)	0.08
C.A. RCN	86
LOD Area (ac.)	0.04
Weighted Target Runoff (in.)	0.66
Adjusted CN after all reductions	79.91
Adjusted RPv (in.)	1.38
Adjusted Cv (in.)	
Adjusted Fv (in.)	


Adjusted Subarea Data for H&H Modeling

Resource Protection Event, RPv Conveyance Event, Cv Flooding Event, Fv

Rain (in.)	RCN
2.7	N/A
4.8	84.92
8	86.27

Appendix 4

DURMM v2 HydroCAD
Model using the
Constructed/As-Built
Stormwater Management
Facilities

Example Commercial Site New DURMM adj Cv RCN noexfil Type II 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here}

Page 2

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Time span=1.00-48.00 hrs, dt=0.01 hrs, 4701 points x 9
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea 1 Runoff Area=0.577 ac Runoff Depth=0.77"

Tc=6.0 min CN=53 Runoff=0.68 cfs 0.037 af

Subcatchment 3: Subarea 3 Runoff Area=0.056 ac Runoff Depth=2.63"

Tc=6.0 min CN=79 Runoff=0.26 cfs 0.012 af

Subcatchment 4: Subarea 4 Runoff Area=0.047 ac Runoff Depth=2.72"

Tc=6.0 min CN=80 Runoff=0.23 cfs 0.011 af

Subcatchment 5: Subarea 5 Runoff Area=0.082 ac Runoff Depth=3.18"

Tc=6.0 min CN=85 Runoff=0.45 cfs 0.022 af

Pond 1P: New CB (AP 1) Peak Elev=60.06' Inflow=0.45 cfs 0.022 af

30.0" x 234.0' Culvert Outflow=0.50 cfs 0.022 af

Pond BIO: Bioretention w/ Overflow Peak Elev=61.16' Storage=1,613 cf Inflow=0.68 cfs 0.037 af

Primary=0.00 cfs 0.000 af Secondary=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af

Link 1L: Tailwater Condition = 60.06' Inflow=0.50 cfs 0.022 af

Primary=0.50 cfs 0.022 af

Link AP3: Analysis Point 3 Inflow=0.26 cfs 0.012 af

Primary=0.26 cfs 0.012 af

Link AP4: Analysis Point 4 Inflow=0.23 cfs 0.011 af

Primary=0.23 cfs 0.011 af

Total Runoff Area = 0.762 ac Runoff Volume = 0.082 af Average Runoff Depth = 1.29"

Example Commercial Site New DURMM adj Cv RCN noexfil Type || 24-hr Cv Rainfall=4.80"

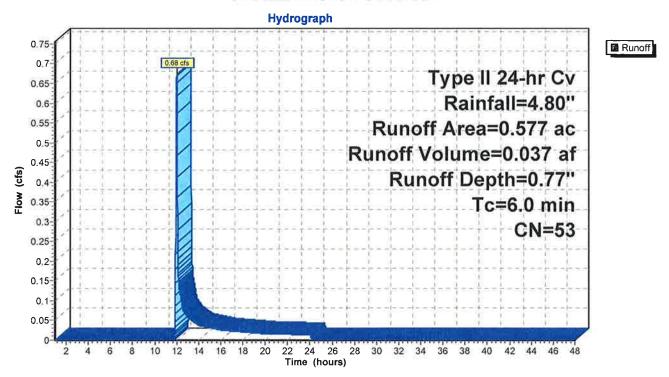
Prepared by {enter your company name here}

Page 3

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Subcatchment1: Subarea 1


Runoff = 0.68 cfs @ 11.99 hrs, Volume=

0.037 af, Depth= 0.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr Cv Rainfall=4.80"

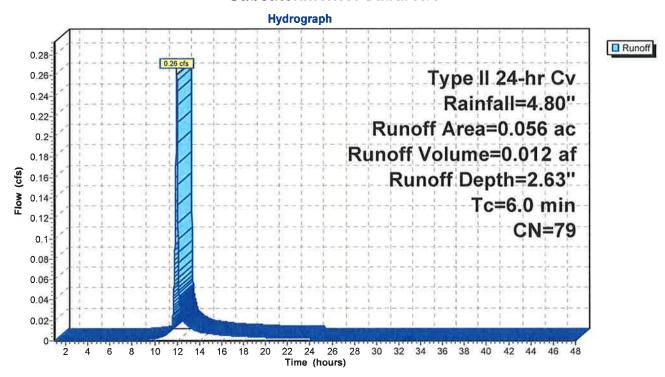
Area	(ac)	CN	Desc	cription			
0.	.577	53	Adju	sted Cv R	CN		
Tc (min)	Lengt (fee		lope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0						Direct Entry	

Subcatchment1: Subarea 1

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Subcatchment3: Subarea 3


Runoff = 0.26 cfs @ 11.97 hrs, Volume=

0.012 af, Depth= 2.63"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr Cv Rainfall=4.80"

 Area	(ac)	CN	Desc	cription		
0.	.056	79	Adju	sted Cv R	CN	
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0						Direct Entry

Subcatchment3: Subarea 3

Example Commercial Site New DURMM adj Cv RCN noexfil Type // 24-hr Cv Rainfall=4.80"

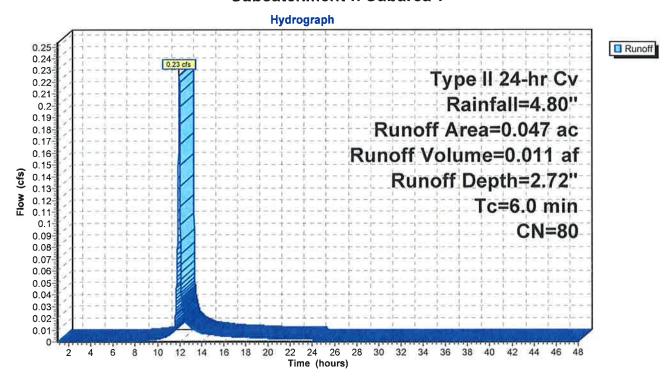
Prepared by {enter your company name here}

Page 5

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Subcatchment4: Subarea 4


Runoff = 0.23 cfs @ 11.97 hrs, Volume=

0.011 af, Depth= 2.72"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr Cv Rainfall=4.80"

	Area	(ac) (CN Des	cription			
	0.	.047	80 Adju	isted Cv R	CN		
			•				
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
_	6.0	'	•			Direct Entry	

Subcatchment4: Subarea 4

Example Commercial Site New DURMM adj Cv RCN noexfil Type II 24-hr Cv Rainfall=4.80"

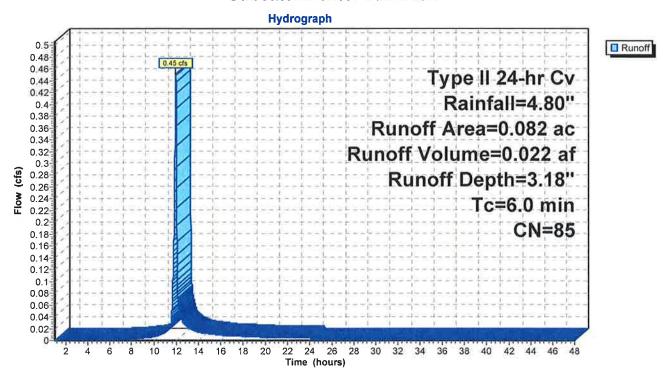
Prepared by {enter your company name here}

Page 6

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Subcatchment5: Subarea 5


Runoff = 0.45 cfs @ 11.97 hrs, Volume=

0.022 af, Depth= 3.18"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr Cv Rainfall=4.80"

Area	(ac)	CN	Desc	cription			
0.	.082	85	Adus	sted Cv RC	CN		
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0						Direct Entry	

Subcatchment5: Subarea 5

Example Commercial Site New DURMM adj Cv RCN noexfil Type II 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Page 7 8/30/2011

Pond 1P: New CB (AP 1)

[90] Warning: Qout>Qin may require Finer Routing or smaller dt [87] Warning: Oscillations may require Finer Routing or smaller dt

Inflow Ar	rea =	0.659 ac, Inflo	ow Depth =	0.40"	for Cv event
Inflow	=	0.45 cfs @ 11	1.97 hrs, Vo	olume=	0.022 af

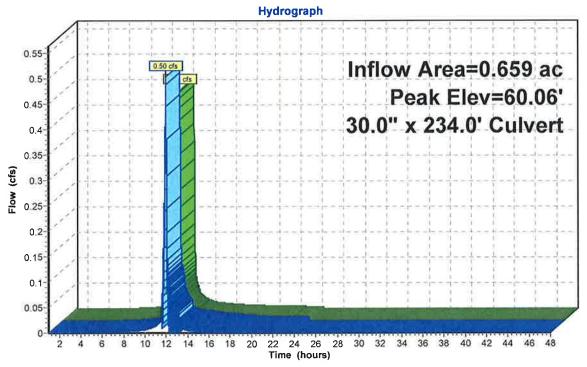
0.50 cfs @ 11.97 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.0 min Outflow

0.50 cfs @ 11.97 hrs, Volume= 0.022 af Primary

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs / 9

Peak Elev= 60.06' @ 11.97 hrs

Flood Elev= 62.44'


Plug-Flow detention time= 0.7 min calculated for 0.022 af (100% of inflow)

Center-of-Mass det. time= 0.2 min (806.2 - 806.0)

#_	Routing	Invert	Outlet Devices			
1	Primary	57.56'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500			
	•		Outlet Invert= 55.76' S= 0.0077 '/' n= 0.012 Cc= 0.900			

Primary OutFlow Max=0.50 cfs @ 11.97 hrs HW=60.06' TW=60.06' (Dynamic Tailwater) -1=Culvert (Barrel Controls 0.50 cfs @ 0.1 fps)

Pond 1P: New CB (AP 1)

Example Commercial Site New DURMM adj Cv RCN noexfil Type || 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here}

Page 8

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond BIO: Bioretention w/ Overflow

Inflow Area =	0.577 ac, Inflow Depth = 0.77	" for Cv event
Inflow =	0.68 cfs @ 11.99 hrs, Volume	= 0.037 af
Outflow =	0.00 cfs @ 1.00 hrs, Volume	= 0.000 af, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 1.00 hrs, Volume	= 0.000 af
Secondary =	0.00 cfs @ 1.00 hrs, Volume	= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 61.16' @ 24.34 hrs Surf.Area= 1,250 sf Storage= 1,613 cf

Flood Elev= 63.25' Surf.Area= 1,250 sf Storage= 6,486 cf

Plug-Flow detention time= (not calculated)

Center-of-Mass det. time= (not calculated)

#	Invert	Avail.Storage	Storage Description
1	60.90'	5,261 cf	Custom Stage Data (Irregular) Listed below -Impervious
2	58.45'	1,225 cf	25.00'W x 50.00'L x 2.45'H Prismatoid
			3,063 cf Overall x 40.0% Voids

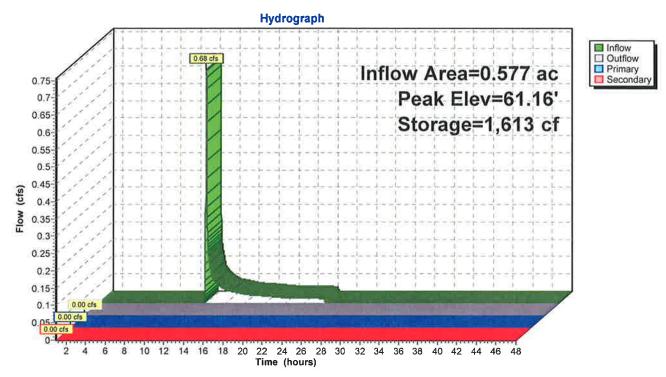
6,486 cf Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
60.90	1,250	117.0	0	0	1,250
62.00	1,776	165.0	1,656	1,656	2,338
63.00	3,542	357.0	2,609	4,265	10,318
63.25	4,446	410.0	996	5,261	13,554

#	Routing	Invert	Outlet Devices
1	Primary	57.72'	15.0" x 43.0' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 57.56' S= 0.0037 '/' n= 0.012 Cc= 0.900
2	Device 1	61.25'	4.0" Vert. Orifice/Grate C= 0.600
3	Device 1	63.11'	1.50' x 2.83' Horiz. Orifice/Grate Limited to weir flow C= 0.600
4	Secondary	63.25'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50
			3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66
			2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=0.00 cfs @ 1.00 hrs HW=58.45' TW=57.95' (Dynamic Tailwater) 1=Culvert (Passes 0.00 cfs of 1.55 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)


-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=58.45' TW=57.95' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 9 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Pond BIO: Bioretention w/ Overflow

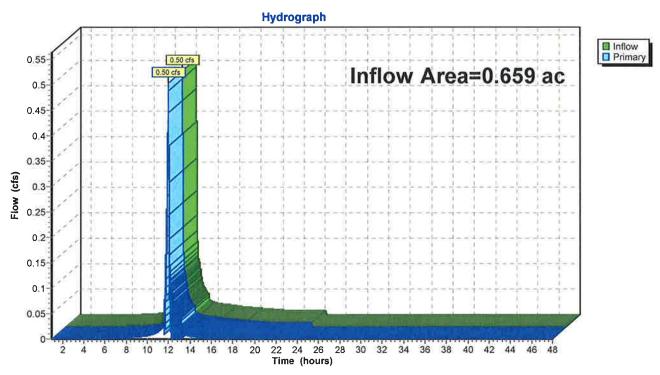
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Link 1L: Tailwater Condition = 60.06'

[80] Warning: Exceeded Pond 1P by 2.50' @ 12.34 hrs (26.43 cfs)

Inflow Area = 0.659 ac, Inflow Depth = 0.40" for Cv event


Inflow = 0.50 cfs @ 11.97 hrs, Volume= 0.022 af

Primary = 0.50 cfs @ 11.97 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs

Fixed water surface elevation= 60.06'

Link 1L: Tailwater Condition = 60.06'

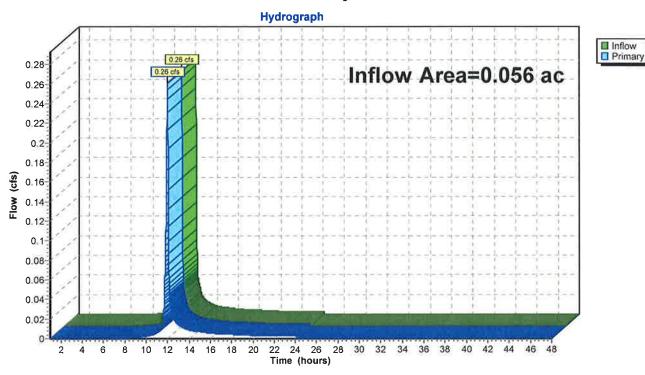
Example Commercial Site New DURMM adj Cv RCN noexfil Type || 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here}

Page 11

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011


Link AP3: Analysis Point 3

Inflow Area = 0.056 ac, Inflow Depth = 2.63" for Cv event Inflow = 0.26 cfs @ 11.97 hrs, Volume= 0.012 af

Primary = 0.26 cfs @ 11.97 hrs, Volume= 0.012 af, Atten= 0%, Lag= 0.0 min

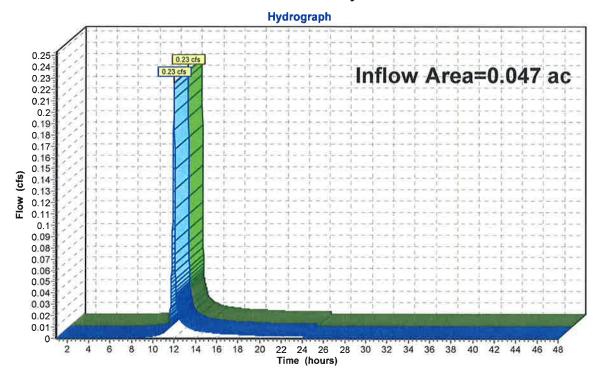
Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs

Link AP3: Analysis Point 3

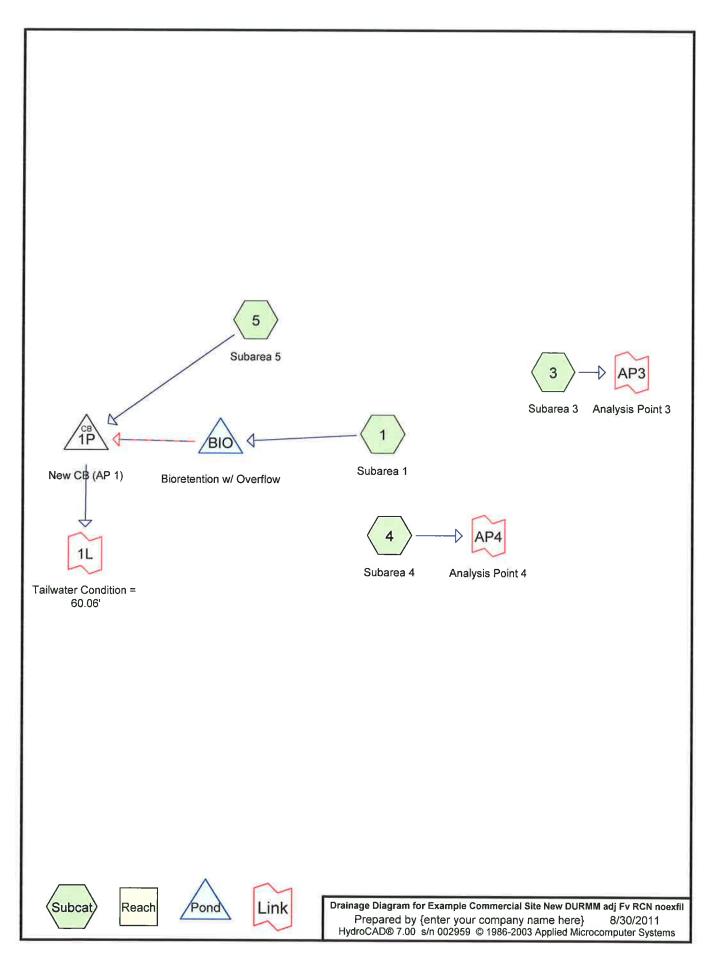
Example Commercial Site New DURMM adj Cv RCN noexfil Type II 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Page 12 8/30/2011


Link AP4: Analysis Point 4

Inflow Area = 0.047 ac, Inflow Depth = 2.72" for Cv event Inflow 0.23 cfs @ 11.97 hrs, Volume= 0.011 af


0.23 cfs @ 11.97 hrs, Volume= Primary 0.011 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs

Link AP4: Analysis Point 4

Example Commercial Site New DURMM adj Fv RCN noexfil Type || 24-hr Fv Rainfall=8.00"

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems Page 2

8/30/2011

Time span=1.00-48.00 hrs, dt=0.01 hrs, 4701 points x 9 Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Runoff Area=0.577 ac Runoff Depth=3.89" Subcatchment 1: Subarea 1

Tc=6.0 min CN=65 Runoff=4.02 cfs 0.187 af

Subcatchment 3: Subarea 3 Runoff Area=0.056 ac Runoff Depth=5.63"

Tc=6.0 min CN=80 Runoff=0.54 cfs 0.026 af

Subcatchment 4: Subarea 4 Runoff Area=0.047 ac Runoff Depth=5.63"

Tc=6.0 min CN=80 Runoff=0.45 cfs 0.022 af

Subcatchment 5: Subarea 5 Runoff Area=0.082 ac Runoff Depth=6.33"

Tc=6.0 min CN=86 Runoff=0.86 cfs 0.043 af

Peak Elev=60.06' Inflow=1.13 cfs 0.190 af Pond 1P: New CB (AP 1)

30.0" x 234.0' Culvert Outflow=1.18 cfs 0.190 af

Peak Elev=62.38' Storage=3,863 cf Inflow=4.02 cfs 0.187 af Pond BIO: Bioretention w/ Overflow

Primary=0.41 cfs 0.147 af Secondary=0.00 cfs 0.000 af Outflow=0.41 cfs 0.147 af

Link 1L: Tailwater Condition = 60.06' Inflow=1.18 cfs 0.190 af

Primary=1.18 cfs 0.190 af

Inflow=0.54 cfs 0.026 af Link AP3: Analysis Point 3

Primary=0.54 cfs 0.026 af

Inflow=0.45 cfs 0.022 af Link AP4: Analysis Point 4

Primary=0.45 cfs 0.022 af

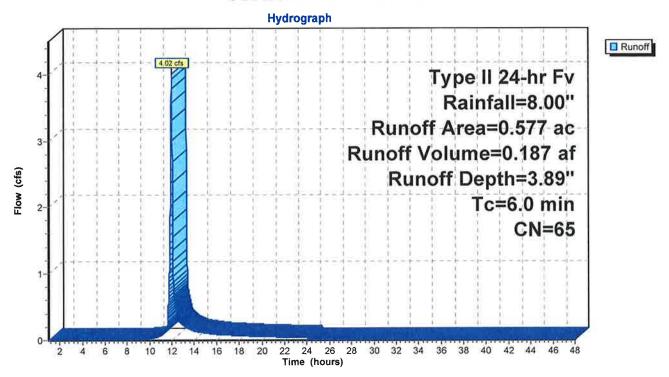
Total Runoff Area = 0.762 ac Runoff Volume = 0.279 af Average Runoff Depth = 4.39"

Example Commercial Site New DURMM adj Fv RCN noexfil Type || 24-hr Fv Rainfall=8.00"

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Page 3 8/30/2011

Subcatchment1: Subarea 1


4.02 cfs @ 11.97 hrs, Volume= Runoff

0.187 af, Depth= 3.89"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr Fv Rainfall=8.00"

_	Area	(ac) Cl	V Des	cription			
	0.	577 6	5 Adju	sted Fv R	CN		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
	6.0					Direct Entry,	

Subcatchment1: Subarea 1

Example Commercial Site New DURMM adj Fv RCN noexfil Type // 24-hr Fv Rainfall=8.00"

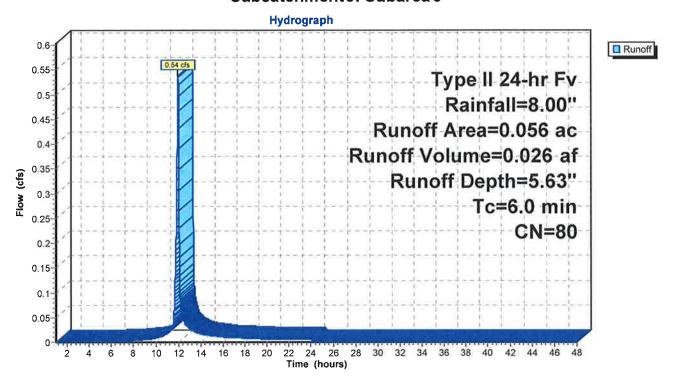
Prepared by {enter your company name here}

Page 4

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Subcatchment3: Subarea 3


Runoff = 0.54 cfs @ 11.97 hrs, Volume=

0.026 af, Depth= 5.63"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr Fv Rainfall=8.00"

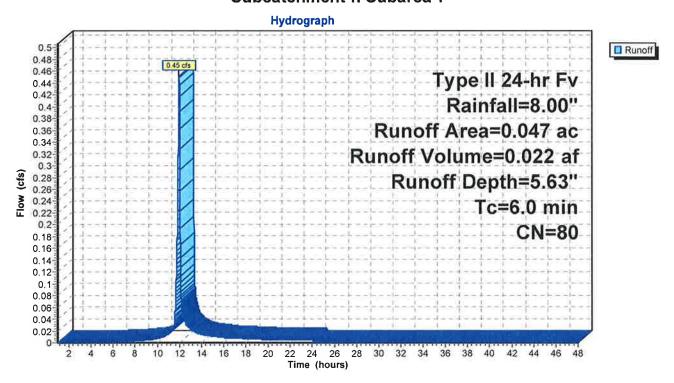
Area	(ac)	CN [Description	n		
0.	056	80 A	Adjusted I	v RCN		
Тс	Lengt	h Slo	pe Velo	city C	apacity	Description
(min)	(feet		•	sec)	(cfs)	
6.0						Direct Entry

Subcatchment3: Subarea 3

Example Commercial Site New DURMM adj Fv RCN noexfil Type || 24-hr Fv Rainfall=8.00" Page 5

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011


Subcatchment4: Subarea 4

Runoff 0.45 cfs @ 11.97 hrs, Volume= 0.022 af, Depth= 5.63"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr Fv Rainfall=8.00"

	Area	(ac) CN	1 Desc	cription			
	0.047 80 Adjusted Fv RCN						
	Тс	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	<u>'</u>	
-	6.0		·			Direct Entry,	

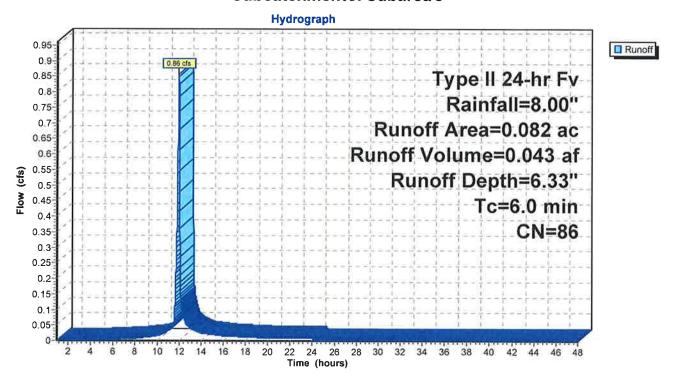
Subcatchment4: Subarea 4

Example Commercial Site New DURMM adj Fv RCN noexfil Type II 24-hr Fv Rainfall=8.00"

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Page 6

8/30/2011


Subcatchment5: Subarea 5

Runoff 0.86 cfs @ 11.97 hrs, Volume= 0.043 af, Depth= 6.33"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs Type II 24-hr Fv Rainfall=8.00"

-	Area	(ac)	CN D	escription		
	0.	082	86 A	dusted Fv Ro	CN	
	Тс	Lengtl	h Slop	e Velocity	Capacity	Description
	(min)	(feet	(ft/	t) (ft/sec)	(cfs)	
	6.0					Direct Entry

Subcatchment5: Subarea 5

Example Commercial Site New DURMM adj Fv RCN noexfil Type || 24-hr Fv Rainfall=8.00"

Prepared by {enter your company name here}

Page 7

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond 1P: New CB (AP 1)

[90] Warning: Qout>Qin may require Finer Routing or smaller dt [87] Warning: Oscillations may require Finer Routing or smaller dt

Inflow Area = 0.659 ac, Inflow Depth = 3.46" for Fv event Inflow = 1.13 cfs @ 11.99 hrs, Volume= 0.190 af

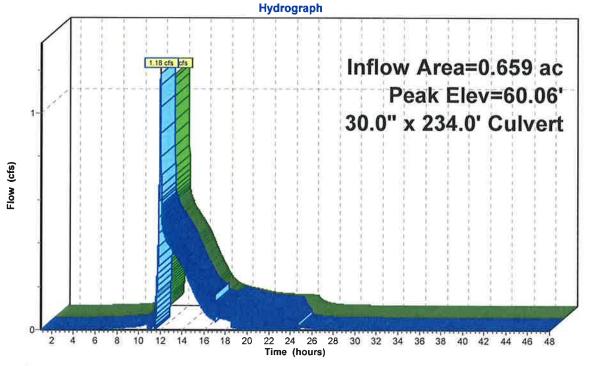
Outflow = 1.18 cfs @ 11.99 hrs, Volume= 0.190 af, Atten= 0%, Lag= 0.2 min

Primary = 1.18 cfs @ 11.99 hrs, Volume= 0.190 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs / 9

Peak Elev= 60.06' @ 11.99 hrs

Flood Elev= 62.44'


Plug-Flow detention time= 0.2 min calculated for 0.190 af (100% of inflow)

Center-of-Mass det. time= 0.0 min (904.4 - 904.3)

#	Routing	invert	Outlet Devices			
1	Primary	57.56'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500			
			Outlet Invert= 55.76' S= 0.0077 '/' n= 0.012 Cc= 0.900			

Primary OutFlow Max=1.18 cfs @ 11.99 hrs HW=60.06' TW=60.06' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 1.18 cfs @ 0.3 fps)

Pond 1P: New CB (AP1)

Example Commercial Site New DURMM adj Fv RCN noexfil Type // 24-hr Fv Rainfall=8.00"

Prepared by {enter your company name here}

Page 8

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond BIO: Bioretention w/ Overflow

Inflow Area =	0.577 ac, Inflow Depth = 3.89"	for Fv event
Inflow =	4.02 cfs @ 11.97 hrs, Volume=	0.187 af
Outflow =	0.41 cfs @ 12.43 hrs, Volume=	0.147 af, Atten= 90%, Lag= 27.3 min
Primary =	0.41 cfs @ 12.43 hrs, Volume=	0.147 af
Secondary =	0.00 cfs @ 1.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 62.38' @ 12.43 hrs Surf.Area= 1,250 sf Storage= 3,863 cf

Flood Elev= 63.25' Surf.Area= 1,250 sf Storage= 6,486 cf

Plug-Flow detention time= 195.7 min calculated for 0.147 af (78% of inflow)

Center-of-Mass det. time= 107.5 min (939.6 - 832.1)

	#	Invert	Avail.Storage	Storage Description
	1	60.90'	5,261 cf	Custom Stage Data (Irregular) Listed below -Impervious
	2	58.45'		25.00'W x 50.00'L x 2.45'H Prismatoid
				3,063 cf Overall x 40.0% Voids
0.0				

6,486 cf Total Available Storage

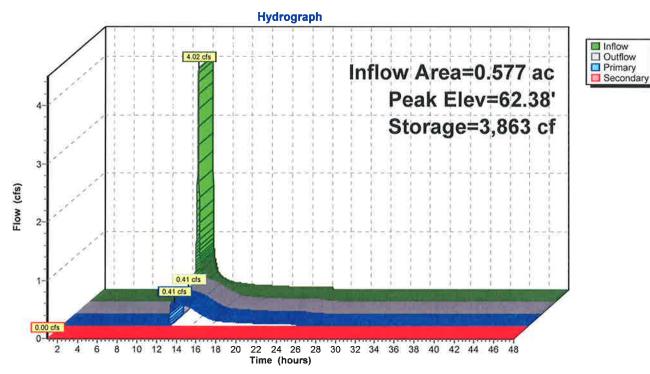
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
60.90	1,250	117.0	0	0	1,250
62.00	1,776	165.0	1,656	1,656	2,338
63.00	3,542	357.0	2,609	4,265	10,318
63.25	4,446	410.0	996	5,261	13,554

•	33.23	7,770	410.0	990	3,201	13,334
#	Routing	Invert	Outlet Devices			
1	Primary	57.72'	15.0" x 43.0' long			
			Outlet Invert= 57.	56' S= 0.0037 '/'	n= 0.012 Cc=	= 0.900
2	Device 1	61.25'	4.0" Vert. Orifice	Grate C= 0.600		
3	Device 1	63.11'	1.50' x 2.83' Horiz	z. Orifice/Grate	imited to weir fl	ow C= 0.600
4	Secondary	63.25'	10.0' long x 6.0'	breadth Broad-C	rested Rectang	ular Weir
			Head (feet) 0.20	0.40 0.60 0.80	1.00 1.20 1.40	1.60 1.80 2.00 2.50
			3.00 3.50 4.00 4	4.50 5.00 5.50		
			Coef. (English) 2	.37 2.51 2.70 2.	68 2.68 2.67 2	2.65 2.65 2.65 2.65 2.66
			2.66 2.67 2.69 2	2.72 2.76 2.83		

Primary OutFlow Max=0.41 cfs @ 12.43 hrs HW=62.38' TW=60.06' (Dynamic Tailwater)

-1=Culvert (Passes 0.41 cfs of 8.99 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.41 cfs @ 4.7 fps)


3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 1.00 hrs HW=58.45' TW=57.95' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 9 8/30/2011

Prepared by {enter your company name here}
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

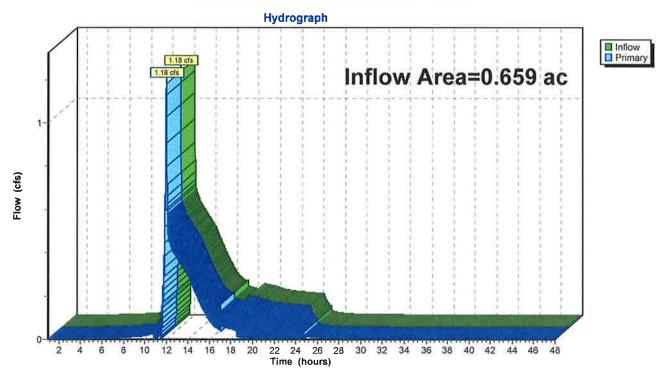
Pond BIO: Bioretention w/ Overflow

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Link 1L: Tailwater Condition = 60.06'

[80] Warning: Exceeded Pond 1P by 2.50' @ 19.64 hrs (26.43 cfs)


Inflow Area = 0.659 ac, Inflow Depth = 3.46" for Fv event Inflow = 1.18 cfs @ 11.99 hrs, Volume= 0.190 af

Primary = 1.18 cfs @ 11.99 hrs, Volume= 0.190 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs

Fixed water surface elevation= 60.06'

Link 1L: Tailwater Condition = 60.06'

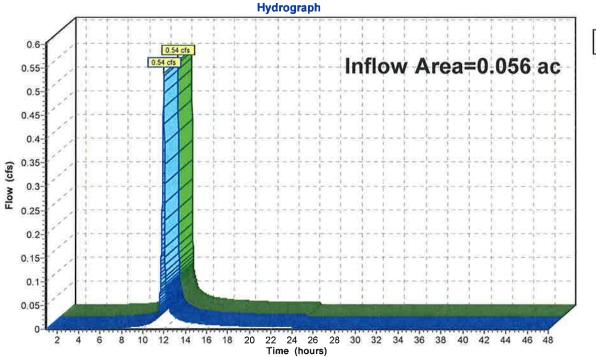
Example Commercial Site New DURMM adj Fv RCN noexfil Type II 24-hr Fv Rainfall=8.00"

Prepared by {enter your company name here}

Page 11

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011


Link AP3: Analysis Point 3

Inflow Area = 0.056 ac, Inflow Depth = 5.63" for Fv event Inflow = 0.54 cfs @ 11.97 hrs, Volume= 0.026 af

Primary = 0.54 cfs @ 11.97 hrs, Volume= 0.026 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs

Link AP3: Analysis Point 3

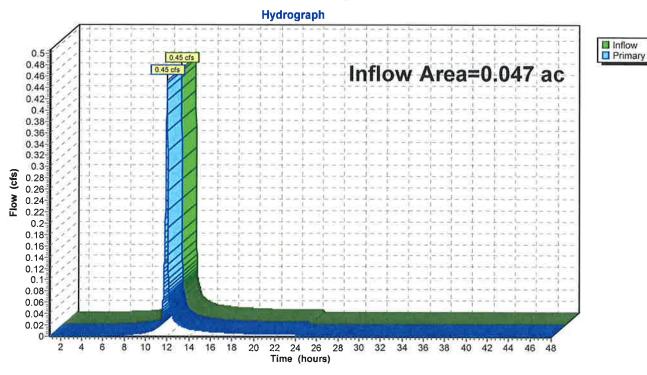
Example Commercial Site New DURMM adj Fv RCN noexfil Type // 24-hr Fv Rainfall=8.00"

Prepared by {enter your company name here}

Page 12

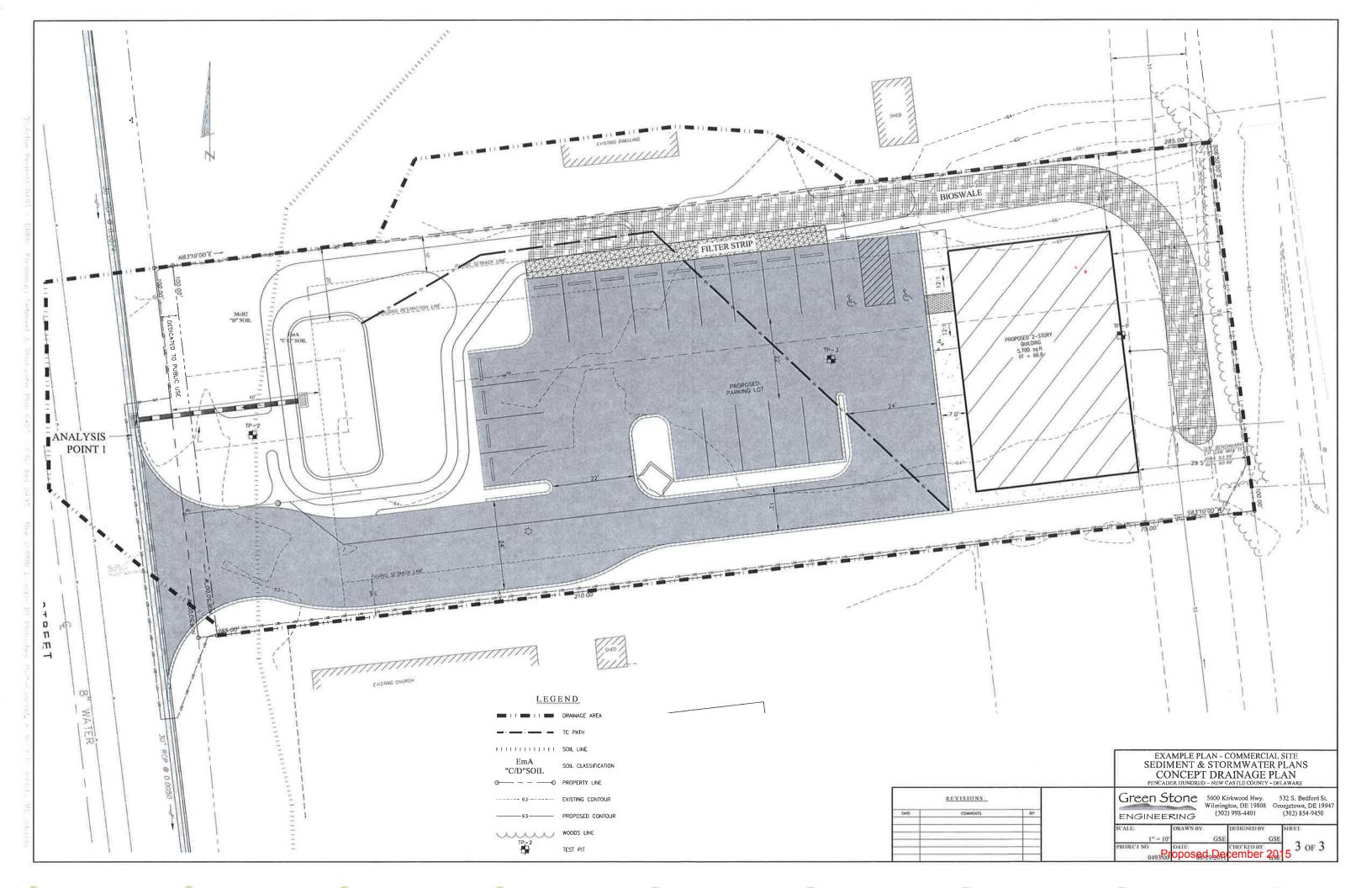
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011


Link AP4: Analysis Point 4

Inflow Area = 0.047 ac, Inflow Depth = 5.63" for Fv event Inflow = 0.45 cfs @ 11.97 hrs, Volume= 0.022 af

Primary = 0.45 cfs @ 11.97 hrs, Volume= 0.022 af, Atten= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 1.00-48.00 hrs, dt= 0.01 hrs

Link AP4: Analysis Point 4

Appendix 5

DURMM v2 Model using Redesigned Stormwater Management Facilities

PROJECT: Example Plan - Commercial Site DRAINAGE SUBAREA ID: Subarea 1 LOCATION (County): New Castle UNIT HYDROGRAPH: STD

CONTRIBUTING AREA RUNOFF CURVE NUMBER (C.A.

Cover Type	RCN) WORKSHE Treatment	Hydrologic	А		В		Hydrolog C		D	
Cover Type	rreaunent	Condition		RCN	Acres	RCN	Acres	RCN		RCN
CHI TIVATED AGI	RICULTURAL LANDS	Condition	Acres	RCIV	Acres	RUN	Acres	RUN	Acres	KUN
				77 1		0.0		04		1 04
Fallow	Bare soil			77		86		91		94
	Crop residue (CR)	poor	_	76		85		90		93
	Crop residue (CR)	good		74		83		88		90
Row Crops	Straight row (SR)	poor		72		81		88		91
	Straight row (SR)	good		67		78		85		89
	SR + Crop residue	poor		71		80		87		90
	SR + Crop residue	good		64		75		82		85
	Contoured (C)	poor		70		79		84		88
	Contoured (C)	good	_ =	65		75		82		86
	C + Crop residue	poor		69		78		83		87
	C + Crop residue	good		64		74		81		85
	Cont & terraced(C&T)	poor		66		74		80		82
	Cont & terraced(C&T)	good		62		71		78		81
	C&T + Crop residue	poor		65		73		79		81
	C&T + Crop residue	good		61		70		77		80
Small Grain	Straight row (SR)	poor	-	65		76		84		88
Siliali Gialii	Straight row (SR)	good		63		75		83		87
	• , ,	•	-	64		75		83		86
	SR + Crop residue	poor		60	-	72		80		84
	SR + Crop residue	good	-					82		_
	Contoured (C)	poor	1	63		74		$\overline{}$		85
	Contoured (C)	good		61		73		81		84
	C + Crop residue	poor		62		73		81		84
	C + Crop residue	good		60		72		80		83
	Cont & terraced(C&T)	poor		61		72		79		82
	Cont & terraces(C&T)	good		59		70		78		81
	C&T + Crop residue	poor		60		71		78		81
	C&T + Crop residue	good		58		69		77		80
Close-seeded	Straight row	poor		66		77		85		89
or broadcast	Straight row	good		58		72		81		85
legumes or	Contoured	poor		64		75		83		85
rotation	Contoured	good		55		69		78		83
meadow	Cont & terraced	poor		63		73		80		83
	Cont & terraced	good		51		67		76		80
		3000								
OTHER AGRICUL	TURAL LANDS									
	Pasture, grassland or range	poor		68		79		86		89
	· · · · · · · · · · · · · · · · · · ·	fair		49		69		79		84
		good		39		61		74		80
	Meadow -cont, grass (non grazed)	9000		30		58		71		78
			-	48	-	67		77		83
	Brush - brush, weed, grass mix	poor	-	35		56	-	70		77
		fair	_	-		_		_		73
		good	-	30		48		65		_
	Woods - grass combination	poor	-	57		73		82		86
		fair		43		65		76		82
		good		32		58		72		79
	Woods	poor		45		66		77		83
		fair		36		60		73		79
		good		30		55		70	0.007	77
	Farmsteads	****		59		74		82		86
FULLY DEVELOP	PED URBAN AREAS (Veg Established)									
	"			68		79		86		89
				1 00		10		00	17	_
Open space (Lawn	Poor condition; grass cover < 50%			40		CO		70		0.4
	Fair condition; grass cover 50% to 75 %			49	0.004	69		79	0.000	84
	· ·			49 39	0.031	69 61		79 74	0.323	84 80

Streets and roads		
Paved; curbs and storm sewers	98	98 98 98
Paved; open ditches (w/right-of-way)	83	89 92 93
Gravel (w/ right-of-way)	76	85 89 91
Dirt (w/ right-of-way)	72	82 87 89
Urban Districts	Avg % impervious	
Commercial & business	85 89	92 94 95
Industrial	72 81	88 91 93
Residential districts by average lot size	Avg % impervious	
1/8 acre (town houses)	65	85 90 92
1/4 acre	38 61	75 83 87
1/3 acre	30 57	72 81 86
1/2 acre	25 54	70 80 85
1 acre	20 51	68 79 84
2 acre	12 46	65 77 82
USER DEFINED		
Subarea Contributing Area p	er Soil Type (ac) 0.32 0.03	0 0.33
UPSTREAM CONTRIBUTING AREAS Upstream Contributing Area 1 Upstream Contributing Area 2 Upstream Contributing Area 3 Upstream Contributing Area 4	Subarea ID Acres RCN	
	Total Contributing Area ((ac) 0.68
	Weighted Runoff Curve Number (RC	CN) 88

DRAINAGE SUBAREA ID:	Subarea	L		
LOCATION (County):	New Cast	le		
UNIT HYDROGRAPH:	STD			
LIMIT OF DISTURBANCE (LOD) WORKSHEET				
tep 1 - Subarea LOD Data	HSG A	HSG B	HSG C	HSG D
1.1 HSG Area Within LOD (ac)		0.031		0.652
1.2 Pre-Developed Woods/Meadow Within LOD (ac)				0.007
1.3 Pre-Developed Impervious Within LOD (ac)				
1.4.a Post-Developed Imperviousness Within LOD, Option #1 (ac); <u>OR</u>				0.322
1.4.b Post-Developed Imperviousness Within LOD, Option #2 (%)	0%	0%	0%	49%
tep 2 - Subarea LOD Runoff Calculations				
2.1 RCN per HSG	0.00	61.00	0.00	88.89
2.2 RPv per HSG (in.)	0.00	0.58	0.00	1.88
2.3 Target Runoff per HSG (in.)	0.00	0.58	0.00	1.38
2.4 Cv Weighted Unit Discharge per HSG (cfs/ac)	0.00	0.75	0.00	0.7
2.5 Fv Weighted Unit Discharge per HSG (cfs/ac)	0.00	2.25	0.00	2.2
2.6 Subarea LOD (ac)		0.0	58	
2.7 Subarea Weighted RCN		87.	62	
2.8 Subarea Weighted RPv (in.)		1.8	32	
2.9 Subarea Weighted Target Runoff (in.)		1,	35	
tep 3 - Upstream LOD Areas (from previous DURMM Report as applicable)	Area 1	Area 2	Area 3	Area 4
3.1 Upstream Subarea ID				
3.2 Upstream LOD Area (ac)				
3.3 Target Runoff for Upstream Area (in.)				
3.4 Adjusted CN after all reductions				
3.5 Adjusted RPv (in.)				
3.6 Adjusted Cv (in.)				
3.7 Adjusted Fv (in.)				
tep 4 - RPv Calculations for Combined LOD				
4.1 Combined LOD (ac)		0.0	68	71.25
4.2 Weighted RCN		87.	.62	
4.3 Weighted RPv (in.)		1.5	82	
4.4 Weighted Target Runoff (in.)		1.3	35	
4.5 Estimated Annual Runoff (in.)		25.	.19	
4.6 Reg'd Runoff Reduction within LOD (in.)		0.4	47	
4.7 Req'd Runoff Reduction within LOD (%)			5%	
tep 5 - Cv Unit Discharge				
LED 3 " C4 OIIIL DISCHALEC				
5. LOD Allowable Unit Discharge (cfs/ac)				0.7

Step 6 - Fv Unit Discharge

6. LOD Allowable Unit Discharge (cfs/ac)

DRAINAGE SUBAREA ID:

PROJECT: Example Plan - Commercial Site

Subarea 1

2.24

PROJECT: Example Plan - Commercial Site

DRAINAGE SUBAREA ID: Subarea 1

LOCATION (County): New Castle

UNIT HYDROGRAPH: STD

OUTSIDE LIMIT OF DISTURBANCE (OLOD)

WORKSHEET

Step 1 - Site Data

1.1 Total Contributing Area (ac)

1.2 C.A. RCN

1.3 LOD Area (ac)

1.4 LOD RCN

1.5 Outside LOD Area (ac)

1.6 Outside LOD RCN

N/A
N/A

Step 2 - Time of Concentration	2.1	2.2	2.3	2.4	2.5	2.6
	LENGTH	SLOPE	SURFACE	MANNINGS	VELOCITY	TRAVEL
LOW TYPE	(feet)	(ft./ft.)	CODE	"n"	(ft./sec.)	TIME (hrs)
Sheet	28	0.025	a	0.011	N/A	0.01
				CARTA DE LA CARTA DEL CARTA DE LA CARTA DE LA CARTA DEL CARTA DE LA CARTA DE L	N/A	0.00
					N/A	0.00
Shallow Concentrated				N/A		0.00
				N/A		0.00
				N/A		0.00
Open Channel	115	0.023	N/A	0.03	6.1	0.01
			N/A			0.00
			N/A			0.00
			N/A			0.00
			N/A			0.00

2.7 Time of Concentration (Tc)

Sheet Flow Surface Codes

- a Smooth Surface
- b fallow (no residue)
- c cultivated < 20% Res.
- d cultivated > 20% Res.
- e grass range, short

f grass, dense

- g grass, bermuda
- h woods, light
- i woods, dense j range, natural

Shallow Concentrated Surj

0.10 hrs

- u unpaved surface
- p paved surface

Step 3 - Peak Discharge

- 3.1 Unit Hydrograph Type
- 3.2 Frequency (yr)
- 3.3 24-HR Rainfall, P (in.)
- 3.4 Initial Abstraction, la (in.)
- 3.5 la/P ratio
- 3.6 Unit Peak Discharge, qu (csm/in)
- 3.7 Runoff (in.)
- 3.8 Peak Discharge, qp (cfs)
- 3.9 Equiv. unit peak discharge (cfs/ac)

ST	D
10	100
4.8	8
#N/A	#N/A
#N/A	#N/A
#N/A	#N/A
#VALUE!	#VALUE!
#VALUE!	#VALUE1
0.00	0.00

TOHOGO	Common Dis	Evanual Dian - Commercial Cita								
DRAINAGE SUBAREA ID:	Subarea 1	The Commercial Street			1					
LOCATION (County):	New Castle									
RESOURCE PROTECTION EVENT (RPV) WORKSHEET										
		BMP 1		BMP 2		BMP 3		BMP 4		BMPS
	Туре	Impervious disconnection	Type	Filter strip	Type	Bioswale	Type	Bioretention w/underdrain	Туре	9
Step 1 - Calculate Initial RPv 1.1 Total contributing area to BMP (ac) 1.2 Reserved	Data 0.68		Data 0.68		Data 0.68		Data 0.68		Data 0.68	
1,3 Initial RCN 1.4 RPv for Contributing Area (in.) 1.5 Req'd RPv Reduction for Contributing Area (in.)	87.62 1.82 0.47						RL.			
1.6 Req'd RPv Reduction for Contributing Area (%) 1.7 RPv allowable discharge rate (cfs)	26%					18	4			
Step 2 - Adjust for Retention Reduction	Ì									
2.1 Storage volume (cu., ft.) 2.2 Retention reduction allowance (%)	%0		%0		%0		50%		N/A	
2.3 Retention reduction volume (ac-ft) 2.4 Retention reduction volume (in,)	00:00		0.00		0.00		1.19		N/A	
2.5 Runoff volume after retention reduction (in.) 2.6 Adjusted CN*	87.89	2 × × ×	85.03		81.17		32.37		N/A	
Step 3 - Adjust for Annual Runoff Reduction										
3,1 Annual CN (ACN) 3,2 Annual runoff (in.)	25.19		85.03		19.27		14.45		N/A N/A	
3.3 Proportion A/B soils in BMP footprint (%)	300	-	%0		36%		%0		N/A	
3.5 Annual runoff after reduction (in.)	22.67		19.27		14.45		14.45		N/A	
3.6 Adjusted ACN 3.7 Annual Runoff Reduction Allowance for RPv (in.)	0.16		0.37		0.69		0.69		N/A	
Step 4 - Calculate RPv with BMP Reductions										
4.1 RPv runoff volume after all reductions (in.)	1.66		1.45		1.13		0.00		N/A N/A	
4.3 Total RPv runoff reduction (%)	%6		21%		38%		100%		N/A	
4.4 Adjusted CN after all reductions 4.5 Fourivalent TR-55 RCN for H&H modeling	89.34	\ - !!	81.17		74.76		32.37		N/A N/A	
4.6 Req'd reduction met?	No		No		ŏ		Ж		N/A	
Step 5 - Determine Runoff Reduction Offset										
5,1 Runoff Reduction Shortfall (in.)	0.31		0.10		N/A		A/A		N/A	
5.2 Runoff Reduction Shortfall (cu.ft./ac) 5.3 Total Offset Volume (cu.ft.)	768		365		N/A N/A		N/A A/A		N/A A/N	

DRAINAGE SUBAREA ID: Subarea 1	D: Subarea 1	lan - Comm	PROJECT: Example Plan - Commercial Site SAREA ID: Subarea 1																	
LANDUSE TYPE: Commercial	E: Commerci	at																		
TMDL WATERSHED: Christina River	D: Christina R	liver																	r I	
TOTAL MAXIMUM DAILY LOAD (TMDL) WORKSHEET																				
		8	BMP 1			8MP 2				BMP 3	3			BMP 4	c.			BMP 5		П
	Type:	Impe	Impervious disconnection	nection	Туре:		Filter strip		Type:		Bioswale		Type:	Bioretenti	Bioretention w/underdrain		Type:			
Step 1 - Calculate Annual Runoff Volume	Data	TN	TP	TSS	Data	1N	TP	755	Data	TN	TP	755	Data	N.L	Tp d1	-	Data	TN	Tp	TSS
1,1 Total contributing area to BMP (ac)	888					ď			h											
1.5 Annual runoff volume (In.) 1.4 Annual runoff volume (liters)	1.77E+06			'n		- 1					3						K.,			
Step 2 - Calculate Annual Pollutant Load																				
2,1 EMC (mg/L) 2,2 i oad (ma/vr)		2.00 3.54F±06	4 775-05	1 06F+08									R							
2.4 Stormwater Load (lb/ac/yr)		11.42				10,28	1.39	308		8,74	1,18	292		6.55	0.88	197	L	2.62	0.44	74
Step 3 - Adjust for Runoff Reduction																		1		
3.1 BMP Runoff Reduction (%)	10%				15%				725%				9629			A/N				
3.2 BMP Removal Efficiency (%)		10%	10%	10%		15%	15%	15%		25%	25%	25%		%09	9098	62%	*	#N/A	#N/A	#N/A
3,3 Adjusted load (lb/ac/γr)		10.28	1.39	308		8.74	1.18	262		6,55	0.88	197		2.62	0.44	74	-	#N/A	#N/A	#N/A
Step 4 - Calculate Pollutant Reduction										3										
4.1 TMDL (lb/ac/yr)		5.70		0.35 N/A		5.70	0.35 N/A	A		5.70	0.35 N/A	۸/		5.70	0.35 N/A	A		5.70	0.35 N/A	A/
4.2 Reduction met?		No	No	ОК		No	No	ж	135	No	No	ЭК		OK	No	OK	44.	#N/A	#N/A	ŏ
Step 5 - Determine TMDL Offset																				
5.1 TMDL Shortfall (lb/ac/yr)	П	4.58	1.04	0		3.04	0.83	0		0.85	0.53	0		00:00	60:0	0		#N/A	#N/A	
5.2 TMDL Shortfall (%)		45%	22%	%0		35%	70%	%0		13%	%09	%0		%0	21%	%0	*	#N/A	#N/A	#N/A
5,3 Residual RPv Volume (in)		1.66	1.66	1.66		1.45	1.45	1.45	- 14	1.13	1.13	1.13		0.00	0.00	0.00	N/A	N/A		N/A
5,4 Req'd Additional RR to meet TMDL (in)*		0.74	1.24	0.00		0.50	1.02	0.00		0.15	0.68	0.00		0.00	00.00	0.00		#N/A	#N/A	#N/A
5.5 Req'd Additional RR to meet TMDL (cu.ft./ac)	A S	2679	4499	0		1827	3697	0		534	2482	0		0	0	0	-		#N/A	#N/A
C C T-4-1 Off-4 Val 1 (4.14)		1830	3073	0		1248	2525	0		365	1505	o	9	0	0	C		446.62	WALLE	446.1A.

PROJECT: Example Plan - Commercial Site	DRAINAGE SUBAREA ID: Subarea 1	LOCATION (County): New Castle	CONVEYANCE EVENT (CV) WORKSHEET	BMP1 BMP2 BMP3 BMP4 BMPS	Type: disconnection Type: Filter strip Type: Bioswale Type: w/underdrain Type:	area to BMP (ac) 0.68 0.68 0.68	87.62	Rainfall (in.) 4.8 s.44	charge (cfs/ac)	Ш	for Retention Reduction	00'0 00'0 00'0	ge volume (ac-ft) 0.00 0.00 0.00 0.14 0.00	3.44 3.37 0.77	87.62 86.93 86.25 52.91 52.91	for Annual Runoff Reduction	2% 5% 0%	3.37	noff reduction (in.) 0.07 0.14 0.30 0.30		+ cutualizate by with a part indication for 1 2.27 #N/A #N/A	2% 9% 78%	20.00
	DRAINAGE	LOCATI	CONVEYANCE EVENT (Cv)			Step 1 - Calculate Initial Cv 1.1 Total contributing area to BMP (ac)	1.2 Initial RCN	 1.3 10-YR Rainfall (in.) 1.4 Cv runoff volume (in.) 	1.5 LOD allowable unit discharge (cfs/ac)	1.7 Cv allowable discharge rate (cfs)	Step 2 - Adjust for Retention Reduction	2.1 Storage volume (cu. ft.)	2.2 Storage volume (ac-ft)	2.9 Storage Volume (in.,) 2.4 Runoff volume after reduction (in.)	2,5 CN*	Step 3 - Adjust for Annual Runoff Reduction	3.1 Runoff reduction allowance (%)	3.2 Annual runoff after reduction (in.)	5.5 Adjusted Acin 3.4 Event-based runoff reduction (in.)	Soon A Calculate County DAND Daductions	Step 4 - Culturate CV with Divir neutrinois	4.2 Total Cv runoff reduction (%)	

PROJECT:		Example Plan - Commercial Site									_
DRAINAGE SUBAREA ID:											
LOCATION (County):	New Castle	a									
FLOODING EVENT (Fv) WORKSHEET											
		BMP 1		BMP 2		BMP 3		BMP 4		BMP 5	_
	Type:	Impervious	Туре:	Filter strip	Type:	Bioswale	Type:	Bioretention w/underdrain	Type:	į	
Step 1 - Calculate Initial Fv	Data		Data		Data		Data		Data		
1.1 Total Contributing area to BIMP (ac) 1.2 Initial RCN	87.62		0.00		0.00		90.00		0.00		
1,3 100-YR Rainfall (in.)	8.0								2		
1,4 Fv runoff volume (in.)	6.52										
1.5 LOD allowable unit discharge (cts/ac)	2.24										
1,7 Fv allowable discharge rate (cfs)	1.53										
Step 2 - Adjust for Retention Reduction											i i
2.1 Storage volume (cu. ft.)	00.00		0.00		0.00		5888.00		0.00		_
2.2 Storage volume (ac-ft)	00:00		00'0		0.00		0.14		0.00		
2,3 Storage volume (in.)	0.00		0.00		0.00		2.37		0.00		
2.4 Runoff volume after reduction (in.)	6.52		6.52		6.52		4.08		4.08		
											î
Step 3 - Adjust for Annual Runoff Reduction	/80		/00		10%		%0		4/1/4		г
3.2 Annual runoff after reduction (in.)	6.52		6.52		6.46		6.46		#N/A		
3.3 Adjusted ACN	87.62		87.62		87.07		87.07		#N/A	X	
3.4 Event-based runoff reduction (in.)	00.0		0.00		0.07		0.07		#N/A		_
Step 4 - Calculate Fv with BMP Reductions											
4.1 Fy runoff volume after all reductions (in.)	6.52		6.52		6.46		4.08		#N/A		_
4,2 Total Fv runoff reduction (%)	%0		%0		1%		37%		#N/A		
4.3 Adjusted RCN for H&H modeling	87.62		87.62		87.07		29.99		#N/A		

PROJECT:

DRAINAGE SUBAREA ID:

Example Plan - Commercial Site Subarea 1

TMDL Watershed: Christina River

DURMM OUTPUT WORKSHE	ET				
Site Data				DURMM	v2.beta.11080
Contributing Area to BMPs (ac.)	0.683				
C.A. RCN	88				
Subarea LOD (ac.)	0.683				10
Upstream Subarea ID	0	0	0	0	
Upstream Subarea LOD (ac.)	0.00	0.00	0.00	0.00	
Combined LOD with Upstream Areas (ac.)	0.68				2
Combined RCN with Upstream Areas (ac.)	87.62				
TMDL-TN (lb/ac/yr)	5.70				
TMDL-TP (lb/ac/yr)	0.35				
TMDL-TSS (lb/ac/yr)	N/A				
BMP Selection	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
	Impervious disconnection	Filter strip	Bioswale	Bioretention w/underdrain	70
Resource Protection Event (RPV)	1.				
RPv for Contributing Area (in.)	1.82				
Req'd RPv Reduction for Contributing Area (in.)	0.47				
Req'd RPv Reduction for Contributing Area (%)	26%				
C.A. allowable discharge rate (cfs)	0.05				
Unmanaged Polluant load, TN (lbs/ac/yr)	11.42				
Unmanaged Polluant load, TP (lbs/ac/yr)	1.54				
Unmanaged Polluant load, TSS (lbs/ac/yr)	343			_	
BMP Runoff Reduction Performance	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
RPv runoff volume after all reductions (in.)	1.66	1.45	1.13	0.00	N/A
Total RPv runoff reduction (in.)	0.16	0.37	0.69	1.82	N/A
Total RPv runoff reduction (%)	9%	0.21	0.38	1.00	N/A
Req'd runoff reduction met?	No	No	OK	ОК	N/A
BMP TMDL Performance					
Adjusted pollutant load, TN (lb/ac/yr)	10.28	8.74	6.55	2.62	#N/A
Adjusted pollutant load, TP (lb/ac/yr)	1.39	1.18	0.88	0.44	#N/A
Adjusted pollutant load, TSS (lb/ac/yr)	308	262	197	74	#N/A
Offsets Requirements					
RPv Offset (cu. ft.)	768	249	N/A	N/A	N/
Conveyance Event (Cv)					
Cv runoff volume (in.)	3.44				

C

Cv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

Cv runoff volume after all reductions (in.)

3.44				
0.51				
BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
3.37	3,31	3.14	0,77	#N/A

Flooding Event (Fv)

Fv runoff volume (in.)

Stds-based allowable discharge (cfs)

BMP Performance

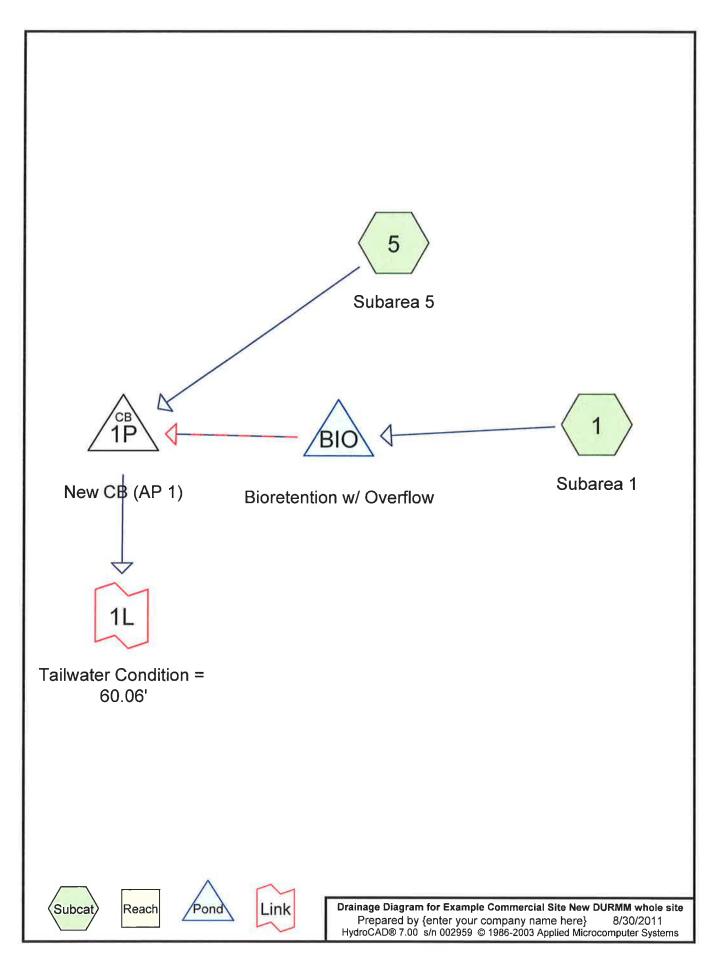
Adjusted Fv (in.)

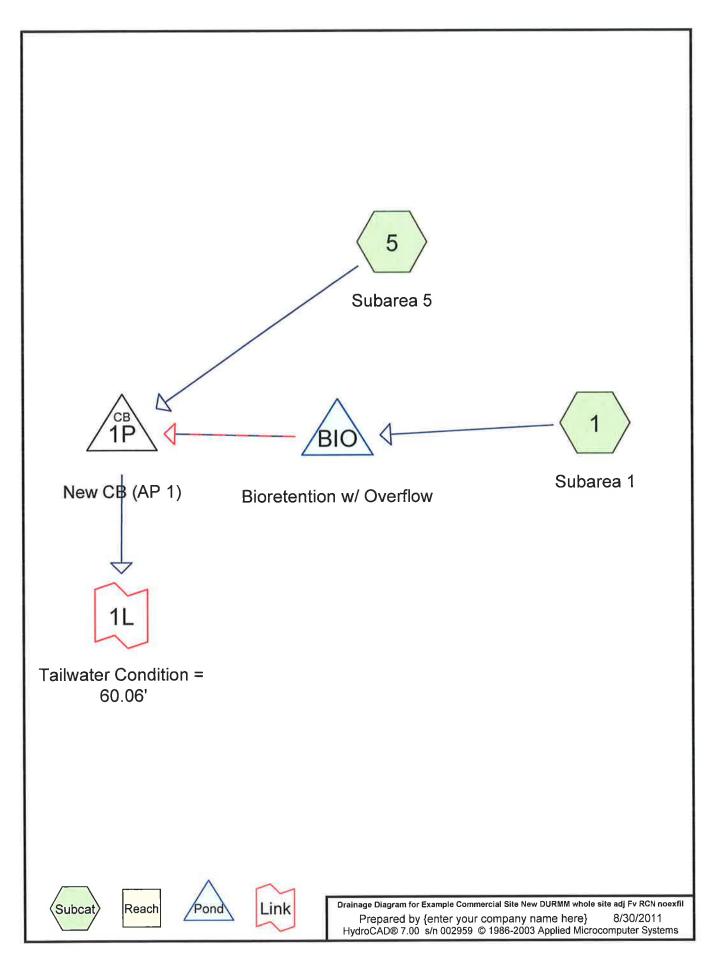
Fv runoff volume after all reductions (in.)

H	1.53				
	BMP 1	BMP 2	BMP 3	BMP 4	BMP 5
	6.52	6.52	6.46	4.08	#N/A

Adjusted Subarea Data for Downstream DURMM Modelina

ustea subarea Data joi Downstream Dokiviivi	woueling
Contributing Area (ac.)	0.68
C.A. RCN	88
LOD Area (ac.)	0.68
Weighted Target Runoff (in.)	1.3
Adjusted CN after all reductions	32.3
Adjusted RPv (in.)	0.00
Adjusted Cv (in.)	


Adjusted Subarea Data for H&H Modeling


Resource Protection Event, RPv Conveyance Event, Cv Flooding Event, Fv

Rain (in.)	RCN
2.7	N/A
4.8	52.91
8	66.67

Appendix 6

DURMM v2 HydroCAD Model using Redesigned Stormwater Management Facilities

Example Commercial Site New DURMM whole site

Type II 24-hr RPv Rainfall=2.70"

Prepared by {enter your company name here}

Page 2

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea 1 Runoff Area=0.680 ac Runoff Depth=1.55"

Tc=6.0 min CN=88 Runoff=1.80 cfs 0.088 af

Subcatchment 5: Subarea 5 Runoff Area=0.082 ac Runoff Depth=1.41"

Tc=6.0 min CN=86 Runoff=0.20 cfs 0.010 af

Pond 1P: New CB (AP 1) Peak Elev=60.06' Inflow=0.28 cfs 0.098 af

30.0" x 234.0' Culvert Outflow=0.28 cfs 0.098 af

Pond BIO: Bioretention w/ Overflow Peak Elev=61.28' Storage=1,796 cf Inflow=1.80 cfs 0.088 af

Primary=0.08 cfs 0.088 af Secondary=0.00 cfs 0.000 af Outflow=0.08 cfs 0.088 af

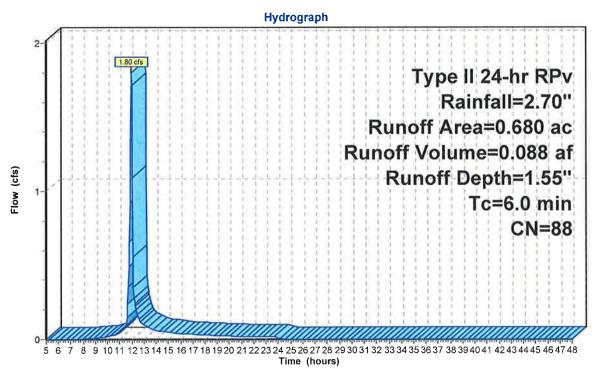
Link 1L: Tailwater Condition = 60.06' Inflow=0.28 cfs 0.098 af

Primary=0.28 cfs 0.098 af

Total Runoff Area = 0.762 ac Runoff Volume = 0.098 af Average Runoff Depth = 1.54"

Page 3 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems


Subcatchment1: Subarea 1

Runoff = 1.80 cfs @ 11.97 hrs, Volume= 0.088 af, Depth= 1.55"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr RPv Rainfall=2.70"

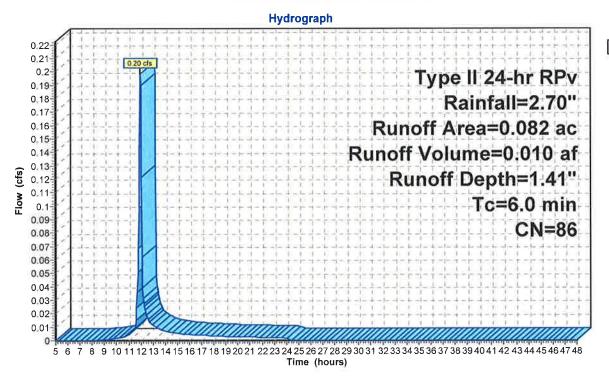
Area	a (ac)	CN	Desc	ription			
	0.319	98	Pave	ed parking	& roofs		
(0.325	80	>75%	6 Grass co	over, Good,	d, HSG D	
(0.029	61	>75%	% Grass co	over, Good,	d, HSG B	
0.007 77 Woods, Good, HSG D							
0.680 88 Weighted Average					age		
Tc (min)		,	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)		
6.0						Direct Entry,	

Subcatchment1: Subarea 1

Page 4 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Subcatchment5: Subarea 5


Runoff = 0.20 cfs @ 11.97 hrs, Volume= 0.80 ms

0.010 af, Depth= 1.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr RPv Rainfall=2.70"

	Area	(ac)	CN	Desc	cription		
	0.	026	61	>75%	6 Grass co	over, Good	I, HSG B
	0.	.056	98	Pave	ed parking	& roofs	
0.082 86 Weighted Average							
	Tc	Leng		Slope	•	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	6.0						Direct Entry.

Subcatchment5: Subarea 5

■ Runoff

Example Commercial Site New DURMM whole site

Prepared by {enter your company name here}

Page 5 8/30/2011

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Pond 1P: New CB (AP 1)

[57] Hint: Peaked at 60.06' (Flood elevation advised)

[80] Warning: Exceeded Pond BIO by 1.61' @ 11.25 hrs (0.08 cfs)

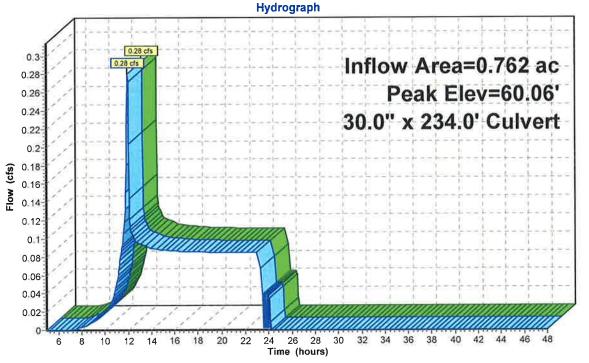
Inflow Area = 0.762 ac, Inflow Depth = 1.54" for RPv event 0.28 cfs @ 11.97 hrs, Volume= 0.098 af

Outflow = 0.28 cfs @ 11.97 hrs, Volume= 0.098 af, Atten= 0%, Lag= 0.0 min

Primary = 0.28 cfs @ 11.97 hrs, Volume= 0.098 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 60.06' @ 11.97 hrs


Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= (not calculated)

	#	Routing	Invert	Outlet Devices	_
-	1	Primary	57.56'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500	
				Outlet Invert= 55.76' S= 0.0077 '/' n= 0.012 Cc= 0.900	

Primary OutFlow Max=0.27 cfs @ 11.97 hrs HW=60.06' TW=60.06' (Dynamic Tailwater) —1=Culvert (Barrel Controls 0.27 cfs @ 0.1 fps)

Pond 1P: New CB (AP 1)

Prepared by {enter your company name here}

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Page 6

Pond BIO: Bioretention w/ Overflow

[87] Warning: Oscillations may require Finer Routing or smaller dt

Inflow Area = 0.680 ac, Inflow Depth = 1.55" for RPv event Inflow = 1.80 cfs @ 11.97 hrs, Volume= 0.088 af

Outflow = 0.08 cfs @ 13.29 hrs, Volume= 0.088 af, Atten= 95%, Lag= 79.4 min

Primary = 0.08 cfs @ 13.29 hrs, Volume= 0.088 af Secondary = 0.00 cfs @ 5.00 hrs, Volume= 0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 61.28' @ 13.29 hrs Surf.Area= 1,250 sf Storage= 1,796 cf Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= (not calculated)

#	Invert	Avail.Storage	Storage Description
1	60.90'	5,261 cf	Custom Stage Data (Irregular) Listed below -Impervious
2	58.45'	1,225 cf	25.00'W x 50.00'L x 2.45'H Prismatoid
			3,063 cf Overall x 40.0% Voids

6,486 cf Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
60.90	1,250	117.0	0	0	1,250
62.00	1,776	165.0	1,656	1,656	2,338
63.00	3,542	357.0	2,609	4,265	10,318
63.25	4,446	410.0	996	5,261	13,554

	33.23	4,440	410.0	990	3,201	15,554
#	Routing	Invert	Outlet Devices			
1	Primary	0.00'	0.003930 fpm Ext	iltration over en	tire Surface area	1
2	Primary	57.72	15.0" x 43.0' long	g Culvert RCP,	square edge hea	dwall, Ke= 0.500
	-		Outlet Invert= 57.	56' S= 0.0037 '/'	n= 0.012 Cc=	0.900
3	Device 2	61.25'	4.0" Vert. Orifice	'Grate C= 0.600		
4	Device 2	63.11'	1.50' x 2.83' Horiz	z. Orifice/Grate	Limited to weir flo	ow C= 0.600
5	Secondary	63.25'	10.0' long x 6.0'	breadth Broad-C	rested Rectangu	ılar Weir
	•		Head (feet) 0.20	0.40 0.60 0.80	1.00 1.20 1.40	1.60 1.80 2.00 2.50
			3.00 3.50 4.00 4	1.50 5.00 5.50		
			Coef. (English) 2	.37 2.51 2.70 2	.68 2.68 2.67 2	.65 2.65 2.65 2.65 2.66
			2.66 2.67 2.69 2	2.72 2.76 2.83		

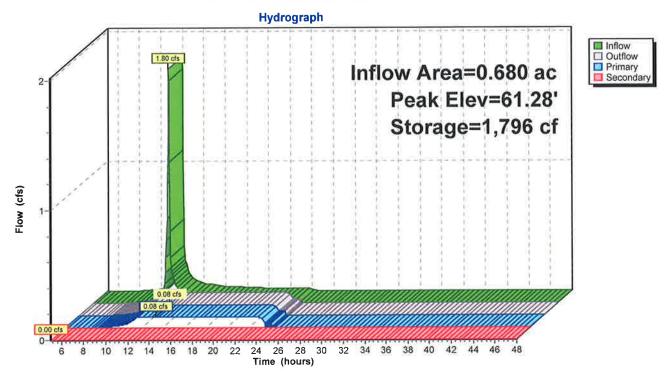
Primary OutFlow Max=0.08 cfs @ 13.29 hrs HW=61.28' TW=60.06' (Dynamic Tailwater)

—1=Exfiltration (Exfiltration Controls 0.08 cfs)

-2=Culvert (Passes 0.00 cfs of 6.52 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.6 fps)

-4=Orifice/Grate (Controls 0.00 cfs)


Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=58.45' TW=57.56' (Dynamic Tailwater)

5=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 7 8/30/2011

Prepared by {enter your company name here}
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Pond BIO: Bioretention w/ Overflow

Example Commercial Site New DURMM whole site

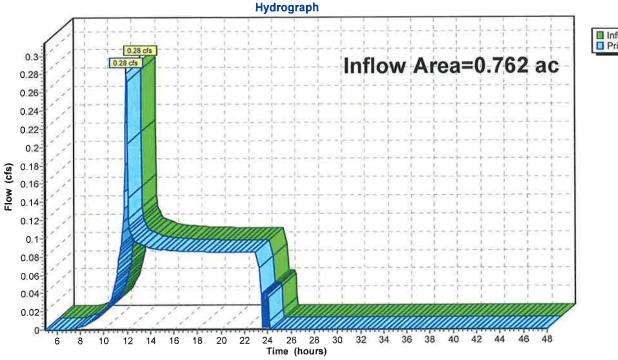
Prepared by {enter your company name here}

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Page 8 8/30/2011

Link 1L: Tailwater Condition = 60.06'

[80] Warning: Exceeded Pond 1P by 2.50' @ 5.00 hrs (26.43 cfs)


Inflow Area = 0.762 ac, Inflow Depth = 1.54" for RPv event Inflow = 0.28 cfs @ 11.97 hrs, Volume= 0.098 af

Primary = 0.28 cfs @ 11.97 hrs, Volume= 0.098 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 60.06'

Link 1L: Tailwater Condition = 60.06'

Example Commercial Site New DURMM whole site adj Fv RCN/poexilhr Fv Rainfall=8.00"

Prepared by {enter your company name here}

Page 2

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1: Subarea 1

Runoff Area=0.680 ac Runoff Depth=4.12" Tc=6.0 min CN=67 Runoff=4.82 cfs 0.234 af

Subcatchment 5: Subarea 5

Runoff Area=0.082 ac Runoff Depth=6.32" Tc=6.0 min CN=86 Runoff=0.83 cfs 0.043 af

Pond 1P: New CB (AP 1)

Peak Elev=60.06' Inflow=1.19 cfs 0.236 af 30.0" x 234.0' Culvert Outflow=1.19 cfs 0.236 af

Pond BIO: Bioretention w/ Overflow

Peak Elev=62.78' Storage=4,911 cf Inflow=4.82 cfs 0.234 af

Primary=0.49 cfs 0.193 af Secondary=0.00 cfs 0.000 af Outflow=0.49 cfs 0.193 af

Link 1L: Tailwater Condition = 60.06'

Inflow=1.19 cfs 0.236 af Primary=1.19 cfs 0.236 af

Total Runoff Area = 0.762 ac Runoff Volume = 0.277 af Average Runoff Depth = 4.36"

Example Commercial Site New DURMM whole site adj Fv RCN/proex#1-hr Fv Rainfall=8.00"

Prepared by {enter your company name here}

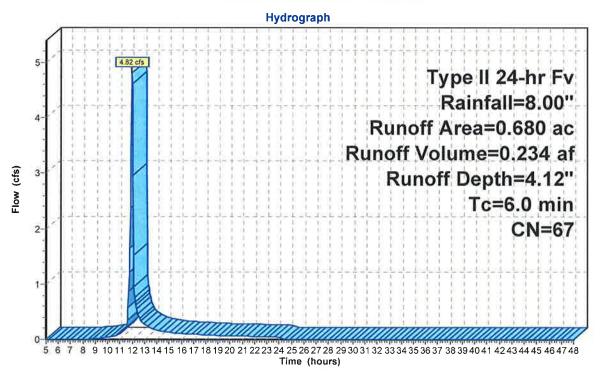
Page 3

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Runoff

Subcatchment1: Subarea 1


Runoff = 4.82 cfs @ 11.97 hrs, Volume=

0.234 af, Depth= 4.12"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr Fv Rainfall=8.00"

	Area	(ac)	CN	Desc	cription			
	0.	680	67	Adju	sted Fv R	CN		
	Tc (min)	Leng		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
_	6.0						Direct Entry	

Subcatchment1: Subarea 1

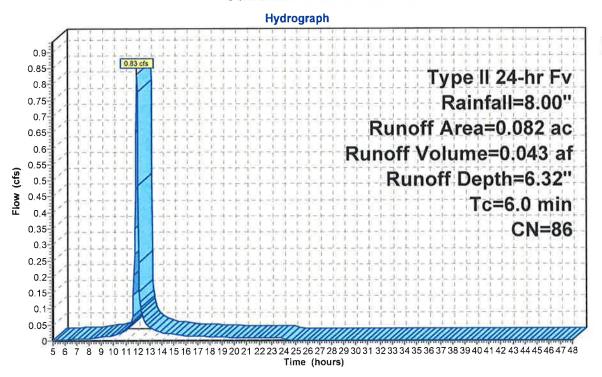
Example Commercial Site New DURMM whole site adj Fv RCN/proexill-r Fv Rainfall=8.00"

Prepared by {enter your company name here}
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

Page 4

8/30/2011

Subcatchment5: Subarea 5


Runoff = 0.83 cfs @ 11.96 hrs, Volume=

0.043 af, Depth= 6.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr Fv Rainfall=8.00"

Area	(ac)	CN	Desc	cription		
0.	.082	86	Adju	sted Fv R	CN	
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0		-				Direct Entry.

Subcatchment5: Subarea 5

Example Commercial Site New DURMM whole site adj Fv RCN/proexilin Fv Rainfall=8.00"

Prepared by {enter your company name here}

Page 5

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond 1P: New CB (AP 1)

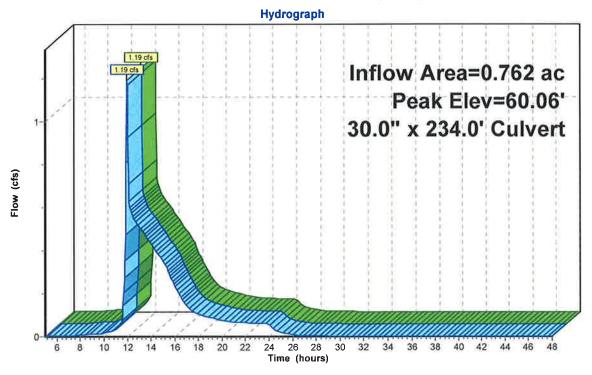
[82] Warning: Early inflow requires earlier time span [57] Hint: Peaked at 60.06' (Flood elevation advised)

Inflow Area = 0.762 ac, Inflow Depth = 3.72" for Fv event Inflow = 1.19 cfs @ 11.98 hrs, Volume= 0.236 af

Outflow = 1.19 cfs @ 11.98 hrs, Volume= 0.236 af, Atten= 0%, Lag= 0.0 min

Primary = 1.19 cfs @ 11.98 hrs, Volume= 0.236 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 60.06' @ 11.98 hrs


Plug-Flow detention time= 0.0 min calculated for 0.236 af (100% of inflow)

Center-of-Mass det. time= 0.0 min (909.2 - 909.2)

#	Routing	Invert	Outlet Devices	
1	Primary	57.56'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500	
			Outlet Invert= 55.76' S= 0.0077 '/' n= 0.012 Cc= 0.900	

Primary OutFlow Max=1.16 cfs @ 11.98 hrs HW=60.06' TW=60.06' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.16 cfs @ 0.3 fps)

Pond 1P: New CB (AP 1)

Example Commercial Site New DURMM whole site adj Fv RCN/prodxfff-hr Fv Rainfall=8.00"

Prepared by {enter your company name here}

Page 6

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond BIO: Bioretention w/ Overflow

Inflow Area =	0.680 ac, Inflow Depth = 4.12"	for Fv event
Inflow =	4.82 cfs @ 11.97 hrs, Volume=	0.234 af
Outflow =	0.49 cfs @ 12.45 hrs, Volume=	0.193 af, Atten= 90%, Lag= 28.4 min
Primary =	0.49 cfs @ 12.45 hrs, Volume=	0.193 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 62.78' @ 12.45 hrs Surf.Area= 1,250 sf Storage= 4,911 cf Plug-Flow detention time= 185.6 min calculated for 0.193 af (83% of inflow) Center-of-Mass det. time= 108.9 min (936.9 - 827.9)

#	Invert	Avail.Storage	Storage Description
1	60.90'	5,261 cf	Custom Stage Data (Irregular) Listed below -Impervious
2	58.45'	1,225 cf	25.00'W x 50.00'L x 2.45'H Prismatoid
			3,063 cf Overall x 40.0% Voids

6,486 cf Total Available Storage

Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
60.90	1,250	117.0	0	0	1,250
62.00	1,776	165.0	1,656	1,656	2,338
63.00	3,542	357.0	2,609	4,265	10,318
63.25	4,446	410.0	996	5,261	13,554

#	Routing	Invert	Outlet Devices
1	Primary	57.72'	15.0" x 43.0' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 57.56' S= 0.0037 '/' n= 0.012 Cc= 0.900
2	Device 1	61.25'	4.0" Vert. Orifice/Grate C= 0.600
3	Device 1	63.11'	1.50' x 2.83' Horiz. Orifice/Grate Limited to weir flow C= 0.600
4	Secondary	63.25'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50
			3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66
			2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=0.49 cfs @ 12.45 hrs HW=62.78' TW=60.06' (Dynamic Tailwater)

-1=Culvert (Passes 0.49 cfs of 9.74 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.49 cfs @ 5.6 fps)

└─3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=58.45' TW=57.58' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 7

Prepared by {enter your company name here}
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond BIO: Bioretention w/ Overflow

Example Commercial Site New DURMM whole site adj Fv RCN/poex#1hr Fv Rainfall=8.00"

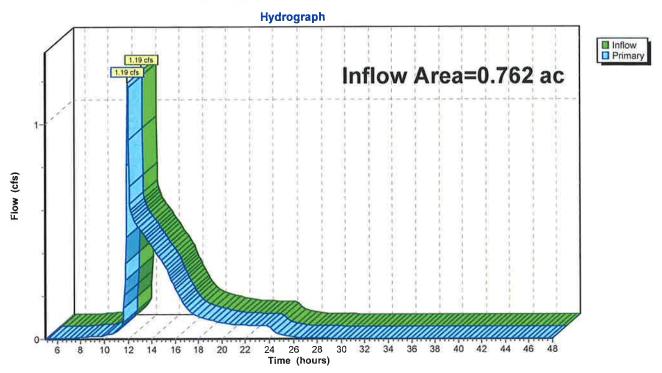
Prepared by {enter your company name here}
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

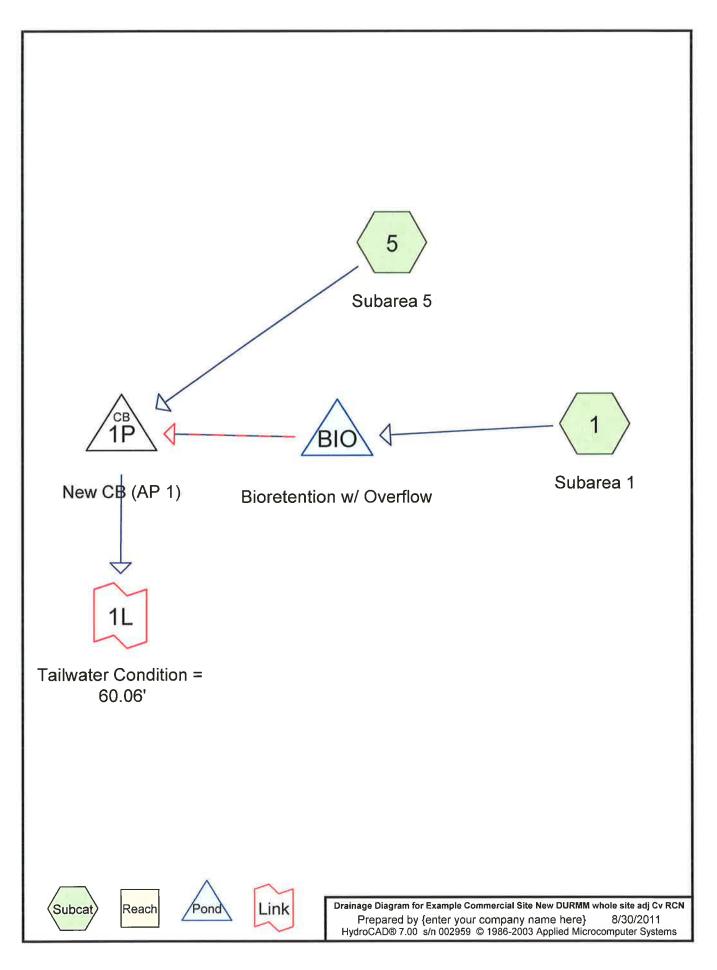
Page 8

8/30/2011

Link 1L: Tailwater Condition = 60.06'

[80] Warning: Exceeded Pond 1P by 2.48' @ 5.00 hrs (26.43 cfs)


Inflow Area = 0.762 ac, Inflow Depth = 3.72" for Fv event Inflow = 1.19 cfs @ 11.98 hrs, Volume= 0.236 af


Primary = 1.19 cfs @ 11.98 hrs, Volume= 0.236 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 60.06'

Link 1L: Tailwater Condition = 60.06'

Example Commercial Site New DURMM whole site adj Cv RCNpe | 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems Page 2

8/30/2011

Time span=5.00-48.00 hrs, dt=0.05 hrs, 861 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Runoff Area=0.680 ac Runoff Depth=0.77" Subcatchment 1: Subarea 1

Tc=6.0 min CN=53 Runoff=0.78 cfs 0.044 af

Runoff Area=0.082 ac Runoff Depth=3.18" Subcatchment 5: Subarea 5

Tc=6.0 min CN=85 Runoff=0.44 cfs 0.022 af

Peak Elev=60.06' Inflow=0.44 cfs 0.025 af Pond 1P: New CB (AP 1)

30.0" x 234.0' Culvert Outflow=0.44 cfs 0.025 af

Peak Elev=61.32' Storage=1,854 cf Inflow=0.78 cfs 0.044 af Pond BIO: Bioretention w/ Overflow

Primary=0.01 cfs 0.003 af Secondary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.003 af

Inflow=0.44 cfs 0.025 af Link 1L: Tailwater Condition = 60.06'

Primary=0.44 cfs 0.025 af

Total Runoff Area = 0.762 ac Runoff Volume = 0.065 af Average Runoff Depth = 1.03"

Example Commercial Site New DURMM whole site adj Cv RC/Npe II 24-hr Cv Rainfall=4.80"

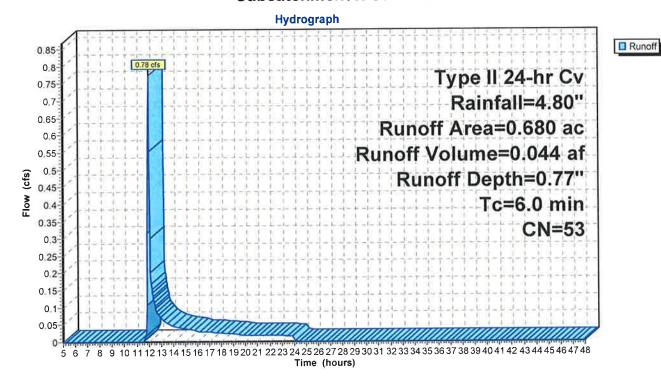
Prepared by {enter your company name here}

Page 3

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Subcatchment1: Subarea 1


Runoff = 0.78 cfs @ 11.99 hrs, Volume=

0.044 af, Depth= 0.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr Cv Rainfall=4.80"

	Area	(ac)	CN	Desc	cription			
	0.	680	53	Adju	sted Cv R	CN		
	Tc (min)	Leng (fe	•	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
-	6.0					-	Direct Entry.	

Subcatchment1: Subarea1

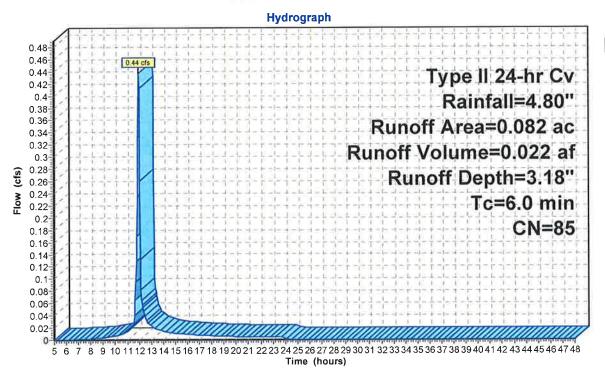
Example Commercial Site New DURMM whole site adj Cv RCMpe | 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here} HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems Page 4

8/30/2011

■ Runoff

Subcatchment5: Subarea 5


0.44 cfs @ 11.97 hrs, Volume= Runoff

0.022 af, Depth= 3.18"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Type II 24-hr Cv Rainfall=4.80"

	Area	(ac)	CN	Desc	cription			
	0.	.082	85	Adju	sted Cv R	CN		
	Tc		•		•		Description	
-	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)		
	6.0						Direct Entry.	

Subcatchment5: Subarea 5

Example Commercial Site New DURMM whole site adj Cv RCMpe || 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here}

Page 5

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond 1P: New CB (AP1)

[57] Hint: Peaked at 60.06' (Flood elevation advised)

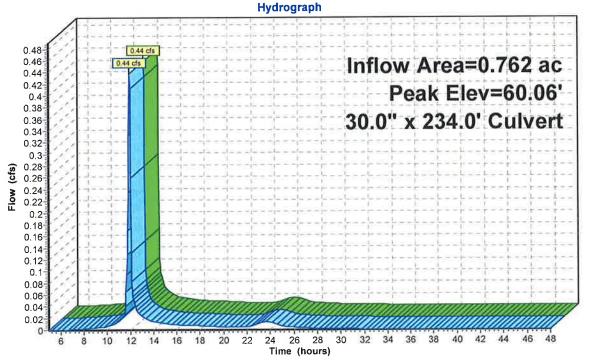
Inflow Area =	0.762 ac, Inflow Depth = 0.39"	for Cv event
Inflow =	0.44 cfs @ 11.97 hrs, Volume=	0.025 af

Outflow = 0.44 cfs @ 11.97 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.0 min

Primary = 0.44 cfs @ 11.97 hrs, Volume= 0.025 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 60.06' @ 11.97 hrs


Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= (not calculated)

#	Routing	Invert	Outlet Devices
1	Primary	57.56'	30.0" x 234.0' long Culvert RCP, square edge headwall, Ke= 0.500
	•		Outlet Invert= 55.76' S= 0.0077 '/' n= 0.012 Cc= 0.900

Primary OutFlow Max=0.42 cfs @ 11.97 hrs HW=60.06' TW=60.06' (Dynamic Tailwater)
—1=Culvert (Barrel Controls 0.42 cfs @ 0.1 fps)

Pond 1P: New CB (AP1)

Example Commercial Site New DURMM whole site adj Cv RCMpe | 24-hr Cv Rainfall=4.80"

Prepared by {enter your company name here}

Page 6

HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Pond BIO: Bioretention w/ Overflow

Inflow Area =	0.680 ac, Inflow Depth = 0.77"	for Cv event
Inflow =	0.78 cfs @ 11.99 hrs, Volume=	0.044 af
Outflow =	0.01 cfs @ 24.06 hrs, Volume=	0.003 af, Atten= 99%, Lag= 724.0 min
Primary =	0.01 cfs @ 24.06 hrs, Volume=	0.003 af
Secondary =	0.00 cfs @ 5.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 61.32' @ 24.06 hrs Surf.Area= 1,250 sf Storage= 1,854 cf Plug-Flow detention time= 875.6 min calculated for 0.003 af (7% of inflow) Center-of-Mass det. time= 687.0 min (1,590.3-903.3)

#	Invert	Avail.Storage	Storage Description
1	60.90'	5,261 cf	Custom Stage Data (Irregular) Listed below -Impervious
2	58.45'	1,225 cf	25.00'W x 50.00'L x 2.45'H Prismatoid
			3,063 cf Overall x 40.0% Voids

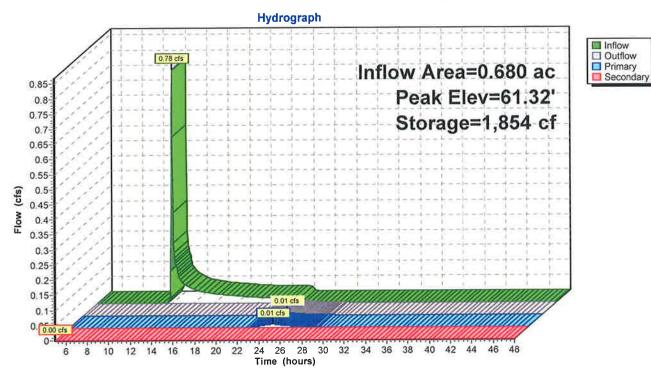
6,486 cf Total Available Storage

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
60.90	1,250	117.0	0	0	1,250
62.00	1,776	165.0	1,656	1,656	2,338
63.00	3,542	357.0	2,609	4,265	10,318
63.25	4,446	410.0	996	5,261	13,554

#	Routing	Invert	Outlet Devices
1	Primary	57.72'	15.0" x 43.0' long Culvert RCP, square edge headwall, Ke= 0.500
			Outlet Invert= 57.56' S= 0.0037 '/' n= 0.012 Cc= 0.900
2	Device 1		4.0" Vert. Orifice/Grate C= 0.600
3	Device 1		1.50' x 2.83' Horiz. Orifice/Grate Limited to weir flow C= 0.600
4	Secondary	63.25'	10.0' long x 6.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50
			3.00 3.50 4.00 4.50 5.00 5.50
			Coef. (English) 2.37 2.51 2.70 2.68 2.68 2.67 2.65 2.65 2.65 2.65 2.66
			2.66 2.67 2.69 2.72 2.76 2.83

Primary OutFlow Max=0.01 cfs @ 24.06 hrs HW=61.32' TW=60.06' (Dynamic Tailwater)

-1=Culvert (Passes 0.01 cfs of 6.63 cfs potential flow)


-2=Orifice/Grate (Orifice Controls 0.01 cfs @ 0.9 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 5.00 hrs HW=58.45' TW=57.56' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 7 8/30/2011

Pond BIO: Bioretention w/ Overflow

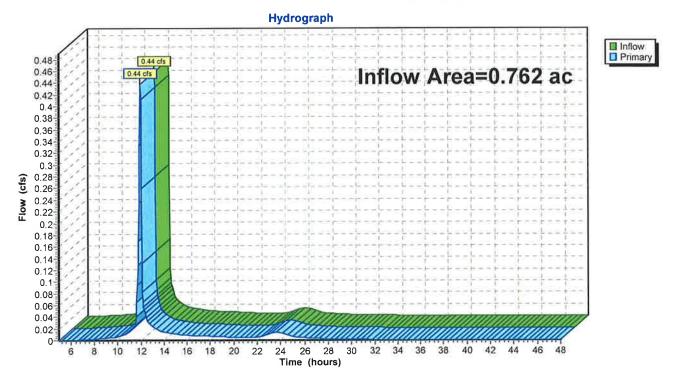
HydroCAD® 7.00 s/n 002959 © 1986-2003 Applied Microcomputer Systems

8/30/2011

Link 1L: Tailwater Condition = 60.06'

[80] Warning: Exceeded Pond 1P by 2.50' @ 5.00 hrs (26.43 cfs)

Inflow Area = 0.762 ac, Inflow Depth = 0.39" for Cv event


Inflow = 0.44 cfs @ 11.97 hrs, Volume= 0.025 af

Primary = 0.44 cfs @ 11.97 hrs, Volume= 0.025 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-48.00 hrs, dt= 0.05 hrs

Fixed water surface elevation= 60.06'

Link 1L: Tailwater Condition = 60.06'

Appendix 7

Checklist

Preliminary Sediment & Stormwater Management Plan Review Checklist

DATE RECEIVED: PROJECT NOMBER:
PROJECT NAME: Dample Plan - COMMUNCIAL SITE
General Information:
 Completed application signed by the owner, review fee, one set of plans and reports, and a completed checklist must be submitted for review. Electronic plan and report program files (i.e., AutoCAD, Microstation, DURMM, HydroCAD, and/or equal/similar) shall be transmitted upon agency request.
2. Provide a copy of the notice to DelDOT, a municipality, or a private entity (i.e., neighboring Homeowner's Association) for the intent to discharge or connect to their stormwater system. The notice shall indicate the proposed condition and that any comments regarding the discharge shall be returned within 30 calendar days, and if no comments are received than
consent to discharge is assumed. If directly copied on the notice, indicate the date of the notice and the reviewer copied:
3 Hydraulic and Hydrology computations shall reflect the proposed site conditions.
4. All plans should be submitted on 24" x 36" (minimum) sheets unless otherwise approved.
5. When two (2) or more sheets are used to illustrate the plan view, an index sheet is required, illustrating the entire project on one (1) 24" x 36" (minimum) sheet.
6. Provide a north arrow on all plans.
7. Provide all plan views to a defined scale with a scale bar.
8 Provide names of adjacent property owners on all plans.
9. Provide existing and proposed contours (if provided) based on NAVD 88 vertical datum at one (1) foot intervals (2 foot intervals can be provided for offsite drainage information based on the latest Lidar information).
10. NA For small projects less than ½ acre of disturbance, provide existing and proposed spot
elevations based on NAVD 88 vertical datum on a fifty-foot grid system. Include high and low points.
11. Locate the site in NAD83 horizontal datum.
12. Provide the contact information for the person or entity responsible for preparing the plans and report, including name, company, address and telephone number. Locate on both the plans and report.
13 Provide the seal of a Licensed Professional in the State of Delaware on all submitted plans and reports.
14. Provide the Preliminary Sediment and Stormwater Management plans in the following order and title. The sheet list is to appear on the Coversheet, and on each plan sheet shall be respectively titled (include the title of the plan within the title block or lower righthand corner of the sheet):
a Coversheet
b Schematic Pre-Construction Site Stormwater Management Plan
c Schematic Construction Site Stormwater Management Plan
d Contributing Drainage Area Plan
e Pre-Limit of Disturbance Drainage Area Plan
f. Post Limit of Disturbance Drainage Area Plan

Appendix 3.02.2.1 Last Revised 05.11 Page 1 of 5

Coversne					
15		der (to duplicate in the title		neet):	
		Project Name (and Phase			
	b	Title of Plan Set: Prelimina	ary Sediment and	Stormwater Manager	nent Plans
	cl	Project Location (including	g watershed, hund	dred, town, county, etc	c., as applicable).
/	d	Project tax map identificat	ion number(s).		
16	Legend indic	ating plan symbols and lir	nes, including but	not limited to, soils, de	rainage area
	information,	grading and site informati	on.		
17	Provide a vid	cinity map with a scale eith	ner at 1" = ½ mile	or 1" = 1 mile, depend	ding on project
	size, and inc	licate the site boundary w	ithin the map. Th	e map shall be no sm	aller than 4"x4" ir
	size.				
18	Project Note	s:			
	a. Parcel	Data:			
	î.	Tax Map Number	(s)		
	îi.	PLUS Number (if	applicable)		
	îii.	DNREC Sedimen	t and Stormwater	Program [or relevant	Delegated
		Agency] Number			
	ίν.	Site Address (or N	Nearest Intersection	ng Street and Distance	e between)
	V.	Latitude and Long	gitude State Plane	coordinates, with app	oroximate
		geographical loca	ition (ie, Benchma	ark #1, Northeast Site	Corner, etc).
		Provide in degree	decimal format.		
	vĩ.	Existing Site Area			
	vii.	Proposed Site Are	ea		
	viii.	Existing Wetland	Area		
	ix.	Proposed Dischar	rge Location(s)		
	X.	Proposed Total Li	imit of Disturbanc	e per Discharge Locat	tion
	b. Contac	t Data:			
	i.	Owner's Name, Title:	Owner	Land Developer	Designer
	ii.	Company/LLC:	Owner	Land Developer	Designer
	iii.	Full Street Address:	Owner	Land Developer	Designer
	iv.	Phone Number:	Owner	Land Developer	Designer
	V.	Fax Number:	Owner	Land Developer	Designer
19	Include a Sit	e Designer Certification th	nat states "I hereb	y certify that this plan	has been
		der my supervision and to			
	state and lo	cal regulations and ordina	nces." <u>This shall</u>	be signed in ink or an	<u>original</u>
	<u>reproducible</u>				
20	Provide a lis	t of all sheets and their co	rresponding shee	et number for all Prelin	ninary Sediment
	and Stormw	ater Management Plans.			

Appendix 3.02.2.1 Last Revised 05.11 Page 2 of 5

Schematic Construction Site Stormwater Management Plans:

The purpose of the Schematic Construction Site Stormwater Management Plan is to provide a preliminary design of the site's phasing in relation to the site's existing conditions and it's construction and stormwater facility locations. It will eventually be further developed into the Pre-Construction and Construction Site Stormwater Management Plan for the full plan submittal.

21	_Scn	ematic Pre-Construction Site Stormwater Management Plan (Il required, as determined at
	the	SAS review meeting):
	a.	Include the entire site boundary in an existing conditions plan view (i.e., site boundary, existing contours, wetlands, treelines, existing structures/utilities to remain or to be removed, etc).
	b.	Indicate the approximate limit of disturbance per phase of construction. Provide a legend indicating the total disturbed acreage per limit of construction.
	C.	Indicate the location of all perimeter controls, stockpile locations, sediment trapping facilities, and other construction stormwater management controls needed for demolition and bulk grading (i.e., silt fence, stabilized construction entrances, temporary swales, sediment basins, etc).
	d.	Proposed contours are not required.
	e.	Provide a legend indicating the lines and symbols used to define the site and construction stormwater controls.
22.	Sch	ematic Construction Site Stormwater Management Plan:
	а.	Include the entire site boundary in an existing conditions plan view (i.e., site boundary, existing contours, wetlands, treelines, existing structures to remain, etc).
	b.	Include a preliminary site plan view overlaid with the existing conditions. Include all lot and/or building outlines; right-of-ways and/or paved areas (whichever is less constrictive); and proposed stormwater locations including facilities, structures and pipes.
	C.	Indicate the approximate limit of disturbance per phase of construction. Provide a legend indicating the total disturbed acreage per limit of construction.
	d.	Indicate the location of all construction site stormwater controls, including perimeter controls, sediment controls, water controls, and pollution prevention controls. (i.e., silt fence, stabilized construction entrances, temporary swales, sediment basins, etc).
	e.	Proposed contours are not required, but should be included when available. If not flow arrows showing the drainage intent can suffice.
	f.	Provide a legend indicating the lines and symbols used to define the site and construction stormwater controls.

Drainage Area Plans:

The drainage area plans shall provide a graphic portrayal of the information that is contained with the DURMM worksheets. Any additional hydraulic or hydrologic computations that are required to show compliance with the *Delaware Sediment and Stormwater Regulations* may require additional drainage area or watershed plans (i.e., to satisfy the Cv and Fv requirements). These plans are not prescribed below, but shall follow similar guidelines, clearly indicate the parameters used within the calculations, and be contained within the plan Sediment and Stormwater Management Plan set.

23.	-/	Cont	tributing Drainage Area Plan
		a.	Provide a plan correlating to the Contributing Area RCN worksheet (post
			development model for the entire drainage area) for each subarea (subareas may
			be combined onto the same sheet, so long as they are clearly distinguishable).
		b.	Provide soils mapping on the plan, using the latest NRCS soil information, with a
			general description of each soil.
		C.	Indicate the LOD and the OLOD contributing areas, separated per their respective
			land cover and soil type classification. Provide the area of each designation.
		d.	Provide a legend indicating the various landuse covers (a hatch shall be provided
			for each type of landuse).
		e.	Provide a summary table indicating the sub-areas and their respective point of
			/ analysis, total area, and RCN.
		f.	Show the Tc path for the area outside the LOD as used in the OLOD worksheet.
		g.	Show the Tc path for any other areas that require further analysis using other H&H
			software.
24.		Pre-l	Limit of Disturbance Drainage Area Plan
		a.	Provide a plan correlating to the Pre LOD information requested in the LOD
			worksheet (location of woods and meadow condition within the LOD per sub-area
			prior to disturbance) for each subarea (subareas may be combined onto the same
			sheet, so long as they are clearly distinguishable).
		b.	Provide soils mapping on the plan, using the latest NRCS soil information, with a
			general description of each soil.
		C.	Indicate the areas of woods and/or meadow condition per soil type classification.
			Provide the area of each designation.
		d.	Provide a legend indicating the various landuse covers (a hatch shall be provided
			for each type of landuse).
		e.	Provide a summary table indicating the sub-areas and their respective point of
			analysis, total area, and RCN.
25.		-	t Limit of Disturbance Drainage Area Plan
		a.	Provide a plan correlating to the Post LOD information requested in the LOD
			worksheet (location of all impervious areas). This should only be done if the LOD
		la.	and OLOD cannot be shown on the Contributing Area Plan due to sizing.
		b.	Provide soils mapping on plan, using the latest NRCS soil information, with a
		_	general description of each soil. Indicate the impervious area with the subarea. Provide the area of each
		C.	designation.
		а	Provide a legend indicating the various landuse covers (a hatch shall be provided
		d.	for each type of landuse).
		_	Provide a summary table indicating the sub-areas and their respective point of
		e.	analysis, total area, and RCN.
			anarysis, total area, and 17011.

	ater Management Report:
26	Provide information in the report in the following order:
	a. Coverpage
	b Table of Contents
	c Site Narrative:
	a Introduction
	b Existing Conditions describing the drainage patterns, landuse(s), and
	existing features. Include 2007 site aerial, photos of site conditions and at all
	discharge locations.
	c. Existing Soils description per the NRCS Web Soil Survey including the
	hydrologic soil group; and soil testing results from on-site soil testing.
	d. Post Development Conditions, including summary of the proposed
	development, the proposed drainage system, indication of why the standards or
	performance approach was utilized, methods for RPv, Cv, and Fv compliance,
	requests for waivers and/or offsets, etc.
	e. Construction Site Conditions, describing methods to prevent sediment and
	pollution discharge and illicit transportation. f: Conclusion
	
	e. Additional hydraulic and hydrologic computations, such as pond and discharge pipe/swale routings.
	f. Supplementary Construction Site computations (i.e., temporary sediment basin
	design worksheet, anti-seep collar sizing, forebay sizing, etc).
	 g Soil report(s) including boring locations and log reports. h Appendix containing any supplemental information (information previously
	included within the Stormwater Assessment Study report does not need to be
	duplicated).
27	Provide drainage calculations for the RPv, Cv, and Fv events using the latest DURMM model
	and other approved H&H software as required.
28.	_ All inputted data must be supported by surveys, Lidar information, photos, aerials, maps, etc.
10.5000	and shall be referenced in the report and/or drainage area plans. Information previously
	included within the Stormwater Assessment Study submittal is acceptable and does not need
/	to be duplicated.
29.	All hydrologic computations shall be accomplished using the most recent version of USDA,
	Soil Conservation Service TR-20 or TR-55. The storm duration for computational purposes
	shall be the 24-hour rainfall event. For projects south of the Chesapeake and Delaware (C&D)
	Canal, the Delmarva Unit Hydrograph shall be used.
30	The pre-development condition shall be based off of the 2007 aerial photography provided by
	the State of Delaware, through the Delaware DataMIL and online GIS mapping. This may not
	directly correlate to current site conditions if the landuse has changed; however, the 2007
	landuse shall be used regardless if more or less conservative than the current landuse.
31	_ The pre-development peak discharge rate shall be computed assuming that all land uses in
	the site to be developed are in good hydrologic conditions.

Appendix 3.02.2.1 Last Revised 05.11 Page 5 of 5