DELAWARE TECHNICAL REFERENCE MANUAL

1 July 2016

Table of Contents

Structure of this TRM	3
Basement Insulation	4
Crawlspace Insulation	12
Efficient Windows - Energy Star Retrofit	20
Exterior Door	23
Rim Joist Insulation	26
Wall Insulation	30
APPENDIX A: Residential Building Model Prototypes	38
Mid-Atlantic TRM - begins after page 40, pages numbered as in original	

Structure of this TRM

The Delaware TRM consists of the following components.

- Delaware-specific measure characterizations for six (6) shell measures (basement insulation, crawlspace insulation, efficiency window retrofit, exterior door, rim joist insulation, and wall insulation), including an appendix describing the residential building model used to develop the characterizations.
- The Mid-Atlantic TRM as published in May 2015 by the Northeast Energy Efficiency Partnership.

In the event of any differences between the Delaware-specific measure characterizations and the data contained in the Mid-Atlantic TRM, the Delaware-specific information should be used for all aspects of calculating savings from those measures.

Basement Insulation

Unique Measure Code: Effective Date: June 2016

End Date: TBD

Measure Description

This measure characterization is for the installation of new insulation in the basement wall of a residential building. The measure assumes that an auditor, contractor or utility staff member is on location, and will measure and record the existing and new insulation thickness and type (to calculate R-values), and the surface area of insulation added.

This is a retrofit measure.

Definition of Baseline Condition

The R-value should consider installation conditions, such as insulation compression and void fraction.

Definition of Efficient Condition

The new insulation should meet any qualification criteria required for participation in the program. The R-value should consider installation conditions, such as insulation compression and void fraction.

Annual Energy Savings Algorithm

 $\Delta kWh = kSF \times \Delta kWh/kSF$

Where:

kSF = area of installed insulation (1000 sq. ft.)

ΔkWh/kSf = unit energy savings from lookup table

Unit energy savings values are provided for a set of baseline and measure R-values; and HVAC system types. Values are provided for homes with and without cooling, and for homes with gas, heat pump, or electric resistance heating systems. The R-values are for the insulation layer only; R-values of building materials are included in the simulation model. Interpolation within the tables is permissible for R-values not explicitly listed. The baseline and measure R-values should consider installation conditions such as insulation compression and coverage. Insulation compression adjustment factors (Fcomp) are shown below:

% Compression	Fcomp
0%	1.00
5%	0.97
10%	0.93
15%	0.89
20%	0.85

An additional adjustment should be taken for the insulation coverage. This factor (Fvoid) is determined by the installation grade or void fraction; and the ratio of the insulation R-value to the full assembly R-value. The insulation coverage adjustment is shown below:

RmfgxFcomp /	F۱	oid /oid
Rtotal	2% Void (Grade II)	5% Void (Grade III)
0.86	0.87	0.73
0.88	0.85	0.70
0.9	0.83	0.66
0.92	0.80	0.60
0.94	0.75	0.53
0.96	0.66	0.43
0.98	0.49	0.28

The adjusted R-value is the nominal R-value times the adjustment factors:

Radj = Rnominal x Fcomp x Fvoid

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW_S = kSF \times \Delta kW/kSF \times CF_S$

Where:

ΔkW/kSF

= unit demand savings from lookup table

 CF_{SSP}

= Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{-1}$

¹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

 CF_{PIM}

= PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather

 $= 0.66^{2}$

Annual Fossil Fuel Savings Algorithm

 Δ MMBTU = kSF x Δ MMBTU/kSF

Where:

ΔMMBTU/kSF = unit fossil fuel energy savings from lookup table

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual installation and labor cost to perform the installation work.

Measure Life

The measure life is assumed to be 25 yrs³.

Operation and Maintenance Impacts

n/a

² Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Reference Tables⁴

AC with Gas Heat; Single Family; Basement Wall Insulation

	Base R- Value		0	<i>y</i> ,	5			10			11			13		
City	Measure R- Value	kWh/ kSF	kW/ kSF	MMBtu/ kSF												
	5	-51.4	-0.019	3.6												
	10	-70.2	-0.038	5.2	-18.9	-0.019	1.6									
Dover	11	-72.9	-0.038	5.4	-21.6	-0.019	1.8	-2.7	0.000	0.2						
DO O	13	-79.1	-0.038	5.8	-27.7	-0.019	2.1	-8.9	0.000	0.6	-6.2	0.000	0.3			
	19	-90.5	-0.038	6.5	-39.1	-0.019	2.9	-20.2	0.000	1.3	-17.5	0.000	1.1	-11.4	0.000	0.8
	25	-97.6	-0.038	7.0	-46.2	-0.019	3.3	-27.3	0.000	1.8	-24.6	0.000	1.6	-18.5	0.000	1.2
	5	-55.4	-0.038	3.8												
Wilmington	10	-74.3	-0.058	5.4	-18.9	-0.019	1.6									
ng1	11	-77.4	-0.058	5.6	-21.9	-0.019	1.8	-3.1	0.000	0.2						
<u>=</u>	13	-83.9	-0.058	6.0	-28.5	-0.019	2.2	-9.6	0.000	0.6	-6.5	0.000	0.4			
Ĭ	19	-99.3	-0.077	6.8	-43.9	-0.038	3.0	-25.0	-0.019	1.3	-21.9	-0.019	1.1	-15.4	-0.019	0.8
	25	-105.3	-0.077	7.3	-49.8	-0.038	3.4	-31.0	-0.019	1.8	-27.9	-0.019	1.6	-21.4	-0.019	1.3
	5	-49.5	-0.019	2.8												
>	10	-66.4	-0.038	4.0	-16.9	-0.019	1.2									
Salisbury	11	-71.2	-0.038	4.1	-21.7	-0.019	1.3	-4.8	0.000	0.2						
alis	13	-76.2	-0.038	4.4	-26.8	-0.019	1.6	-9.8	0.000	0.4	-5.0	0.000	0.3			
Š	19	-89.9	-0.038	5.0	-40.4	-0.019	2.2	-23.5	0.000	1.0	-18.7	0.000	0.8	-13.7	0.000	0.6
	25	-97.2	-0.038	5.4	-47.7	-0.019	2.6	-30.8	0.000	1.4	-26.0	0.000	1.2	-21.0	0.000	0.9

 $^{^{\}rm 4}$ Insulation measure savings from building energy simulations. See Appendix A.

Heat Pump; Single Family; Basement Wall Insulation

	Base R- Value	()	Ĺ	5	1	0	1	1	1	3
City	Measure R- Value	kWh/ kSF	kW/ kSF								
	5	292.1	-0.058								
	10	415.9	-0.077	123.7	-0.019						
Dover	11	428.6	-0.077	136.5	-0.019	12.7	0.000				
Dov	13	460.7	-0.077	168.6	-0.019	44.8	0.000	32.1	0.000		
	19	518.5	-0.096	226.3	-0.038	102.6	-0.019	89.9	-0.019	57.7	-0.019
	25	554.3	-0.096	262.1	-0.038	138.4	-0.019	125.7	-0.019	93.5	-0.019
	5	295.0	-0.038								
<u> </u>	10	419.4	-0.058	124.3	-0.019						
Wilmington	11	432.8	-0.058	137.8	-0.019	13.5	0.000				
E E	13	460.5	-0.058	165.5	-0.019	41.2	0.000	27.7	0.000		
×	19	522.1	-0.077	227.1	-0.038	102.8	-0.019	89.3	-0.019	61.6	-0.019
	25	560.8	-0.077	265.8	-0.038	141.5	-0.019	128.0	-0.019	100.3	-0.019
	5	165.5	-0.038								
	10	236.3	-0.038	70.8	0.000						
bury	11	247.3	-0.038	81.8	0.000	11.0	0.000				
Salisbury	13	264.0	-0.058	98.5	-0.019	27.7	-0.019	16.7	-0.019		
S	19	297.5	-0.058	132.0	-0.019	61.2	-0.019	50.2	-0.019	33.5	0.000
	25	314.3	-0.058	148.8	-0.019	77.9	-0.019	67.0	-0.019	50.2	0.000

AC with Electric Heat; Single Family; Basement Wall Insulation

	Base R-Value				5	1	0	1	1	13	
City	Measure R- Value	kWh/ kSF	kW/ kSF								
	5	728.8	-0.058								
	10	1035.8	-0.077	307.0	-0.019						
Dover	11	1075.3	-0.077	346.4	-0.019	39.5	0.000				
Dov	13	1150.1	-0.077	421.3	-0.019	114.3	0.000	74.9	0.000		
	19	1296.2	-0.096	567.4	-0.038	260.4	-0.019	220.9	-0.019	146.1	-0.019
	25	1387.2	-0.096	658.4	-0.038	351.4	-0.019	312.0	-0.019	237.1	-0.019
	5	757.3	-0.038								
<u> </u>	10	1079.1	-0.058	321.8	-0.019						
Wilmington	11	1120.9	-0.058	363.5	-0.019	41.8	0.000				
<u>=</u>	13	1193.6	-0.058	436.3	-0.019	114.5	0.000	72.7	0.000		
>	19	1343.7	-0.058	586.4	-0.019	264.6	0.000	222.9	0.000	150.1	0.000
	25	1442.5	-0.077	685.1	-0.038	363.4	-0.019	321.6	-0.019	248.8	-0.019
	5	523.7	-0.019								
>	10	749.0	-0.038	225.4	-0.019						
pur	11	776.8	-0.038	253.1	-0.019	27.7	0.000				
Salisbury	13	827.6	-0.038	303.9	-0.019	78.5	0.000	50.8	0.000		
S	19	931.7	-0.058	408.0	-0.038	182.6	-0.019	154.9	-0.019	104.1	-0.019
	25	997.5	-0.058	473.8	-0.038	248.5	-0.019	220.7	-0.019	169.9	-0.019

Electric Heat, no AC; Single Family; Basement Wall Insulation

	Base R-Value	()	Ę	5	1	0	1	1	13	
City	Measure R- Value	kWh/ kSF	kW/ kSF								
	5	795.0	0.000								
	10	1131.4	0.000	336.4	0.000						
Dover	11	1176.7	0.000	381.6	0.000	45.2	0.000				
Do	13	1254.2	0.000	459.2	0.000	122.8	0.000	77.6	0.000		
	19	1415.1	0.000	620.1	0.000	283.7	0.000	238.5	0.000	160.9	0.000
	25	1515.6	0.000	720.6	0.000	384.1	0.000	338.9	0.000	261.4	0.000
	5	828.7	0.000								
	10	1179.4	0.000	350.7	0.000						
Wilmington	11	1226.3	0.000	397.6	0.000	47.0	0.000				
<u>=</u>	13	1306.8	0.000	478.1	0.000	127.4	0.000	80.4	0.000		
≯	19	1474.0	0.000	645.3	0.000	294.6	0.000	247.7	0.000	167.2	0.000
	25	1579.1	0.000	750.4	0.000	399.7	0.000	352.8	0.000	272.3	0.000
	5	583.9	0.000								
>	10	831.2	0.000	247.3	0.000						
Salisbury	11	864.5	0.000	280.6	0.000	33.3	0.000				
alis	13	921.1	0.000	337.2	0.000	89.9	0.000	56.6	0.000		
S	19	1038.7	0.000	454.8	0.000	207.5	0.000	174.2	0.000	117.6	0.000
	25	1113.0	0.000	529.1	0.000	281.8	0.000	248.5	0.000	191.9	0.000

DELAWARE TECHNICAL REFERENCE MANUAL / 2016 Page 11 of 40

Gas Heat, no AC; Single Family; Basement Wall Insulation

Od3 Tica		gie i aiii	nlly; Basement wall insulation													
	Base R- Value		0		5			10			11			13		
City	Measure R- Value	kWh/ kSF	kW/ kSF	MMBtu/ kSF	kWh/ kSF	kW/ kSF	MMBtu/ kSF	kWh/ kSF	kW/ kSF	MMBtu/ kSF	kWh/ kSF	kW/ kSF	MMBtu/ kSF	kWh/ kSF	kW/ kSF	MMBtu/ kSF
	5	18.7	0.000	3.8												
	10	26.6	0.000	5.4	7.9	0.000	1.6									
Dover	11	27.5	0.000	5.6	8.9	0.000	1.8	1.0	0.000	0.2						
Do	13	29.4	0.000	5.9	10.8	0.000	2.2	2.9	0.000	0.6	1.9	0.000	0.4			
	19	33.1	0.000	6.7	14.4	0.000	2.9	6.5	0.000	1.3	5.6	0.000	1.1	3.7	0.000	0.8
	25	35.4	0.000	7.2	16.7	0.000	3.4	8.9	0.000	1.8	7.9	0.000	1.6	6.0	0.000	1.3
	5	19.4	0.000	3.9												
no:	10	27.7	0.000	5.6	8.3	0.000	1.7									
ngt	11	28.9	0.000	5.8	9.4	0.000	1.9	1.2	0.000	0.2						
Wilmington	13	30.6	0.000	6.2	11.2	0.000	2.3	2.9	0.000	0.6	1.7	0.000	0.4			
Mi	19	34.6	0.000	6.9	15.2	0.000	3.0	6.9	0.000	1.4	5.8	0.000	1.2	4.0	0.000	0.8
	25	37.1	0.000	7.4	17.7	0.000	3.5	9.4	0.000	1.9	8.3	0.000	1.7	6.5	0.000	1.3
	5	13.3	0.000	2.9												
>	10	19.1	0.000	4.1	5.8	0.000	1.2									
Salisbury	11	19.8	0.000	4.3	6.5	0.000	1.4	0.8	0.000	0.2						
alis	13	21.0	0.000	4.5	7.7	0.000	1.7	1.9	0.000	0.4	1.2	0.000	0.3			
Š	19	23.7	0.000	5.1	10.4	0.000	2.3	4.6	0.000	1.0	3.8	0.000	0.9	2.7	0.000	0.6
	25	25.4	0.000	5.5	12.1	0.000	2.6	6.4	0.000	1.4	5.6	0.000	1.2	4.4	0.000	0.9

CrawIspace Insulation

Unique Measure Code: Effective Date: June 2016

End Date: TBD

Measure Description

This measure characterization is for the installation of new insulation in the crawlspace wall of a residential building. The measure assumes that an auditor, contractor or utility staff member is on location, and will measure and record the existing and new insulation thickness and type (to calculate R-values), and the surface area of insulation added.

This is a retrofit measure.

Definition of Baseline Condition

The R-value should consider installation conditions, such as insulation compression and void fraction.

Definition of Efficient Condition

The new insulation should meet any qualification criteria required for participation in the program. The R-value should consider installation conditions, such as insulation compression and void fraction.

Annual Energy Savings Algorithm

 $\Delta kWh = kSF \times \Delta kWh/kSF$

Where:

kSF = area of installed insulation (1000 sq. ft.)

 $\Delta kWh/kSF$ = unit energy savings from lookup table

Unit energy savings values are provided for a set of baseline and measure R-values; and HVAC system types. Values are provided for homes with and without cooling, and for homes with gas, heat pump, or electric resistance heating systems. The R-values are for the insulation layer only; R-values of building materials are included in the simulation model. Interpolation within the tables is permissible for R-values not explicitly listed. The baseline and measure R-values should consider installation conditions such as insulation compression and coverage. Insulation compression adjustment factors (Fcomp) are shown below:

% Compression	Fcomp
0%	1.00
5%	0.97
10%	0.93
15%	0.89
20%	0.85

An additional adjustment should be taken for the insulation coverage. This factor (Fvoid) is determined by the installation grade or void fraction; and the ratio of the insulation R-value to the full assembly R-value. The insulation coverage adjustment is shown below:

RmfgxFcomp /	F۱	oid/
Rtotal	2% Void (Grade II)	5% Void (Grade III)
0.86	0.87	0.73
0.88	0.85	0.70
0.90	0.83	0.66
0.92	0.80	0.60
0.94	0.75	0.53
0.96	0.66	0.43
0.98	0.49	0.28

The adjusted R-value is the nominal R-value times the adjustment factors:

Radj = Rnominal x Fcomp x Fvoid

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW_S = kSF \times \Delta kW/kSF \times CF_S$

Where:

ΔkW/kSF

= unit demand savings from lookup table

 CF_{SSP}

= Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{5}$

_

⁵ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

 CF_{PJM}

= PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{6}$

Annual Fossil Fuel Savings Algorithm

 Δ MMBTU = kSF x Δ MMBTU/kSF

Where:

ΔMMBTU/kSF = unit fossil fuel energy savings from lookup table

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual installation and labor cost to perform the installation work.

Measure Life

The measure life is assumed to be 25 yrs⁷.

Operation and Maintenance Impacts

n/a

⁶ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

⁷ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Reference Tables⁸

AC with Gas Heat; Single Family; Crawlspace Wall Insulation

	Base R-Value	, · · · · ·	0			5			10			11			13	
City	Measure R- Value	kWh/ kSF	kW/ kSF	MMBtu/ kSF												
	5	-229.8	-0.115	13.2												
	10	-271.7	-0.154	15.6	-42.0	-0.038	2.3									
Dover	11	-277.5	-0.154	15.8	-47.7	-0.038	2.6	-5.8	0.000	0.3						
Dov	13	-288.7	-0.154	16.2	-58.9	-0.038	3.0	-16.9	0.000	0.7	-11.2	0.000	0.4			
	19	-299.1	-0.154	17.0	-69.3	-0.038	3.8	-27.3	0.000	1.4	-21.6	0.000	1.2	-10.4	0.000	0.8
	25	-304.8	-0.154	17.4	-75.1	-0.038	4.2	-33.1	0.000	1.8	-27.3	0.000	1.6	-16.2	0.000	1.2
	5	-249.4	-0.192	13.9												
L	10	-312.9	-0.231	16.4	-63.5	-0.038	2.5									
Wilmington	11	-305.6	-0.231	16.7	-56.2	-0.038	2.8	7.3	0.000	0.3						
'ilmi	13	-318.3	-0.231	17.1	-68.9	-0.038	3.2	-5.4	0.000	0.7	-12.7	0.000	0.4			
>	19	-332.6	-0.231	17.9	-83.1	-0.038	4.0	-19.6	0.000	1.5	-26.9	0.000	1.2	-14.2	0.000	0.8
	25	-334.9	-0.231	18.3	-85.5	-0.038	4.4	-21.9	0.000	1.9	-29.3	0.000	1.7	-16.6	0.000	1.2
	5	-245.6	-0.077	10.6												
	10	-291.4	-0.077	12.5	-45.8	0.000	1.9									
bury	11	-295.2	-0.115	12.7	-49.7	-0.038	2.1	-3.8	-0.038	0.2						
Salisbury	13	-293.7	-0.115	13.0	-48.1	-0.038	2.5	-2.3	-0.038	0.6	1.5	0.000	0.4			
	19	-310.2	-0.115	13.6	-64.7	-0.038	3.0	-18.9	-0.038	1.2	-15.0	0.000	1.0	-16.6	0.000	0.6
	25	-321.4	-0.115	14.0	-75.8	-0.038	3.4	-30.0	-0.038	1.5	-26.2	0.000	1.3	-27.7	0.000	0.9

⁸ Insulation measure savings from building energy simulations. See Appendix A.

Heat Pump; Single Family; Crawlspace Wall Insulation

	Base R- Value	0)	5		1	0	1	1	13	
City	Measure R-Value	kWh/ kSF	kW/ kSF								
	5	977.3	-0.231								
_	10	1149.0	-0.308	171.7	-0.077						
Dover	11	1165.1	-0.308	187.8	-0.077	16.2	0.000				
ă	13	1189.4	-0.308	212.1	-0.077	40.4	0.000	24.2	0.000		
	19	1244.8	-0.308	267.5	-0.077	95.8	0.000	79.7	0.000	55.4	0.000
	25	1274.4	-0.308	297.2	-0.077	125.5	0.000	109.3	0.000	85.1	0.000
	5	1007.7	-0.192								
uc	10	1181.3	-0.231	173.6	-0.038						
Wilmington	11	1199.8	-0.231	192.1	-0.038	18.5	0.000				
Vilm	13	1229.4	-0.231	221.7	-0.038	48.1	0.000	29.6	0.000		
>	19	1282.9	-0.231	275.2	-0.038	101.6	0.000	83.1	0.000	53.5	0.000
	25	1318.3	-0.269	310.6	-0.077	137.0	-0.038	118.6	-0.038	88.9	-0.038
	5	573.1	-0.154								
>	10	675.5	-0.192	102.4	-0.038						
spur	11	685.9	-0.192	112.8	-0.038	10.4	0.000				
Salisbury	13	702.5	-0.192	129.3	-0.038	26.9	0.000	16.6	0.000		
	19	733.6	-0.192	160.5	-0.038	58.1	0.000	47.7	0.000	31.2	0.000
	25	749.8	-0.231	176.7	-0.077	74.3	-0.038	63.9	-0.038	47.3	-0.038

DELAWARE TECHNICAL REFERENCE MANUAL / 2016 Page 17 of 40

AC with Electric Heat; Single Family; Crawlspace Wall Insulation

	Base R- Value	0	·	5		1	0	1	1	13	
City	Measure R-Value	kWh/ kSF	kW/ kSF								
	5	2580.8	-0.192								
	10	3031.9	-0.231	451.1	-0.038						
Dover	11	3082.0	-0.231	501.2	-0.038	50.0	0.000				
Do	13	3155.1	-0.231	574.3	-0.038	123.2	0.000	73.1	0.000		
	19	3305.6	-0.269	724.8	-0.077	273.7	-0.038	223.6	-0.038	150.5	-0.038
	25	3389.9	-0.269	809.1	-0.077	358.0	-0.038	307.9	-0.038	234.8	-0.038
	5	2715.2	-0.154								
L _O	10	3196.3	-0.192	481.1	-0.038						
Wilmington	11	3247.9	-0.192	532.7	-0.038	51.6	0.000				
<u>=</u>	13	3326.4	-0.192	611.2	-0.038	130.1	0.000	78.5	0.000		
>	19	3478.8	-0.231	763.7	-0.077	282.5	-0.038	230.9	-0.038	152.4	-0.038
	25	3562.7	-0.231	847.6	-0.077	366.4	-0.038	314.9	-0.038	236.3	-0.038
	5	1935.3	-0.154								
>	10	2273.7	-0.192	338.3	-0.038						
Salisbury	11	2311.0	-0.192	375.7	-0.038	37.3	0.000				
Salis	13	2368.4	-0.192	433.0	-0.038	94.7	0.000	57.4	0.000		
,	19	2478.4	-0.192	543.1	-0.038	204.8	0.000	167.4	0.000	110.1	0.000
	25	2545.4	-0.192	610.1	-0.038	271.7	0.000	234.4	0.000	177.1	0.000

DELAWARE TECHNICAL REFERENCE MANUAL / 2016 Page 18 of 40

Electric Heat, no AC; Single Family; Crawlspace Wall Insulation

	Base R- Value	0		Ę	ō	1	0	1	1	13	
City	Measure R- value	kWh/ kSF	kW/ kSF								
	5	2873.7	0.000								
	10	3378.4	0.000	504.6	0.000						
Dover	11	3433.0	0.000	559.3	0.000	54.7	0.000				
Δ	13	3521.2	0.000	647.4	0.000	142.8	0.000	88.1	0.000		
	19	3684.4	0.000	810.6	0.000	306.0	0.000	251.3	0.000	163.2	0.000
	25	3776.0	0.000	902.2	0.000	397.6	0.000	343.0	0.000	254.8	0.000
	5	3025.4	0.000								
uo	10	3557.7	0.000	532.3	0.000						
Wilmington	11	3615.5	0.000	590.1	0.000	57.7	0.000				
<u>=</u>	13	3708.2	0.000	682.8	0.000	150.5	0.000	92.8	0.000		
N N	19	3882.2	0.000	856.8	0.000	324.5	0.000	266.7	0.000	174.0	0.000
	25	3978.4	0.000	953.0	0.000	420.7	0.000	363.0	0.000	270.2	0.000
	5	2209.0	0.000								
>	10	2599.7	0.000	390.7	0.000						
Salisbury	11	2642.0	0.000	433.0	0.000	42.3	0.000				
alis	13	2709.4	0.000	500.4	0.000	109.7	0.000	67.4	0.000		
S	19	2836.0	0.000	627.0	0.000	236.3	0.000	194.0	0.000	126.6	0.000
	25	2906.5	0.000	697.5	0.000	306.8	0.000	264.4	0.000	197.1	0.000

Gas Heat with No AC; Single Family; Crawlspace Wall Insulation

	Base R- Value	,	0	J ,	5			10			11			13		
City	Measure R- Value	kWh/ kSF	kW/ kSF	MMBtu/ kSF												
	5	67.0	0.000	13.7												
	10	78.9	0.000	16.1	11.9	0.000	2.4									
Dover	11	80.1	0.000	16.3	13.1	0.000	2.7	1.2	0.000	0.2						
Do	13	82.0	0.000	16.7	15.0	0.000	3.1	3.1	0.000	0.7	1.9	0.000	0.4			
	19	85.8	0.000	17.6	18.9	0.000	3.9	6.9	0.000	1.5	5.8	0.000	1.2	3.8	0.000	0.8
	25	87.8	0.000	18.0	20.8	0.000	4.3	8.9	0.000	1.9	7.7	0.000	1.7	5.8	0.000	1.2
	5	70.4	0.000	14.3												
on	10	83.1	0.000	16.8	12.7	0.000	2.5									
Wilmington	11	84.3	0.000	17.1	13.9	0.000	2.8	1.2	0.000	0.3						
<u>"E</u>	13	86.6	0.000	17.5	16.2	0.000	3.2	3.5	0.000	0.7	2.3	0.000	0.4			
>	19	90.5	0.000	18.4	20.0	0.000	4.1	7.3	0.000	1.5	6.2	0.000	1.3	3.8	0.000	0.8
	25	92.8	0.000	18.8	22.3	0.000	4.5	9.6	0.000	2.0	8.5	0.000	1.7	6.2	0.000	1.3
	5	50.4	0.000	10.9												
>	10	59.3	0.000	12.9	8.9	0.000	2.0									
Salisbury	11	60.4	0.000	13.0	10.0	0.000	2.2	1.2	0.000	0.2						
Salis	13	62.0	0.000	13.4	11.5	0.000	2.5	2.7	0.000	0.5	1.5	0.000	0.3			
	19	64.7	0.000	14.0	14.2	0.000	3.1	5.4	0.000	1.2	4.2	0.000	1.0	2.7	0.000	0.6
	25	66.6	0.000	14.4	16.2	0.000	3.5	7.3	0.000	1.5	6.2	0.000	1.3	4.6	0.000	1.0

Efficient Windows - Energy Star Retrofit

Unique Measure Code(s): Effective Date: June 2016

End Date: TBD

Measure Description

This measure describes the purchase of Energy Star Windows (u-0.32; SHGC-0.40 minimum requirement for North Central region) as a retrofit.

Definition of Baseline Condition

The baseline condition is the existing window.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR window (u-0.32; SHGC-0.40 minimum requirement for North Central region).

Annual Energy Savings Algorithm

 $\Delta kWh = SF/100 \times \Delta kWh/100SF$

Where:

 ΔSF = area of installed windows

ΔkWh/100SF = unit energy savings from lookup table

Unit energy savings values are provided for a set of baseline and measure windows; and HVAC system types. Values are provided for homes with and without cooling, and for homes with gas, heat pump, or electric resistance heating systems.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW_s = SF/100 \times \Delta kW/100SF \times CF_s$

Where:

 $\Delta kW/100SF$ = unit demand savings from lookup table

CFSSP

= Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{9}$

 CF_{PIM}

= PJM Summer Peak Coincidence Factor for Central A/C

⁹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

(June to August weekdays between 2 pm and 6 pm) Valued at peak weather = 0.66 10

Annual Fossil Fuel Savings Algorithm

 Δ MMBTU = SF/100 x Δ MMBTU/100SF

Where:

ΔMMBTU/100SF = unit fossil fuel energy savings from lookup table

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$xx per 100 square feet of window.

Measure Life

The measure life is assumed to be 25 years. 11

Operation and Maintenance Impacts

n/a

¹⁰ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

¹¹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Reference Tables¹²

Efficient Windows-Energy Star Retrofit

		,	AC Gas Heat			Heat Pump		AC Electric Heat		as Heat Onl	Electric Heat Only		
City	Baseline	kWh/ 100SF	kW/ 100SF	MMBtu/ 100SF	kWh/ 100SF	kW/ 100SF	kWh/ 100SF	kW/ 100SF	kWh/ 100SF	kW/ 100SF	MMBtu/ 100SF	kWh/ 100SF	kW/ 100SF
	1 pane	196.8	0.171	2.4	570.1	0.284	758.0	0.292	10.0	0.000	2.2	517.7	0.000
Dover	2 pane	98.9	0.107	0.6	222.9	0.149	245.4	0.149	1.6	0.000	0.4	116.7	0.000
	1 pane	232.0	0.235	2.7	620.7	0.256	854.8	0.256	11.9	0.000	2.5	587.7	0.000
Wilmington	2 pane	120.2	0.128	8.0	260.6	0.135	309.5	0.135	3.1	0.000	0.7	167.3	0.000
Callabassa	1 pane	253.6	0.235	1.3	438.1	0.277	541.5	0.256	4.4	0.000	2.0	249.3	0.000
Salisbury 2	2 pane	133.3	0.142	0.2	189.3	0.142	179.4	0.135	0.0	0.000	0.0	24.2	0.000

¹² High Performance Window savings from building energy simulations. See Appendix A.

Exterior Door

Unique Measure Code: Effective Date: June 2016

End Date: TBD

Measure Description

This measure characterization is for the installation of new exterior door in a residential building. The measure considers the reduction in heat conduction through the door and the reduction in infiltration rate due to improved door seals.

This is a retrofit measure.

Definition of Baseline Condition

The existing door is the baseline for this measure.

Definition of Efficient Condition

A new exterior door meeting ENERGY STAR specifications.

Annual Energy Savings Algorithm

 $\Delta kWh = unit \times \Delta kWh/unit$

Where:

unit = number of doors installed

 $\Delta kWh/unit = unit energy savings from lookup table$

Unit energy savings values are provided for a set of baseline and measure door types; and HVAC system types. Values are provided for homes with and without cooling, and for homes with gas, heat pump, or electric resistance heating systems. See reference tables at the end of this section.

Summer Coincident Peak kW Savings Algorithm

 ΔkW_s = units x ΔkW /units x CF_s

Where:

ΔkW/unit = unit demand savings from lookup table

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{13}$

 CF_{PJM}

= PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather = 0.66 ¹⁴

Annual Fossil Fuel Savings Algorithm

 Δ MMBTU = unit x Δ MMBTU/unit

Where:

ΔMMBTU/unit = unit fossil fuel energy savings from lookup table

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual installation and labor cost to replace the door.

Measure Life

The measure life is assumed to be 25 years. 15

Operation and Maintenance Impacts

n/a

13 Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and

Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

14 Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

¹⁵ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Reference Tables¹⁶

ENERGY STAR Door Unit Energy Savings

HVAC System Type	ΔkWh/unit	ΔkW/unit	ΔMMBtu/unit
Central AC with elec furnace	314	0.025	0.0
Central AC with gas furnace	22	0.025	1.3
Central air source heat pump	206	0.013	0.0
Central dual fuel heat pump	96	0.013	0.6
Elec furnace no AC	298	0.000	0.0

¹⁶ Exterior Door savings from building energy simulations. See Appendix A.

Rim Joist Insulation

Unique Measure Code: Effective Date: June 2016

End Date: TBD

Measure Description

This measure characterization is for the installation of new insulation adjacent to an uninsulated rim joist in a residential building. The rim joist is assumed to be located in a conditioned space. The measure assumes that an auditor, contractor or utility staff member is on location, and will measure and record the new insulation thickness and type (to calculate R-values), and the lineal footage of insulation added ¹⁷.

This is a retrofit measure.

Definition of Baseline Condition

The baseline is an uninsulated rim joist.

Definition of Efficient Condition

The new insulation should meet any qualification criteria required for participation in the program. The R-value should consider installation conditions, such as insulation compression and void fraction.

Annual Energy Savings Algorithm

 $\Delta kWh = LF/100 \times \Delta kWh/100LF$

Where:

LF = length of installed insulation (lineal feet)

 $\Delta kWh/100LF$ = unit energy savings from lookup table

Unit energy savings values are provided for a set of measure R-values and HVAC system types. Values are provided for homes with and without cooling, and for homes with gas, heat pump, or electric resistance heating systems. The R-values are for the insulation layer only; R-values of building materials are included in the simulation model. Interpolation within the tables is permissible for R-values not explicitly listed. The measure R-values should consider installation conditions such as insulation compression and coverage. Insulation compression adjustment factors (Fcomp) are shown below:

¹⁷ Lineal footage assuming a 12 inch nominal joist

% Compression	Fcomp
0%	1.00
5%	0.97
10%	0.93
15%	0.89
20%	0.85

An additional adjustment should be taken for the insulation coverage. This factor (Fvoid) is determined by the installation grade or void fraction; and the ratio of the insulation R-value to the full assembly R-value. The insulation coverage adjustment is shown below:

RmfgxFcomp /	F۱	oid/
Rtotal	2% Void (Grade II)	5% Void (Grade III)
0.86	0.87	0.73
0.88	0.85	0.70
0.9	0.83	0.66
0.92	0.80	0.60
0.94	0.75	0.53
0.96	0.66	0.43
0.98	0.49	0.28

The adjusted R-value is the nominal R-value times the adjustment factors:

Radj = Rnominal x Fcomp x Fvoid

Summer Coincident Peak kW Savings Algorithm

 $\Delta kWs = LF/100 \times \Delta kW/100LF \times CFs$

Where:

 Δ kW/100LF = demand savings from lookup table

 CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday) = 0.69^{-18}

¹⁸ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

CF_{PJM} = *PJM Summer Peak Coincidence Factor for Central A/C*

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{19}$

Annual Fossil Fuel Savings Algorithm

 Δ MMBTU = LF/100 x Δ MMBTU/100LF

Where:

ΔMMBTU = unit fossil fuel energy savings from lookup table

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual installation and labor cost to perform the installation work.

Measure Life

The measure life is assumed to be 25 yrs. 20

Operation and Maintenance Impacts

n/a

¹⁹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

²⁰ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Reference Tables²¹

Rim Joist Insulation

City	Measure R-		AC with Gas		Heat	Heat Pump		th Electric Heat		ric Heat, o AC	Gas Heat, no AC		
City	Value	kWh/ 100 LF	kW/ 100 LF	MMBtu/ 100 LF	kWh/ 100 LF	kW/ 100 LF	kWh/ 100 LF	kW/ 100 LF	kWh/ 100 LF	kW/ 100 LF	kWh/ 100 LF	kW/ 100 LF	MMBtu/ 100 LF
	11	8.9	0.006	0.7	87.3	0.009	164.6	0.009	157.6	0.000	3.4	0.000	0.7
	13	9.8	0.006	0.8	101.3	0.013	190.9	0.013	182.6	0.000	4.0	0.000	0.8
<u>-</u>	17	11.9	0.008	1.0	120.3	0.015	228.2	0.015	217.9	0.000	4.7	0.000	1.0
Dover	19	12.3	0.008	1.1	127.5	0.017	241.3	0.017	230.8	0.000	5.0	0.000	1.1
	21	13.3	0.009	1.1	133.4	0.017	252.9	0.019	241.5	0.000	5.2	0.000	1.1
	25	14.0	0.009	1.2	142.5	0.019	270.6	0.021	258.4	0.000	5.6	0.000	1.2
	27	14.1	0.009	1.2	146.2	0.019	277.7	0.021	265.2	0.000	5.7	0.000	1.2
	11	8.6	0.008	0.8	87.8	0.009	170.8	0.009	163.9	0.000	3.6	0.000	0.8
_	13	10.0	0.008	0.9	102.1	0.011	198.6	0.009	190.1	0.000	4.1	0.000	0.9
gto	17	12.3	0.009	1.0	121.8	0.013	237.5	0.013	227.3	0.000	5.0	0.000	1.1
Wilmington	19	13.0	0.011	1.1	129.3	0.013	251.8	0.013	240.8	0.000	5.2	0.000	1.1
Wil	21	13.5	0.011	1.2	135.2	0.015	263.5	0.013	252.1	0.000	5.5	0.000	1.2
	25	14.9	0.013	1.2	144.9	0.015	282.3	0.015	270.0	0.000	5.9	0.000	1.3
	27	15.3	0.013	1.3	148.5	0.015	289.8	0.015	277.1	0.000	6.0	0.000	1.3
	11	9.0	0.008	0.6	59.2	0.011	125.3	0.011	116.5	0.000	2.5	0.000	0.6
	13	9.9	0.008	0.7	67.3	0.011	143.4	0.011	133.8	0.000	2.9	0.000	0.6
ury	17	11.7	0.009	0.8	81.1	0.015	171.8	0.015	160.4	0.000	3.4	0.000	0.8
Salisbury	19	13.1	0.011	0.8	87.3	0.017	185.2	0.015	172.3	0.000	3.7	0.000	0.8
Sa	21	13.7	0.011	0.9	91.3	0.017	193.7	0.017	180.4	0.000	3.9	0.000	0.9
	25	14.7	0.011	0.9	97.7	0.019	207.5	0.017	193.0	0.000	4.2	0.000	0.9
	27	15.2	0.011	1.0	100.4	0.019	212.9	0.019	198.1	0.000	4.3	0.000	1.0

²¹ Insulation measure savings from building energy simulations. See Appendix A.

Wall Insulation

Unique Measure Code: Effective Date: June 2016

End Date: TBD

Measure Description

This measure characterization is for the installation of new insulation in the wall of a residential building. The measure assumes that an auditor, contractor or utility staff member is on location, and will measure and record the existing and new insulation thickness and type (to calculate R-values), and the surface area of insulation added.

This is a retrofit measure.

Definition of Baseline Condition

The R-value should consider installation conditions, such as insulation compression and void fraction.

Definition of Efficient Condition

The new insulation should meet any qualification criteria required for participation in the program. The R-value should consider installation conditions, such as insulation compression and void fraction.

Annual Energy Savings Algorithm

 $\Delta kWh = kSF \times \Delta kWh/kSF$

Where:

kSF = area of installed insulation (1000 sq. ft.)

ΔkWh/kSF = unit energy savings from lookup table

Unit energy savings values are provided for a set of baseline and measure R-values; and HVAC system types. Values are provided for homes with and without cooling, and for homes with gas, heat pump, or electric resistance heating systems. The R-values are for the insulation layer only; R-values of building materials are included in the simulation model. Interpolation within the tables is permissible for R-values not explicitly listed. The baseline and measure R-values should consider installation conditions such as insulation compression and coverage. Insulation compression adjustment factors (Fcomp) are shown below:

% Compression	Fcomp
0%	1.00
5%	0.97
10%	0.93
15%	0.89
20%	0.85

An additional adjustment should be taken for the insulation coverage. This factor (Fvoid) is determined by the installation grade or void fraction; and the ratio of the insulation R-value to the full assembly R-value. The insulation coverage adjustment is shown below:

RmfgxFcomp /	Fvoid					
Rtotal	2% Void (Grade II)	5% Void (Grade III)				
0.86	0.87	0.73				
0.88	0.85	0.70				
0.9	0.83	0.66				
0.92	0.80	0.60				
0.94	0.75	0.53				
0.96	0.66	0.43				
0.98	0.49	0.28				

The adjusted R-value is the nominal R-value times the adjustment factors:

Radj = Rnominal x Fcomp x Fvoid

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW_S = kSF \times \Delta kW/kSF \times CF_S$$

Where:

ΔkW/kSF

= unit demand savings from lookup table

 CF_{SSP}

= Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{22}$

_

²² Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

 CF_{PIM}

= PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather = 0.66^{23}

Annual Fossil Fuel Savings Algorithm

 Δ MMBTU = kSF x Δ MMBTU/kSF

Where:

ΔMMBTU/kSF = unit fossil fuel energy savings from lookup table

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual installation and labor cost to perform the installation work.

Measure Life

The measure life is assumed to be 25 yrs.²⁴

Operation and Maintenance Impacts

n/a

²³ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

²⁴ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Reference Tables²⁵

AC with Gas Heat; Single Family; Wall Insulation

7.10	Base R- Value		0	ing , train	11			13			17			19		
City	Measure R-Value	kWh/ kSF	kW/ kSF	MMBtu/ kSF												
	11	84.9	0.055	6.9												
	13	93.8	0.055	8.1	8.9	0.000	1.1									
<u>_</u>	17	114.2	0.073	9.6	29.3	0.018	2.7	20.4	0.018	1.6						
Dover	19	118.0	0.073	10.2	33.1	0.018	3.3	24.2	0.018	2.1	3.8	0.000	0.6			
	21	127.1	0.091	10.7	42.2	0.036	3.7	33.3	0.036	2.6	12.9	0.018	1.1	9.1	0.018	0.5
	25	134.5	0.091	11.4	49.6	0.036	4.5	40.7	0.036	3.4	20.4	0.018	1.8	16.5	0.018	1.2
	27	134.7	0.091	11.7	49.8	0.036	4.8	40.9	0.036	3.7	20.5	0.018	2.1	16.7	0.018	1.5
	11	82.4	0.073	7.2												
_	13	95.6	0.073	8.4	13.3	0.000	1.2									
Wilmington	17	117.5	0.091	10.0	35.1	0.018	2.8	21.8	0.018	1.7						
l in	19	124.2	0.109	10.6	41.8	0.036	3.4	28.5	0.036	2.3	6.7	0.018	0.6			
Vilr	21	129.3	0.109	11.1	46.9	0.036	3.9	33.6	0.036	2.8	11.8	0.018	1.1	5.1	0.000	0.5
	25	142.4	0.127	11.9	60.0	0.055	4.7	46.7	0.055	3.5	24.9	0.036	1.9	18.2	0.018	1.3
	27	146.2	0.127	12.2	63.8	0.055	5.0	50.5	0.055	3.9	28.7	0.036	2.2	22.0	0.018	1.6
	11	86.0	0.073	5.4												
	13	94.7	0.073	6.3	8.7	0.000	0.8									
ury	17	112.0	0.091	7.5	26.0	0.018	2.1	17.3	0.018	1.2						
Salisbury	19	126.0	0.109	8.1	40.0	0.036	2.6	31.3	0.036	1.8	14.0	0.018	0.6			
Sal	21	131.6	0.109	8.4	45.6	0.036	3.0	36.9	0.036	2.2	19.6	0.018	0.9	5.6	0.000	0.4
	25	140.5	0.109	9.0	54.5	0.036	3.6	45.8	0.036	2.8	28.5	0.018	1.5	14.5	0.000	1.0
	27	145.6	0.109	9.3	59.6	0.036	3.8	50.9	0.036	3.0	33.6	0.018	1.8	19.6	0.000	1.2

Heat Pump; Single Family; Wall Insulation

	Base R- Value)	1	1	1	3	1	7	1	9
City	Measure R- Value	kWh/ kSF	kW/ kSF								
	11	836.5	0.091								
	13	970.4	0.127	133.8	0.036						
<u>_</u>	17	1152.9	0.145	316.4	0.055	182.5	0.018				
Dover	19	1221.8	0.164	385.3	0.073	251.5	0.036	68.9	0.018		
Ω	21	1278.2	0.164	441.6	0.073	307.8	0.036	125.3	0.018	56.4	0.000
	25	1365.3	0.182	528.7	0.091	394.9	0.055	212.4	0.036	143.5	0.018
	27	1400.9	0.182	564.4	0.091	430.5	0.055	248.0	0.036	179.1	0.018
	11	841.1	0.091								
_	13	978.0	0.109	136.9	0.018						
Wilmington	17	1167.1	0.127	326.0	0.036	189.1	0.018				
ning	19	1238.7	0.127	397.6	0.036	260.7	0.018	71.6	0.000		
Viln	21	1295.3	0.145	454.2	0.055	317.3	0.036	128.2	0.018	56.5	0.018
>	25	1388.4	0.145	547.3	0.055	410.4	0.036	221.3	0.018	149.6	0.018
	27	1422.7	0.145	581.6	0.055	444.7	0.036	255.6	0.018	184.0	0.018
	11	567.3	0.109								
	13	645.3	0.109	78.0	0.000						
r Y	17	776.9	0.145	209.6	0.036	131.6	0.036				
Salisbury	19	836.4	0.164	269.1	0.055	191.1	0.055	59.5	0.018		
Sal	21	875.3	0.164	308.0	0.055	230.0	0.055	98.4	0.018	38.9	0.000
	25	936.2	0.182	368.9	0.073	290.9	0.073	159.3	0.036	99.8	0.018
	27	962.0	0.182	394.7	0.073	316.7	0.073	185.1	0.036	125.6	0.018

DELAWARE TECHNICAL REFERENCE MANUAL / 2016 Page 35 of 40

AC with Electric Heat; Single Family; Wall Insulation

	Base R- Value	0		11		13		17		19	
City	Measure R- Value	kWh/ kSF	kW/ kSF								
Dover	11	1577.8	0.091								
	13	1829.8	0.127	252.0	0.036						
	17	2187.3	0.145	609.5	0.055	357.5	0.018				
	19	2312.9	0.164	735.1	0.073	483.1	0.036	125.6	0.018		
	21	2423.5	0.182	845.6	0.091	593.6	0.055	236.2	0.036	110.5	0.018
	25	2593.5	0.200	1015.6	0.109	763.6	0.073	406.2	0.055	280.5	0.036
	27	2661.3	0.200	1083.5	0.109	831.5	0.073	474.0	0.055	348.4	0.036
Wilmington	11	1637.3	0.091								
	13	1902.9	0.091	265.6	0.000						
	17	2276.2	0.127	638.9	0.036	373.3	0.036				
	19	2413.3	0.127	776.0	0.036	510.4	0.036	137.1	0.000		
	21	2525.6	0.127	888.4	0.036	622.7	0.036	249.5	0.000	112.4	0.000
	25	2705.5	0.145	1068.2	0.055	802.5	0.055	429.3	0.018	292.2	0.018
	27	2777.3	0.145	1140.0	0.055	874.4	0.055	501.1	0.018	364.0	0.018
Salisbury	11	1200.7	0.109								
	13	1373.8	0.109	173.1	0.000						
	17	1646.4	0.145	445.6	0.036	272.5	0.036				
	19	1774.4	0.145	573.6	0.036	400.5	0.036	128.0	0.000		
	21	1856.7	0.164	656.0	0.055	482.9	0.055	210.4	0.018	82.4	0.018
	25	1988.4	0.164	787.6	0.055	614.5	0.055	342.0	0.018	214.0	0.018
	27	2040.7	0.182	840.0	0.073	666.9	0.073	394.4	0.036	266.4	0.036

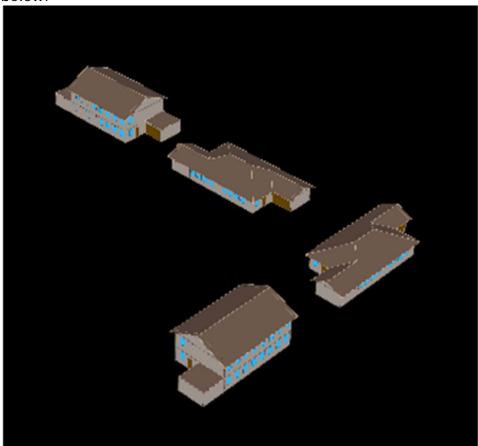
Electric Heat, no AC; Single Family; Wall Insulation

	Base R- Value	ngie Family; wali insula 0		11		13		17		19	
City	Measure R- Value	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF	kWh/ kSF	kW/ kSF
Dover	11	1510.0	0.000								
	13	1750.4	0.000	240.4	0.000						
	17	2088.2	0.000	578.2	0.000	337.8	0.000				
	19	2211.5	0.000	701.5	0.000	461.1	0.000	123.3	0.000		
	21	2314.2	0.000	804.2	0.000	563.8	0.000	226.0	0.000	102.7	0.000
	25	2476.5	0.000	966.5	0.000	726.2	0.000	388.4	0.000	265.1	0.000
	27	2541.5	0.000	1031.5	0.000	791.1	0.000	453.3	0.000	330.0	0.000
Wilmington	11	1570.9	0.000								
	13	1821.8	0.000	250.9	0.000						
	17	2178.0	0.000	607.1	0.000	356.2	0.000				
	19	2307.8	0.000	736.9	0.000	486.0	0.000	129.8	0.000		
	21	2416.2	0.000	845.3	0.000	594.4	0.000	238.2	0.000	108.4	0.000
	25	2587.5	0.000	1016.5	0.000	765.6	0.000	409.5	0.000	279.6	0.000
	27	2655.3	0.000	1084.4	0.000	833.5	0.000	477.3	0.000	347.5	0.000
Salisbury	11	1116.9	0.000								
	13	1282.2	0.000	165.3	0.000						
	17	1537.1	0.000	420.2	0.000	254.9	0.000				
	19	1651.1	0.000	534.2	0.000	368.9	0.000	114.0	0.000		
	21	1728.4	0.000	611.5	0.000	446.2	0.000	191.3	0.000	77.3	0.000
	25	1849.8	0.000	732.9	0.000	567.6	0.000	312.7	0.000	198.7	0.000
	27	1898.5	0.000	781.6	0.000	616.4	0.000	361.5	0.000	247.5	0.000

DELAWARE TECHNICAL REFERENCE MANUAL / 2016 Page 37 of 40

Gas Heat, no AC; Single Family; Wall Insulation

Gas rica	t, no Ac;	Jingle I	anniy, w	an msula	tion											
	Base R- Value		0			11			13			17			19	
City	Measure R-Value	kWh/ kSF	kW/ kSF	MMBtu/ kSF	kWh/ kSF	kW/ kSF	MMBtu/ kSF	kWh/ kSF	kW/ kSF	MMBtu/ kSF	kWh/ kSF	kW/ kSF	MMBtu/ kSF	kWh/ kSF	kW/ kSF	MMBtu/ kSF
	11	32.7	0.000	7.0												
	13	38.0	0.000	8.1	5.3	0.000	1.1									
	17	45.3	0.000	9.7	12.5	0.000	2.7	7.3	0.000	1.6						
Dover	19	47.8	0.000	10.3	15.1	0.000	3.3	9.8	0.000	2.1	2.5	0.000	0.6			
	21	50.2	0.000	10.7	17.5	0.000	3.7	12.2	0.000	2.6	4.9	0.000	1.1	2.4	0.000	0.5
	25	53.6	0.000	11.5	20.9	0.000	4.5	15.6	0.000	3.4	8.4	0.000	1.8	5.8	0.000	1.2
	27	55.1	0.000	11.8	22.4	0.000	4.8	17.1	0.000	3.7	9.8	0.000	2.1	7.3	0.000	1.5
	11	34.2	0.000	7.3												
_	13	39.6	0.000	8.4	5.5	0.000	1.2									
) tor	17	47.5	0.000	10.1	13.3	0.000	2.8	7.8	0.000	1.7						
Wilmington	19	50.2	0.000	10.7	16.0	0.000	3.4	10.5	0.000	2.3	2.7	0.000	0.6			
Ni Ni	21	52.7	0.000	11.2	18.5	0.000	3.9	13.1	0.000	2.8	5.3	0.000	1.1	2.5	0.000	0.5
>	25	56.4	0.000	12.0	22.2	0.000	4.7	16.7	0.000	3.6	8.9	0.000	1.9	6.2	0.000	1.3
	27	57.8	0.000	12.3	23.6	0.000	5.0	18.2	0.000	3.9	10.4	0.000	2.2	7.6	0.000	1.6
	11	24.0	0.000	5.4												
	13	27.5	0.000	6.2	3.5	0.000	8.0									
rry	17	32.9	0.000	7.4	8.9	0.000	2.0	5.5	0.000	1.2						
Salisbury	19	35.5	0.000	8.0	11.5	0.000	2.6	8.0	0.000	1.8	2.5	0.000	0.5			
Sal	21	37.1	0.000	8.3	13.1	0.000	3.0	9.6	0.000	2.2	4.2	0.000	0.9	1.6	0.000	0.4
	25	39.8	0.000	8.9	15.8	0.000	3.6	12.4	0.000	2.8	6.9	0.000	1.5	4.4	0.000	1.0
	27	40.9	0.000	9.2	16.9	0.000	3.8	13.5	0.000	3.0	8.0	0.000	1.7	5.5	0.000	1.2


APPENDIX A: Residential Building Model Prototypes

Analysis used to develop parameters for the energy and demand savings calculations are based on DOE-2.2 simulations of a set of prototypical residential buildings. The prototypical simulation models were derived from the residential building prototypes used in the California Database for Energy Efficiency Resources (DEER)523 study, with adjustments made for local building practices and climate.

Single Family Residential Prototype

The single family "model" in fact contains 4 separate residential buildings: 2 one-story and 2 two-story buildings. Each version of the 1 story and 2 story buildings are identical except for the orientation, which is shifted by 90 degrees. The selection of these 4 buildings is designed to give a reasonable average response of buildings of different design and orientation to the impact of energy efficiency measures.

A sketch of the single family residential prototype buildings is shown below.

Computer rendering of single family residential building prototypical DOE-2 model.

The general characteristics of the single family residential building prototype model are summarized below.

Single Family Residential Building Prototype Description

Characteristic	Value
Conditioned floor area	1 story house: 1465 SF (not including basement) 2 story house: 2930 SF (not including basement)
Wall construction and R-value	Wood frame with siding, R-value varies by measure
Roof construction and R-value	Wood frame with asphalt shingles, R-value varies by measure
Glazing type	Single and double pane; properties vary by measure
Lighting and appliance power density	0.51 W/SF average combined
HVAC system type	Packaged single zone AC or heat pump
HVAC system size	Based on peak load with 20% over-sizing.
HVAC system efficiency	Baseline SEER = 13
Thermostat setpoints	Heating: 70°F with setback to 65°F Cooling: 75°F with setup to 80°F
Duct location	Buildings without basement: attic Buildings with basement: basement
Duct surface area	Single story house: 390 SF supply, 72 SF return Two story house: 505 SF supply, 290 SF return
Duct insulation	Uninsulated
Duct leakage	20% of fan flow total leakage, evenly split between supply and return.
Natural ventilation	Allowed during cooling season when cooling setpoint exceeded and outdoor temperature < 65°F. 3 air changes per hour

Mid-Atlantic TRM

Final

May 2016

Page 2 of 507

NEEP was founded in 1996 as a non-profit whose mission is to serve the Northeast and Mid-Atlantic to accelerate energy efficiency in the building sector through public policy, program strategies and education. Our vision is that the region will fully embrace energy efficiency as a cornerstone of sustainable energy policy to help achieve a cleaner environment and a more reliable and affordable energy system.

The Regional Evaluation, Measurement and Verification Forum (EM&V Forum or Forum) is a project facilitated by Northeast Energy Efficiency Partnerships, Inc. (NEEP). The Forum's purpose is to provide a framework for the development and use of common and/or consistent protocols to measure, verify, track, and report energy efficiency and other demand resource savings, costs, and emission impacts to support the role and credibility of these resources in current and emerging energy and environmental policies and markets in the Northeast, New York, and the Mid-Atlantic region.

About Shelter Analytics

Shelter Analytics, LLC is dedicated to promoting energy efficiency through planning and integrated design concepts in buildings and businesses. We combine our experience and integrity with innovative approaches to support and improve best-practice methods from planning through implementation.

http://shelteranalytics.com

Page 3 of 507


MID-ATLANTIC TECHNICAL REFERENCE MANUAL VERSION 6.0

A Project of the Regional Evaluation, Measurement and Verification Forum

May 2016

Prepared by Shelter Analytics

Facilitated and Managed by Northeast Energy Efficiency Partnerships

Page 4 of 507

Table of Contents

The Regional EM&V Forum	8
Acknowledgements	8
Subcommittee for the Mid-Atlantic TRM	8
INTRODUCTION	10
Context	11
Approach	11
Task 1: Prioritization/Measure Selection	12
Task 2: Development of Deemed Impacts	12
Task 3: Development of Recommendations for Update	
Task 4: Delivery of Draft and Final Product	
Use of the TRM	
TRM Update History	
RESIDENTIAL MARKET SECTOR	
Lighting End Use	20
General Purpose CFL Screw base, Residential*	20
Specialty CFLs, Residential*	
Hardwired CFL Fixtures (Interior)*	
Hardwired CFL Fixtures (Exterior)*	
Solid State Lighting (LED) Recessed Downlight Luminaire*	
ENERGY STAR Integrated Screw Based SSL (LED) Lamp*	
Refrigeration End Use	
Freezer	70
Refrigerator	
Refrigerator Early Replacement	82
Refrigerator and Freezer Early Retirement	86
Heating Ventilation and Air Conditioning (HVAC) End Use	
Central Furnace Efficient Fan Motor	91
Room Air Conditioner*	
ENERGY STAR Central A/C*	97
Air Source Heat Pump*	103
Duct Sealing	
Ductless Mini-Split Heat Pump*	
HE Gas Boiler	
Condensing Furnace (gas)*	137
Programmable Thermostat	
Room Air Conditioner Early Replacement	142
Room Air Conditioner Early Retirement / Recycling	
Boiler Pipe Insulation	
Boiler Reset Controls*	
Ground Source Heat Pumps	155
High Efficiency Bathroom Exhaust Fan*	163

Page 5 of 507

ENERGY STAR Ceiling Fan	165
Domestic Hot Water (DHW) End Use	170
Low Flow Shower Head	170
Faucet Aerators	175
Domestic Hot Water Tank Wrap	180
DHW pipe insulation	184
High Efficiency Gas Water Heater	187
Heat Pump Domestic Water Heater	
Thermostatic Restrictor Shower Valve	199
Water Heater Temperature Setback*	205
Appliance End Use	209
Clothes Washer	
Clothes Washer Early Replacement	219
Dehumidifier	
ENERGY STAR Air Purifier/Cleaner	233
Clothes Dryer	236
Dishwasher	
Shell Savings End Use	247
Air sealing*	
Attic/ceiling/roof insulation*	255
Efficient Windows - Energy Star Time of sale	261
Crawl Space Insulation and Encapsulation**	263
Pool Pump End Use	272
Pool pump-two speed	272
Pool pump-variable speed*	275
Plug Load End Use	278
Advanced Power Strip*	278
Retail Products Program	
ENERGY STAR +50% Soundbar**	281
Freezer**	283
Clothes Dryer**	
ENERGY STAR Air Cleaner**	
Room Air Conditioners (Upstream)**	
COMMERCIAL & INDUSTRIAL MARKET SECTOR	296
Lighting End Use	
General Purpose CFL Screw base, Retail - Commercial*	
Four-Foot Fluorescent T8 Replacement Lamps*	
T5 Lighting	310
LED Exit Sign	
Solid State Lighting (LED) Recessed Downlight Luminaire	
Delamping	
Occupancy Sensor - Wall-, Fixture-, or Remote-Mounted	326
Daylight Dimming Control	330

Page 6 of 507

Advanced Lighting Design - Commercial	
LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting	
Luminaires and Retrofit Kits	
LED High-Bay Luminaires and Retrofit Kits	
LED 1x4, 2x2, and 2x4 Luminaires and Retrofit Kits	
LED Parking Garage/Canopy Luminaires and Retrofit Kits	
ENERGY STAR Integrated Screw Based SSL (LED) Lamp - Commercial*	
LED Refrigerated Case Lighting	376
Exterior LED Flood and Spot Luminaires	
LED Four-Foot Linear Replacement Lamps	
Heating Ventilation and Air Conditioning (HVAC) End Use	
Unitary HVAC Systems*	
Ductless Mini-Split Heat Pump (DMSHP)	
Variable Frequency Drive (VFD) for HVAC*	
Electric Chillers	
Gas Boiler	424
Gas Furnace	
Dual Enthalpy Economizer	
AC Tune-Up	434
Refrigeration End Use	
ENERGY STAR Commercial Freezers	
ENERGY STAR Commercial Refrigerator	
Night Covers for Refrigerated Cases	
Anti-Sweat Heater Controls*	
Evaporator Fan Electronically-Commutated Motor (ECM) Retrofit**	
Evaporator Fan Motor Controls**	
Hot Water End Use	
C&I Heat Pump Water Heater	
Pre-Rinse Spray Valves	
Appliance End Use	
Commercial Clothes Washer**	460
Plug Load End Use	
Advanced Power Strip	
Commercial Kitchen Equipment End Use	
Commercial Fryers*	
Commercial Steam Cookers	
Commercial Hot Food Holding Cabinets	
Commercial Griddles	
Commercial Convection Ovens	
Commercial Combination Ovens	
A. Supporting Calculation Work Sheets	
B. Recommendation for Process and Schedule for Maintenance and	•
TRM Contents	495

Page 7 of 507

C.	Description of Unique Measure Codes	502	
	Commercial & Industrial Lighting Operating Hours, Coincidence F		
Waste	e Heat Factors	504	

^{*} Measure was updated for this version of the TRM **Measure is newly added to this version of the TRM

Page 8 of 507

PREFACE

The Regional EM&V Forum

The Regional EM&V Forum is a project managed and facilitated by Northeast Energy Efficiency Partnerships, Inc. The Forum's purpose is to provide a framework for the development and use of common and/or consistent protocols to measure, verify, track and report energy efficiency and other demand resource savings, costs and emission impacts to support the role and credibility of these resources in current and emerging energy and environmental policies and markets in the Northeast and the Mid-Atlantic region. For more information, see http: www.neep.org/emv-forum.

Acknowledgements

The Mid-Atlantic Technical Reference Manual (TRM) was prepared for the Regional EM&V Forum by VEIC. Bret Hamilton of Shelter Analytics was project manager, he was assisted by colleagues, Sam Dent of VEIC, as well as by Matt Socks and Cliff McDonald of Optimal Energy, Inc.

Subcommittee for the Mid-Atlantic TRM

A special thanks and acknowledgment behalf of the EMV Forum staff and project contractors is extended to this project's subcommittee members, who have provided important input and guidance throughout the various phases of development of this TRM. This includes: Brent Barkett (Navigant Consulting), Eugene Bradford (Southern Maryland Electric Cooperative), Kim Byk (Lockheed Martin), Kumar Chittory (Itron), Joseph Cohen (Pepco Holdings, L.L.C.) Drew Durkee (ICF), Karl Eser (Baltimore Gas & Electric), Crissy Godfrey (Maryland Public Service Commission), Daniel Hurley (Maryland Energy Administration), Nikola Janjic (Vermont Energy Investment Corp.), Jeff King (Metropolitan Washington Council of Governments), Ruth Kiselewich (Baltimore Gas & Electric), Catul Kit (ICF), Dan Lauf (Maryland Energy Administration), Taresa Lawrence (District Sustainable Energy Office), James Leyko (Maryland Energy Administration), Lance Loncke (Distric Sustainable Energy Office), Joe Loper (Itron), Kristin McAlpine (GDS Associates), Mike Messenger (Itron), Ed Miller (Potomac Edison), David Pirtle (Pepco Holdings, L.L.C.), Jessica Quinn (Delaware Natural Resources and Environmental Control), Bob Ramirez (Itron), Eric Rundy (Potomac Edison), Chris Siebens (Potomac Edison), Justin Spencer (Navigant Consulting), Bill Steigelmann (Lockheed Martin), Mary Straub (Baltimore Gas & Electric), Sheldon Switzer (Baltimore Gas & Electric), Pamela Tate (Pepco Holdings,

Page 9 of 507

L.L.C.), Rob Underwood (Delaware Natural Resources and Environmental Control), William Wolf (Baltimore Gas & Electric), and Lisa Wolfe (Potomac Edison).

Page 10 of 507

INTRODUCTION

This Technical Reference Manual is the outcome of a project conducted for the Regional Evaluation, Measurement and Verification Forum ('the EMV Forum') sponsored by Maryland, Delaware and the District of Columbia. The intent of the project was to develop and document in detail common assumptions for approximately thirty prescriptive residential and commercial/industrial electric energy efficiency measures savings. For each measure, the TRM includes either specific deemed values or algorithms¹ for calculating:

- Gross annual electric energy savings;
- Gross electric summer coincident peak demand savings;
- Gross annual fossil fuel energy savings (for electric efficiency measures that also save fossil fuels, and for certain measures that can save electricity or fossil fuels);
- Other resource savings if appropriate (e.g. water savings, O&M impacts);
- Incremental costs; and
- Measure lives.

The TRM is intended to be easy to use and to serve a wide range of important users and functions, including:

- Utilities and efficiency Program Administrators for cost-effectiveness screening and program planning, tracking, and reporting.
- Regulatory entities, independent program evaluators, and other parties for
 evaluating the performance of efficiency programs relative to statutory goals and
 facilitating planning and portfolio review; and
- Markets, such as PJM's Reliability Pricing Model (its wholesale capacity market) and future carbon markets - for valuing efficiency resources.

The TRM is intended to be a flexible and living document. To that end, NEEP, the project sponsors and the TRM authors all expect it to be periodically updated with additional measures, modifications to characterizations of existing measures and even removal of some measures when they are no longer relevant to regional efficiency programs. Initial recommendations for a process by which updates could occur are provided in Appendix B.

¹ Typically, the algorithms provided contain a number of deemed underlying assumptions which when combined with some measure specific information (e.g. equipment capacity) produce deemed calculated savings values.

Page 11 of 507

Context

The Forum initiated this project as a benefit to both the Mid-Atlantic States and the overall Forum Region, for the following reasons:

- To improve the credibility and comparability of energy efficiency resources to support state and regional energy, climate change and other environmental policy goals;
- To remove barriers to the participation of energy efficiency resources in regional markets by making EM&V practices and savings assumptions more transparent, understandable and accessible;
- To reduce the cost of EM&V activities by leveraging resources across the region for studies of common interest (where a need for such studies has been identified); and
- To inform the potential development of national EM&V protocols.

This is the sixth generation (fifth update) document that has been prepared for the Mid-Atlantic sponsors, and one of few in the country to serve a multi-jurisdictional audience. For definitions of many energy efficiency terms and acronyms included in the TRM, users of this TRM may want to refer to the EMV Forum Glossary available at: http://neep.org/emv-forum/forum-products-and-guidelines. For measures which were common to both Forum projects (specifically residential and commercial lighting measures, residential central and commercial unitary air conditioning, and variable frequency drives) this TRM used the results of those Forum projects.

It is also recognized that programs mature over time and more evaluation and market-research data have become available over the past few years. In addition, efficiency programs in the region are not identical and either the availability or the results of existing baseline studies and other sources of information can differ across organizations and jurisdictions. Also, different budgets and policy objectives exist, and states may have different EM&V requirements and practices. Given these considerations, the contents of this TRM reflect the consensus agreement and best judgment of project sponsors, managers, and consultants on information that was most useful and appropriate to include within the time, resource, and information constraints of the study.

Approach

This section briefly identifies and describes the process used to develop the TRM. In addition, it provides an overview of some of the considerations and decisions involved in the development of estimates for the many parameters. The development of this

Page 12 of 507

TRM required a balance of effectiveness, functionality, and relevance with available sources and research costs.

It is helpful to keep in mind that each measure characterization has numerous components, including retrofit scenario, baseline consumption, annual energy savings, coincident peak demand savings, useful life, and incremental cost.

Thus, the project needed to research and develop literally hundreds of unique assumptions. It is further helpful to keep in mind that because the project served a multijurisdictional audience, it required data requests, review, and consensus decision-making by a subcommittee comprised of project sponsors and other stakeholders (see the end of this Introduction for a list of subcommittee members). The subcommittee was responsible for review and approval of the products generated in each of the tasks needed to complete the project.

Development of the TRM consisted of the following tasks:

Task 1: Prioritization/Measure Selection.

By design, this TRM focuses on priority prescriptive measures, due to a combination of project resource constraints and the recognition that typically 10 - 20% of a portfolio of efficiency measures (such as CFLs, T8s or super-T8s, some cooling measures, efficient water heaters) likely account for the large majority (90% or more) of future savings claims from prescriptive measures (i.e., those measures effectively characterized by pre-determined incentive and deemed savings values or algorithms).).

Measures are selected on the basis of projected or expected savings from program data by measure type provided by Baltimore Gas and Electric, expert judgment, and review of other relevant criteria available from regulatory filings and the region's Program Administrators. Note that some of the measures are variations on other measures (e.g. two different efficiency tiers for room air conditioners). Because gas measures were not common to all sponsors, these are not priority measures, but there is consensus that gas measures are appropriate to include. For those measures where fossil fuel savings occur in addition to electricity savings (for example the clothes washer measure), or where either electric or fossil fuel savings could be realized depending on the heating fuel used (for example domestic hot water conservation measures), appropriate MMBtu savings have been provided.

Task 2: Development of Deemed Impacts.

Development of the contents of the TRM proceeds in two stages. The first stage is research, analysis, and critical review of available information to inform the range of assumptions considered for each parameter and each measure included in the TRM.

Page 13 of 507

This is based on a comparative study of many secondary sources including existing TRMs from other jurisdictions, local, primary research and data, and information that was developed for the EMV Forum Product "A2" (Common Methods Project).

The comparative analysis itself is not always as straightforward as it might initially seem because the measures and specific variables included in different jurisdictions' TRMs are sometimes a little different from each other - in efficiency levels promoted, capacity levels considered, the design of program mechanisms for promoting the measures and various other factors. Thus, the comparative analysis of many assumptions requires calibration to common underlying assumptions. Wherever possible, such underlying assumptions - particularly for region-specific issues such as climate, codes and key baseline issues -are derived from the mid-Atlantic region

The second stage is development of specific recommendations for specific assumptions or algorithms (informed by the comparative analysis), along with rationales and references for the recommendations. These recommended assumptions identify cases where calculation of savings is required and where options exist (for example two coincidence factor values are provided for central AC measures, based on two definitions of peak coincidence factors) for calculation of impact. They also recommend deemed values where consistency can or should be achieved. The following criteria are used in the process of reviewing and adopting the proposed assumptions and establishing consensus on the final contents of the TRM:

- Credibility. The savings estimates and any related estimates of the costeffectiveness of efficiency investments are credible.
- Accuracy and completeness. The individual assumptions or calculation protocols are accurate, and measure characterizations capture the full range of effects on savings.
- Transparency. The assumptions are considered by a variety of stakeholders to be transparent - that is, widely-known, widely accepted, and developed and refined through an open process that encourages and addresses challenges from a variety of stakeholders.
- Cost efficiency. The contents of the TRM addressed all inputs that were within the
 established project scope and constraints. Sponsors recognize that there are
 improvements and additions that can be made in future generations of this
 document.

Additional notes regarding the high level rationale for extrapolation for Mid-Atlantic estimates from the Northeast and other places are provided below under Intended Uses of the TRM.

Page 14 of 507

Task 3: Development of Recommendations for Update.

The purpose of this task was to develop a recommended process for when and how information will be incorporated into the TRM in the future. This task assumes that the process of updating and maintaining the TRM is related to but distinct from processes for verification of annual savings claims by Program Administrators. It further assumes that verification remains the responsibility of individual organizations unlike the multi-sponsor, multi-jurisdictional TRM. The development of these recommendations was based on the following considerations:

- Review processes in other jurisdictions and newly available relevant research and data.
- Expected uses of the TRM. This assumes that the TRM will be used to conduct prospective cost-effectiveness screening of utility programs, to estimate progress towards goals and potentially to support bidding into capacity markets. Note that both the contents of the document and the process and timeline by which it is updated might need to be updated to conform to the PJM requirements, once sponsors have gained additional experience with the capacity market.
- Expected timelines required to implement updates to the TRM parameters and algorithms.
- Processes stakeholders envision for conducting annual reviews of utility program savings as well as program evaluations, and therefore what time frame TRM updates can accommodate these.
- Feasibility of merging or coordinating the Mid-Atlantic protocols with those of other States, such as Pennsylvania, New Jersey or entire the Northeast.

Task 4: Delivery of Draft and Final Product.

The final content of the TRM reflects the consensus approval of the results from Task 2 as modified following a peer review. By design, the final version of the TRM document is similar to other TRMs currently available, for ease of comparison and update and potential merging with others in the future.

Use of the TRM

As noted above, The TRM is intended to serve as an important tool to support ratefunded efficiency investments; for planning, implementation and assessment of success in meeting specific state goals. In addition, the TRM is intended to support

Page 15 of 507

the bidding of efficiency resources into capacity markets, such as PJM's Reliability Pricing Model and in setting and tracking future environmental and climate change goals. It provides a common platform for the Mid-Atlantic stakeholders to characterize measures within their efficiency programs, analyze and meaningfully compare cost-effectiveness of measures and programs, communicate with policymakers about program details, and it can guide future evaluation and measurement activity and help identify priorities for investment in further study, needed either at a regional or individual organizational level.

The savings estimates are expected to serve as representative, recommended values, or ways to calculate savings based on program-specific information. All information is presented on a per measure basis. In using the measure-specific information in the TRM, it is helpful to keep the following notes in mind:

- The TRM clearly identifies whether the measure impacts pertain to "retrofit", "time of sale", 2 or "early retirement" program designs.
- Additional information about the program design is sometimes included in the measure description because program design can affect savings and other parameters.
- Savings algorithms are typically provided for each measure. For a number of measures, prescriptive values for each of the variables in the algorithm are provided along with the output from the algorithm. That output is the deemed savings. For other measures, prescriptive values are provided for only some of the variables in the algorithm, with the term "actual" or "actual installed" provided for the others. In those cases - which one might call "deemed calculations" rather than "deemed savings" - users of the TRM are expected to use actual efficiency program data (e.g. capacities or rated efficiencies of central air conditioners) in the formula to compute savings. Note that the TRM typically provides example calculations for measures requiring "actual" values. These are for illustrative purposes only.
- All estimates of savings are annual savings and are assumed to be realized for each year of the measure life (unless otherwise noted).
- Unless otherwise noted, measure life is defined to be "The life of an energy consuming measure, including its equipment life and measure persistence (not savings persistence)" (EMV Forum Glossary). Conceptually it is similar to expected useful life, but the results are not necessarily derived from modeling studies, and many are from a report completed for New England program administrators' and regulators' State Program Working Group that is currently used to support the New England Forward Capacity Market M&V plans.
- Where deemed values for savings are provided, these represent average savings that could be expected from the average measures that might be installed in the region during the current program year.

² In some jurisdictions, this is called "replace on burn-out". We use the term "time of sale" because not all new equipment purchases take place when an older existing piece of equipment reaches the end of its life.

Page 16 of 507

- For measures that are not weather-sensitive, peak savings are estimated whenever possible as the average of savings between 2 pm and 6 pm across all summer weekdays (i.e. PJM's EE Performance Hours for its Reliability Pricing Model). Where possible for cooling measures, we provide estimates of peak savings in two different ways. The primary way is to estimate peak savings during the most typical peak hour (assumed here to be 5 p.m.) on days during which system peak demand typically occurs (i.e., the hottest summer weekdays). This is most indicative of actual peak benefits. The secondary way typically provided in a footnote is to estimate peak savings as it is measured for non-cooling measures: the average between 2 pm and 6 pm across <u>all</u> summer weekdays (regardless of temperature). The second way is presented so that values can be bid into the PJM RPM.
- Wherever possible, savings estimates and other assumptions are based on mid-Atlantic data. For example, data from a BG&E metering study of residential central air conditioners was used to estimate both full load hours and system peak coincidence factors. However, a number of assumptions including assumptions regarding peak coincidence factors are based on New York and/or New England sources. While this information is not perfectly transferable, due to differences in definitions of peak periods as well as geography, climate and customer mix, it was used because it was the most transferable and usable source available at the time.³
- Users will note that the TRM presents engineering equations for most measures. These were judged to be desirable because they convey information clearly and transparently, and they are widely accepted in the industry. Unlike simulation model results, they also provide flexibility and opportunity for users to substitute locally specific information and to update some or all parameters as they become available on an ad hoc basis. One limitation is that certain interactive effects between end uses, such as how reductions in waste heat from many efficiency measures impacts space conditioning, are not universally captured in this version of the TRM.⁴
- For some of the whole-building program designs that are being planned or implemented in the Mid-Atlantic, simulation modeling may be needed to estimate savings. While they were beyond the scope of this TRM, it is recommended that a future version of the TRM may include the baseline specifications for any wholebuilding efficiency measures.
- In general, the baselines included in the TRM are intended to represent average conditions in the Mid-Atlantic. Some are based on data from the Mid-Atlantic, such as household consumption characteristics provided by the Energy Information Administration. Some are extrapolated from other areas, when Mid-Atlantic data are not available. Some are based on code.
- The TRM anticipates the effects of changes in efficiency standards for some measures, specifically incandescent lamps, CFLs and motors.

The following table outlines the terms used to describe programs with respect to when and how a measure is implemented. The third portion of each measure code for each measure

³ For more discussion about the transferability of consumption data, see the EMV Forum Report: Cataloguing Available End-Use and Efficiency Measure Load Data, October 2009 at http://neep.org/emv-forum/forum-products-and-guidelines.

⁴ They are captured only for lighting measures.

Page 17 of 507

described in this TRM includes the abbreviation of the program type for which the characterization is intended: $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-$

Time of Sale (TOS) Definition: A program in which the customer is incented to purchase or install higher efficiency equipment than if the program had not existed. This may include retail rebate (coupon) programs, upstream buydown programs, online store programs, contractor based programs, or CFL giveaways as examples. Also applies to End of Life Baseline = New standard efficiency or code compliant equipment.	D	ATT 25 To a
inigher efficiency equipment than if the program had not existed. This may include retail rebate (coupon) programs, upstream buydown programs, online store programs, contractor based programs, or CFL giveaways as examples. Also applies to End of Life Baseline = New standard efficiency or code compliant equipment. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: CFL rebate New Construction (NC) Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Baseline = Existing equipment or the existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Definition: A program that replaces existing equipment before the end of its expected life. Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	Program	Attributes
include retail rebate (coupon) programs, upstream buydown programs, online store programs, contractor based programs, or CFL giveaways as examples. Also applies to End of Life Baseline = New standard efficiency or code compliant equipment. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: CFL rebate New Construction (NC) Definition: A program that intervenes during building design to support the use of more-efficient equipment and construction practices. Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Definition: A program that replaces existing equipment before the end of its expected life. Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	Time of Sale	<u>Definition:</u> A program in which the customer is incented to purchase or install
store programs, contractor based programs, or CFL giveaways as examples. Also applies to End of Life Baseline = New standard efficiency or code compliant equipment. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: CFL rebate New Construction (NC) Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	(TOS)	higher efficiency equipment than if the program had not existed. This may
Also applies to End of Life Baseline = New standard efficiency or code compliant equipment. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: CFL rebate New Construction (NC) Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		include retail rebate (coupon) programs, upstream buydown programs, online
Baseline New standard efficiency or code compliant equipment.		store programs, contractor based programs, or CFL giveaways as examples.
Efficient Case New, premium efficiency equipment above federal and state codes and standard industry practice. Example: CFL rebate		Also applies to End of Life
codes and standard industry practice. Example: CFL rebate New Construction (NC) Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Early Retirement (ERET) Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		Baseline = New standard efficiency or code compliant equipment.
New Construction (NC) Definition: A program that intervenes during building design to support the use of more-efficient equipment and construction practices. Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures		Efficient Case = New, premium efficiency equipment above federal and state
New Construction (NC) Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Definition: A program that replaces existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		codes and standard industry practice.
Construction (NC) Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Definition: A program that replaces existing equipment before the end of its expected life. Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		Example: CFL rebate
Construction (NC) Baseline = Building code or federal standards. Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Early Replacement (EREP) Early Reficient Case = New, premium efficiency equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	New	<u>Definition:</u> A program that intervenes during building design to support the
Efficient Case = The program's level of building specification Example: Building shell and mechanical measures Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Definition: A program that replaces existing equipment before the end of its expected life. Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	Construction	
Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Definition: A program that replaces existing equipment before the end of its expected life. Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Efficient Case = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	(NC)	Baseline = Building code or federal standards.
Retrofit (RF) Definition: A program that upgrades existing equipment before the end of its useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment before the end of its expected life. Baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		Efficient Case = The program's level of building specification
useful life. Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Efficient Case = Zero because the unit is retired.		Example: Building shell and mechanical measures
Baseline Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure's life. Efficient Case New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Definition: A program that replaces existing equipment before the end of its expected life. Baseline Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Definition: A program that retires duplicative equipment before its expected life is over. Baseline The existing equipment, which is retired and not replaced. Efficient Case Zero because the unit is retired.	Retrofit (RF)	<u>Definition:</u> A program that <i>upgrades</i> existing equipment before the end of its
equipment. A single baseline applies over the measure's life. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		useful life.
Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Definition: A program that replaces existing equipment before the end of its expected life. Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		Baseline = Existing equipment or the existing condition of the building or
codes and standard industry practice. Example: Air sealing and insulation Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		equipment. A single baseline applies over the measure's life.
Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		Efficient Case = New, premium efficiency equipment above federal and state
Early Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		codes and standard industry practice.
Replacement (EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		Example: Air sealing and insulation
(EREP) Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	Early	<u>Definition:</u> A program that <i>replaces</i> existing equipment before the end of its
baseline equipment after the expected life of the existing equipment is over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Easeline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	Replacement	expected life.
over. Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	(EREP)	Baseline = Dual; it begins as the existing equipment and shifts to new
Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		baseline equipment after the expected life of the existing equipment is
codes and standard industry practice. Example: Refrigerators, freezers Early Retirement (ERET) Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		over.
Example: Refrigerators, freezers Early Retirement (ERET) Example: Refrigerators, freezers Definition: A program that retires duplicative equipment before its expected life is over. Example: Refrigerators, freezers Definition: A program that retires duplicative equipment before its expected life is over. Example: Refrigerators, freezers		Efficient Case = New, premium efficiency equipment above federal and state
Early Retirement (ERET) Definition: A program that retires duplicative equipment before its expected life is over. Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		codes and standard industry practice.
Retirement life is over. (ERET) Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.		Example: Refrigerators, freezers
(ERET) Baseline = The existing equipment, which is retired and not replaced. Efficient Case = Zero because the unit is retired.	Early	<u>Definition:</u> A program that <i>retires</i> duplicative equipment before its expected
Efficient Case = Zero because the unit is retired.	Retirement	life is over.
	(ERET)	Baseline = The existing equipment, which is retired and not replaced.
Example: Appliance recycling		Efficient Case = Zero because the unit is retired.
Litatripie. Appliance recycling		Example: Appliance recycling
Direct Install Definition: A program where measures are installed during a site visit.	Direct Install	<u>Definition:</u> A program where measures are installed during a site visit.
(DI) <u>Baseline</u> = Existing equipment.	(DI)	

Page 18 of 507

Program	Attributes
	<u>Efficient Case</u> = New, premium efficiency equipment above federal and state
	codes and standard industry practice.
	Example: Lighting and low-flow hot water measures

Going forward, the project sponsors can use this TRM, along with other Forum products on common EM&V terminology, guidelines on common evaluation methods, and common reporting formats, along with the experience gained from implementation of the efficiency programs to inform decisions about what savings assumptions should be updated and how.

Page 19 of 507

TRM Update History

Issued
October 2010
March 2011
July 2011
January 2013
June 2014
June 2015
May 2016

Page 20 of 507

RESIDENTIAL MARKET SECTOR

Lighting End Use

General Purpose CFL Screw base, Residential*

Unique Measure Code(s): RS_LT_TOS_CFLSCR_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure characterizes the installation of a general purpose compact fluorescent light bulb (CFL) in place of an incandescent bulb. The measure provides assumptions for two implementation strategies (Time of Sale/Retail⁵ and Direct Install), and for two markets (Residential and Multi-Family).

This characterization is for a general purpose medium screw based CFL bulb (Alamps/twists/spirals), and not a specialty bulb (e.g. reflector (PAR) lamps, globes <= 40 watts, candelabras <= 40 watts, 3-ways etc).

Definition of Baseline Condition

The baseline is the installation of an incandescent/halogen light bulb meeting the standards described in the Energy and Independence and Security Act of 2007⁶.

Definition of Efficient Condition

The efficient condition is the installation of a compact fluorescent light bulb.

Annual Energy Savings Algorithm

= ((WattsBase - WattsEE) /1000) * ISR * HOURS * (WHFeHeat + ΔkWh $(WHFe_{Cool} - 1))$

Where:

= Based on lumens of CFL bulb⁷: WattsBase

⁵ The utilities might consider evaluating what percentage of retail sales end up in commercial locations, and apply the commercial CFL assumptions to that portion. In the absence of such data it is appropriate to use the Residential assumptions for all retail sales since they will represent a significant majority and result in an appropriately conservative estimate.

⁶ For text of Energy and Independence and Security Act, see http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf

⁷ Base wattage is based upon the post first phase of EISA wattage and wattage bins consistent with ENERGY STAR, v1.1;

Page 21 of 507

For Non-decorative bulbs:

Minimum Lumens	Maximum Lumens	Watts _{Base}
4000	6000	300
3001	3999	200
2601	3000	150
1490	2600	72
1050	1489	53
750	1049	43
310	749	29
250	309	25

For decorative bulbs and non-G40 globes greater than 40 watts:

	Minimum Lumens	Maximum Lumens	Watts _{Base}
Decorative	500	699	43
	500	574	43
Non-G40	575	649	53
globe	650	1099	72
	1100	1300	150

WattsEE = Actual wattage of CFL purchased / installed

ISR = In Service Rate or percentage of units rebated that are installed and operational.

Program In Service Rate

Page 22 of 507

	(ISR)
Time of Sale (Retail)	0.968
Direct Install	0.829

HOURS = Average hours of use per year

Installation Location	Daily Hours	Annual Hours
Residential interior and in-unit Multi Family	2.46	898 ¹⁰
Multi Family Common Areas	16.3	5,950 ¹¹
Exterior	4.5	1,643 12
Unknown ¹³	2.46	898

 $WHFe_{Cool}$

= Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

WHFe_{Cool}

⁸ Starting with a first year ISR of 0.80 (based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015) and a lifetime ISR of 0.97 (from Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009"). Assume that half of the bulbs not installed in year 1 are installed in year 2, and the other half in year 3. Using a discount rate of 5%, this gives a total ISR of 0.8 + 0.085 * 0.95 + 0.85 * 0.95^2 = 0.96.

⁹ Assumption is based on the EmPOWER _EY5 Res Lighting Results Memo_20Jan2015 DRAFT discussed above, but not adjusted upwards since those people removing bulbs after being installed in Direct Install program are likely to do so because they dislike them, not to use as replacements. Only evaluation we are aware of specifically for Direct Install installation (and persistence) rates is Megdal & Associates, 2003; "2002/2003 Impact Evaluation of LIPA's Clean Energy Initiative REAP Program", which estimated 81%.

¹⁰ Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 14.

¹¹ Multifamily common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Wisconsin's Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

¹² Updated results from Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, presented in 2005 memo;

http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodelivered.pdf

¹³ For programs where the installation location is unknown (e.g. upstream lighting programs) the assumption is set conservatively to assume an interior residential bulb.

Page 23 of 507

Building with cooling	1.12 ¹⁴
Building without	1.0
cooling or exterior	
Unknown	1.10 ¹⁵

 $WHFe_{Heat}$

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / ηHeat) * %ElecHeat)

If unknown assume 0.894¹⁶

HF

= Heating Factor or percentage of light savings that must be heated

= 47%¹⁷ for interior or unknown location = 0% for exterior or unheated location

nHeat

= Efficiency in COP of Heating equipment = actual. If not available use¹⁸:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
----------------	---------------------	------------------	----------------------------

The value is estimated at 1.12 (calculated as 1.1 (0.22 / 2.9)). Page

¹⁴ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

¹⁵ The value is estimated at 1.10 (calculated as 1 + (0.89*(0.33 / 2.8))). Based on assumption that 89% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.). ¹⁶ Calculated using defaults; 1-((0.47/1.67)*0.375) = 0.894

¹⁷ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

¹⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 and 2015 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 24 of 507

	Before 2006	6.8	2.00
Heat Pump	2006-2014	7.7	2.26
	2015 on	8.2	2.40
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.67 19

%ElecHeat = Percentage of home with electric heat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ²⁰

Illustrative examples - do not use as default assumption

A 13W, 850 lumen standard CFL bulb is purchased and installed in an unknown location:

$$\Delta$$
kWh = ((43-13)/1000) * 0.96 * 898 * (0.894 + (1.10-1))
= 26.0 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = ((WattsBase - WattsEE) / 1000) * ISR * WHFd * CF$$

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ²¹

¹⁹ Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.
²⁰ Based on KEMA baseline study for Maryland.

²¹ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by

Page 25 of 507

Building without	1.0
cooling or exterior	
Unknown	1.2122

CF

= Summer Peak Coincidence Factor for measure

Installation Location	Туре	Coincidence Factor CF
Residential interior and	Utility Peak CF	0.082^{23}
in-unit Multi Family	PJM CF	0.084 ²⁴
Multi Family Common Areas	PJM CF	0.43^{25}
Exterior	PJM CF	0.018 ²⁶
Unknown	Utility Peak CF	0.082
	PJM CF	0.084

Illustrative examples - do not use as default assumption

A 13W, 850 lumen CFL bulb is purchased and installed in an unknown location:

$$\Delta kW_{PJM}$$
 = ((43-13) / 1000) * 0.96 * 1.21 * 0.084

= 0.0029 kW

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel):

$$\Delta$$
MMBtuPenalty = - ((((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

Where:

HF

= Heating Factor or percentage of light savings that must be heated

dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

²² The value is estimated at 1.21 (calculated as 1 + (0.89 * 0.66 / 2.8)).

²³ Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 16.

²⁵ Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

²⁶ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

Page 26 of 507

= 47%²⁷ for interior or unknown location = 0% for exterior or unheated location

0.003412 =Converts kWh to MMBtu

ηHeat = Efficiency of heating system

 $=72\%^{28}$

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat	
Electric	0%	
Fossil Fuel	100%	
Unknown	62.5% ²⁹	

Illustrative examples - do not use as default assumption A 13W, 780 CFL lumen bulb is purchased and installed in an unknown location:

$$\Delta$$
MMBtuPenalty = - (((43-13)/1000) * 0.96 * 898 * 0.47 * 0.003412/0.72) *

0.625

= - 0.036 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

For the Retail (Time of Sale) measure, the incremental capital cost is \$1.80 from June 2014³⁰.

For the Direct Install measure, the full cost of \$3.20³¹ per bulb should be used plus \$5 labor³² for a total measure cost of \$8.20 per lamp.

Measure Life

27

²⁷ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

²⁸ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xls).

²⁹ Based on KEMA baseline study for Maryland.

³⁰ Based on incremental costs for 60W equivalent (dominant bulb) from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014.

³¹ Ibid. Based on 15W CFL,

³² Assumption based on 15 minutes (including portion of travel time) and \$20 per hour.

Page 27 of 507

The measure life is given in the table below. Note that a provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline. Therefore after 2014 the measure life will have to be reduced each year to account for the number of years remaining to 2020.

Installation Location	Measure Life
Residential interior and	4 ³³
in-unit Multi Family	
Multi Family Common Areas	1.7 ³⁴
Exterior	4.0
Unknown	4.0

Operation and Maintenance Impacts

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see MidAtlantic Lighting adjustments and O&M_042015.xls). The key assumptions used in this calculation are documented below:

	Standard Incandescent	Efficient Incandescent
Replacement Cost	\$0.50	\$1.40 ³⁵
Component Life ³⁶ (years) Residential interior, in-unit Multi Family or unknown	1.137	1.1 ³⁸
Multi Family Common Areas	0.17	0.17

³³ Assumes CFLs will become baseline in 2020. The measure life has to be further reduced by one year for every install year beyond 2016.

³⁴ Assumed rated life of 10,000 hours due to lower switching (10000/5950 = 1.7).

³⁵ Based on for 60W EISA equivalent (dominant bulb) from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014.

³⁶ Based on lamp life / assumed annual run hours.

³⁷ Assumes rated life of incandescent bulb of 1000 hours.

³⁸ The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, Optimal Energy and confirmed by N. Horowitz at NRDC) so the lifetime of these EISA qualified bulbs is assumed to be 1000 hours.

Page 28 of 507

Exterior	0.60	0.60

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below³⁹:

Residential interior and in-unit Multi Family

	NPV of baseline	
	Replacement	
Year	Costs	
2015	\$3.83	
2016	\$2.94	
2017	\$2.01	

Multi Family Common Areas

	NPV of baseline Replacement	
Year	Costs	
2015	\$5.60	
2016	\$5.60	
2017	\$5.60	

Exterior

NPV of baseline
Replacement
Costs
2015 \$5.65
2016 \$5.65
2017 \$4.32

³⁹ Note, these values have been adjusted by the appropriate In Service Rate - the Time of Sale assumption (0.92) is used for the Residential interior and multi-family in unit, the Direct Install assumption (0.88) for the remaining categories. The discount rate used for these calculations is 5.0%. See 'MidAtlantic Lighting adjustments and O&M_042015' for more information.

Page 29 of 507

Specialty CFLs, Residential*

Unique Measure Code(s): RS_LT_TOS_SPECCFL_0415

Effective Date: June 2015

End Date: TBD

Measure Description

An ENERGY STAR qualified specialty compact fluorescent bulb is installed in place of an incandescent specialty bulb. Specialty bulbs defined in this characterization are exempt of the EISA 2007 standard and include the following bulb types: three-way, plant light, daylight bulb, bug light, post light, globes G40, candelabra base, vibration service bulb, decorative candle with medium or intermediate base, shatter resistant, reflector.

The measure provides assumptions for two implementation strategies (Time of Sale/Retail⁴⁰ and Direct Install), and for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline condition is a specialty incandescent light bulb.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR qualified specialty CFL bulb as defined above that is exempt from EISA 2007.

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBase - WattsEE) /1000) * ISR * HOURS * (WHFe_{Heat} + (WHFe_{Cool} - 1))$

Where:

WattsBase

= If actual CFL lumens is known - find the equivalent baseline wattage from the table below⁴¹; use 61.7W if unknown⁴²

http://www.energystar.gov/index.cfm?c=cfls.pr cfls lumens

⁴⁰ The utilities might consider evaluating what percentage of retail sales end up in commercial locations, and apply the commercial CFL assumptions to that portion. In the absence of such data it is appropriate to use the Residential assumptions for all retail sales since they will represent a significant majority and result in an appropriately conservative estimate.

⁴¹ Based on ENERGY STAR equivalence table;

⁴² A 2006-2008 California Upstream Lighting Evaluation found an average incandescent wattage of 61.7 Watts (KEMA, Inc, The Cadmus Group, Itron, Inc, PA Consulting Group, Jai J. Mitchell Analytics, Draft Evaluation Report: Upstream Lighting Program. Prepared for the California Public Utilities Commission,

Page 30 of 507

Bulb Type	Lower Lumen	Upper Lumen	WattsBase
	Range	Range	25
	250	449	25
	450	799	40
3-Way, bug, marine, rough service,	800	1099	60
infrared	1100	1599	75
	1600	1999	100
	2000	2549	125
	2550	2999	150
	90	179	10
Globe	180	249	15
(medium and intermediate bases less than 749 lumens) ⁴³	250	349	25
silaii 7-3 idiliciis)	350	749	40
Decorative	70	89	10
(Shapes B, BA, C, CA, DC, F, G, medium	90	149	15
and intermediate bases less than 750	150	299	25
lumens) ⁴⁴	300	500	40
	90	179	10
Globe	180	249	15
(candelabra bases less than 1050	250	349	25
lumens)	350	499	40
	500	1049	60
	70	89	10
Decorative	90	149	15
(Shapes B, BA, C, CA, DC, F, G,	150	299	25
candelabra bases less than 1050	300	499	40
lumens)	500	1049	60
	400	449	40
			45
Reflector with medium screw bases w/	450	499	
diameter <=2.25"	500	649	50
	650	1199	65
	640	739	40
R, PAR, ER, BR, BPAR or similar bulb	740	849	45
shapes with medium screw bases w/	850	1179	50
diameter >2.5" (*see exceptions below)	1180	1419	65
	1420	1789	75

Energy Division. December 10, 2009)

43 If the bulb has greater than 500 lumens, this is categorized as general service
44 If the bulb has greater than 500 lumens, this is categorized as general service

Page 31 of 507

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	1790	2049	90
	2050	2579	100
	2580	3429	120
	3430	4270	150
	540	629	40
	630	719	45
	720	999	50
R, PAR, ER, BR, BPAR or similar bulb	1000	1199	65
shapes with medium screw bases w/ diameter > 2.26" and ≤ 2.5" (*see	1200	1519	75
exceptions below)	1520	1729	90
	1730	2189	100
	2190	2899	120
	2900	3850	150
	400	449	40
*ER30, BR30, BR40, or ER40	450	499	45
	500	649-1179 ⁴⁵	50
*BR30, BR40, or ER40	650	1419	65
*030	400	449	40
*R20	450	719	45
*All reflector lamps	200	299	20
below lumen ranges specified above	300	399-639 ⁴⁶	30

WattsEE = Actual wattage of energy efficient specialty bulb purchased, use 15W if unknown⁴⁷

ISR = In Service Rate or percentage of units rebated that get installed.

Program	In Service Rate
	(ISR)

⁴⁵ The upper bounds for these categories depends on the lower bound of the next higher wattage, which varies by bulb type.

⁴⁷ An Illinois evaluation (Energy Efficiency / Demand Response Plan: Plan Year 2 (6/1/2009-5/31/2010) Evaluation Report: Residential Energy Star ® Lighting

http://ilsag.org/yahoo_site_admin/assets/docs/ComEd_Res_Lighting_PY2_Evaluation_Report_2010-12-21_Final.12113928.pdf) reported 13-17W as the most common specialty CFL wattage (69% of program bulbs). 2009 California data also reported an average CFL wattage of 15.5 Watts (KEMA, Inc, The Cadmus Group, Itron, Inc, PA Consulting Group, Jai J. Mitchell Analytics, Draft Evaluation Report: Upstream Lighting Program, Prepared for the California Public Utilities Commission, Energy Division. December 10, 2009).

⁴⁶ As above.

Page 32 of 507

Time of Sale (Retail)	0.96 ⁴⁸
Direct Install	0.8249

HOURS = Average hours of use per year

The true of the per year			
Installation Location	Daily Hours	Annual Hours	
Residential and in-unit Multi Family	2.46	898 ⁵⁰	
Multi Family Common Areas	16.3	5,950 ⁵¹	
Exterior	4.5	1,643 ⁵²	
Unknown ⁵³	2.46	898	

WHFe_{Cool} = Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

⁴⁸ Starting with a first year ISR of 0.80 (based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015) and a lifetime ISR of 0.97 (from Nexus Market Research, RLW Analytics and GDS Associates study; "New England Residential Lighting Markdown Impact Evaluation, January 20, 2009"). Assume that half of the bulbs not installed in year 1 are installed in year 2, and the other half in year 3. Using a discount rate of 5%, this gives a total ISR of 0.8 + 0.085 * 0.95 + 0.85 * 0.95^2 = 0.96.

⁴⁹ Assumption is based on the EmPOWER _EY5 Res Lighting Results Memo_20Jan2015 DRAFT discussed above, but not adjusted upwards since those people removing bulbs after being installed in Direct Install program are likely to do so because they dislike them, not to use as replacements. Only evaluation we are aware of specifically for Direct Install installation (and persistence) rates is Megdal & Associates, 2003; "2002/2003 Impact Evaluation of LIPA's Clean Energy Initiative REAP Program", which estimated 81%.

⁵⁰ Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 14.

⁵¹ Multifamily common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

⁵² Updated results from Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, presented in 2005 memo:

http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodelivered.pdf

⁵³ For programs where the installation location is unknown (e.g. upstream lighting programs) the assumption is set conservatively to assume an interior residential bulb.

Page 33 of 507

	WHFe _{Cool}
Building with cooling	1.12 ⁵⁴
Building without	1.0
cooling or exterior	
Unknown	1.10 ⁵⁵

WHFe_{Heat}

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / ηHeat) * %ElecHeat)

If unknown assume 0.894⁵⁶

HF = Heating Factor or percentage of light savings that must be heated

= 47%⁵⁷ for interior or unknown location

= 0% for exterior or unheated location

η**Heat** = Efficiency in COP of Heating equipment = actual. If not available use⁵⁸:

System	Age of	HSPF	nHeat

_

⁵⁴ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

 $^{^{55}}$ The value is estimated at 1.10 (calculated as 1 + (0.89*(0.33 / 2.8)). Based on assumption that 89% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.).

 $^{^{56}}$ Calculated using defaults; 1+ ((0.47/1.67) * 0.375) = 0.894

This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

⁵⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 34 of 507

Туре	Equipment	Estimate	(COP Estimate)
	Before 2006	6.8	2.00
Heat Pump	2006 - 2014	7.7	2.26
	2015 on	8.2	2.40
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.67 ⁵⁹

%ElecHeat = Percentage of home with electric heat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ⁶⁰

Illustrative example - do not use as default assumption

An 800 lumen 15W Globe CFL is purchased and installed in an unknown location:

$$\Delta$$
kWh = ((60 - 15) / 1000) * 0.96 * 898 * (0.894 + (1.10 - 1))
= 38.6 kWh

Summer Coincident Peak kW Savings Algorithm

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

WHFd

Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.
 Based on KEMA baseline study for Maryland.

Page 35 of 507

Building with cooling	1.24 ⁶¹
Building without	1.0
cooling or exterior	
Unknown	1.2162

CF = Summer Peak Coincidence Factor for measure

Installation Location	Туре	Coincidence Factor CF
Residential interior and	Utility Peak CF	0.082 ⁶³
in-unit Multi Family	PJM CF	0.084 ⁶⁴
Multi Family Common Areas	PJM CF	0.4365
Exterior	PJM CF	0.018 ⁶⁶
Unknown	Utility Peak CF	0.082
	PJM CF	0.084

Illustrative example - do not use as default assumption: An 800 lumen 15W Globe CFL is purchased and installed in an unknown location:

$$\Delta kW_{PJM}$$
 = ((60 - 15) / 1000) * 0.96 * 1.21 * 0.084
= 0.0044 kW

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel⁶⁷):

 Δ MMBtuPenalty⁶⁸ = - ((((WattsBase - WattsEE) / 1000) * ISR * Hours * HF *

⁶¹ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

⁶² The value is estimated at 1.21 (calculated as 1 + (0.89 * 0.66 / 2.8)).

⁶³ Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 16.

⁶⁵ Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

⁶⁶ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

⁶⁷ Based on KEMA baseline study for Maryland.

⁶⁸ Negative value because this is an increase in heating consumption due to the efficient lighting.

Page 36 of 507

0.003412) / nHeat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that must

be heated

= 47%⁶⁹ for interior or unknown location

= 0% for exterior or unheated location

0.003412 =Converts kWh to MMBtu

ηHeat = Efficiency of heating system

 $=72\%^{70}$

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat
Electric	0%
Fossil Fuel	100%
Unknown	62.5% ⁷¹

Illustrative example - do not use as default assumption An 800 lumen 15W Globe CFL is purchased and installed in a home with 75% AFUE gas furnace:

$$\Delta$$
MMBtuPenalty = - (((60 - 15)/1000) * 0.96 * 898 * 0.47 * 0.003412/0.75) *

1.0

= - 0.083 MMBtu

If home heating fuel is unknown:

$$\Delta$$
MMBtuPenalty = - (((60 - 15)/1000) * 0.96 * 1100 * 0.47 * 0.003412/0.72) *

0.625

= - 0.066 MMBtu

-

⁶⁹ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

⁷⁰ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xls).

⁷¹ Based on KEMA baseline study for Maryland.

Page 37 of 507

Annual Water Savings Algorithm

n/a

Incremental Cost

For the Retail (Time of Sale) measure, the incremental capital cost for this measure is $\$3.80^{72}$.

For the Direct Install measure, the full cost of \$8.20 should be used plus \$5 labor⁷³ for a total measure cost of \$13.20 per lamp.

Measure Life

The expected measure life is assumed to be:

Installation Location	Measure Life
Residential interior and	6.8
in-unit Multi Family	
Multi Family Common Areas	1.7 ⁷⁵
Exterior	4.9 16
Unknown	6.8

Operation and Maintenance Impacts

Life of the baseline bulb is assumed to be 1.1 years for Residential interior and in-unit Multi Family, 0.17 year for Multi Family common areas and 0.6 year for exterior⁷⁷; baseline replacement cost is assumed to be \$4.40⁷⁸.

⁷² Based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014.

⁷³ Assumption based on 15 minutes (including portion of travel time) and \$20 per hour.

⁷⁴ The assumed measure life for the specialty bulb measure characterization was reported in "Residential Lighting Measure Life Study", Nexus Market Research, June 4, 2008 (measure life for markdown bulbs). Measure life estimate does not distinguish between equipment life and measure persistence. Measure life includes products that were installed and operated until failure (i.e., equipment life) as well as those that were retired early and permanently removed from service for any reason, be it early failure, breakage, or the respondent not liking the product (i.e., measure persistence).

 $^{^{75}}$ Assumed rated life of 10,000 hours due to lower switching (10000/5950 = 1.7).

⁷⁶ Assumed rated life of 8,000 hours due to higher switching and use outside (8000/1643 = 4.9)

⁷⁷ Assuming 1000 hour rated life for incandescent bulb divided by the hours of use assumption. ⁷⁸ Based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014.

Page 38 of 507

Hardwired CFL Fixtures (Interior)*

Unique Measure Code(s): RS_LT_RTR_CFLFIN_0415 and RS_LT_INS_CFLIN_0415

Effective Date: June 2015

End Date: TBD

Measure Description

An ENERGY STAR lighting fixture wired for exclusive use with pin-based (including the GU-24 base) compact fluorescent lamps is installed in an interior residential setting. This measure could relate to either retrofit or new installation, and for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline condition is a standard incandescent/halogen interior light fixture meeting the standards described in the Energy and Independence and Security Act of 2007⁷⁹.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR lighting interior fixture for pin-based compact fluorescent lamps.

Annual Energy Savings Algorithm

$$\Delta$$
kWh = #Iamps * ((WattsBase - WattsEE) /1000) * ISR * HOURS * (WHFe_{Heat} + (WHFe_{Cool} - 1))

Where:

WattsBase

= Based on lumens of CFL bulb⁸⁰:

Minimum Lumens	Maximum Lumens	Watts _{Base}
4000	6000	300
3001	3999	200

⁷⁹ For text of Energy and Independence and Security Act, see http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf

⁸⁰ Base wattage is based upon the post first phase of EISA wattage and wattage bins consistent with ENERGY STAR, v1.1;

http://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V1%201_Specification.pd f

Page 39 of 507

Minimum Lumens	Maximum Lumens	Watts _{Base}
2600	3000	150
2000	2599	72
1600	1999	72
1100	1599	53
800	1099	43
450	799	29
250	449	25

#lamps = Number of lamps in fixture. If unknown, assume 1.

ISR = In Service Rate or percentage of units rebated that get

installed. =0.95 ⁸¹

HOURS = Average hours of use per year

The one The rage hears of ase per year		
Installation Location	Daily Hours	Annual Hours
Residential interior and in-unit Multi Family	2.46	898 ⁸²
Multi Family Common Areas	16.3	5,950 ⁸³
Unknown	2.46	1,100

WHFe_{Cool} = Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

Based on Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 42 (Table 4-7).

Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 14.

Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on

⁸³ Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

Page 40 of 507

	WHFe _{Cool}
Building with cooling	1.12 ⁸⁴
Building without	1.0
cooling or exterior	
Unknown	1.10 ⁸⁵

WHFe_{Heat}

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / nHeat) * %ElecHeat)

If unknown assume 0.89486

HF

= Heating Factor or percentage of light savings that must be heated

= 47%⁸⁷ for interior or unknown location

= 0% for exterior or unheated location

nHeat

= Efficiency in COP of Heating equipment = actual. If not available use⁸⁸:

System	Age of	HSPF	ηHeat

8

⁸⁴ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

⁸⁵ The value is estimated at 1.10 (calculated as 1 + (0.89*(0.33 / 2.8)). Based on assumption that 89% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.).

⁸⁶ Calculated using defaults; 1+ ((0.47/1.67) * 0.375) = 0.894

⁸⁷ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

⁸⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 41 of 507

Туре	Equipment	Estimate	(COP Estimate)
	Before 2006	6.8	2.00
Heat Pump	2006 - 2014	7.7	2.26
	2015 on	8.2	2.40
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.6789

%ElecHeat

= Percentage of home with electric heat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ⁹⁰

Illustrative example - do not use as default assumption A 3 x 11W, 600 lumen fixture is purchased and installed in an unknown location:

$$\Delta$$
kWh = (3 * ((29-11)/1000)) * 0.95 * 898 * (0.894 + (1.10 - 1))
= 46 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (\#lamps * ((WattsBase - WattsEE) / 1000)) * ISR * WHFd * CF$$

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ⁹¹
Building without	1.0
cooling or exterior	
Unknown	1.21 ⁹²

⁸⁹ Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.
⁹⁰ Based on KEMA baseline study for Maryland.

 $^{^{91}}$ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

 $^{^{92}}$ The value is estimated at 1.21 (calculated as 1 + (0.89 * 0.66 / 2.8)).

CF = Summer Peak Coincidence Factor for measure

Installation Location	Туре	Coincidence Factor CF
Residential interior and	Utility Peak CF	0.082 ⁹³
in-unit Multi Family	PJM CF	0.084 ⁹⁴
Multi Family Common Areas	PJM CF	0.4395
Unknown	Utility Peak CF	0.082
	PJM CF	0.084

Illustrative example - do not use as default assumption

A 3 x 11W, 600 lumen lamp fixture is purchased and installed in an unknown location:

$$\Delta kW_{PJM}$$
 = (3 * ((29-11) / 1000)) * 0.95 * 1.21 * 0.084

= 0.0052 kW

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel ⁹⁶):

$$\Delta$$
MMBtuPenalty = - ((((#Iamps * (WattsBase - WattsEE) / 1000)) * ISR * Hours * HF * 0.003412) / nHeat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that must

be heated

= 47%⁹⁷ for interior or unknown location

= 0% for exterior or unheated location

0.003412 =Converts kWh to MMBtu

η**Heat** = Efficiency of heating system

=72%⁹⁸

.

 ⁹³ Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014)
 Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 16.
 ⁹⁴ Ibid.

⁹⁵ Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

⁹⁶ Based on KEMA baseline study for Maryland.

⁹⁷ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

Page 43 of 507

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat
Electric	0%
Fossil Fuel	100%
Unknown	62.5% ⁹⁹

Illustrative example - do not use as default assumption
A 3 x 11W, 600 lumen lamp fixture is purchased and installed in an unknown location:

= - 0.064 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for an interior fixture is assumed to be \$32¹⁰⁰.

Measure Life

An additional provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline.

The measure life of an interior fixture ¹⁰¹ will therefore need to be reduced each year and be equal to the remaining number of years before 2020, i.e. for installations in 2015 the measure life should be 5 years, for installations in 2016 the measure life should be 4 years etc.

Operation and Maintenance Impacts

⁹⁸ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xls).

⁹⁹ Based on KEMA baseline study for Maryland.

¹⁰⁰ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for interior fixture (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.xlsx?b299 <u>-55ae&b299-55ae</u>)

Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf) gives 20 years for an interior fluorescent fixture.

Page 44 of 507

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see MidAtlantic Lighting adjustments and O&M_042015.xls). The key assumptions used in this calculation are documented below:

	Baseline		Efficient
	Standard	Efficient	CFL
	Incandescent	Incandescent	
Replacement Cost	\$0.50	\$1.40 ¹⁰²	\$3.20 ¹⁰³
Component Life ¹⁰⁴ (years)	1.1 ¹⁰⁵	1.1 ¹⁰⁶	8.9 ¹⁰⁷
Residential interior,			
in-unit Multi Family			
or unknown			
Multi Family Common	0.17	0.17	1.34
Areas			

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below 108:

Residential interior, in-unit Multi Family or unknown

,,	NPV of baseline Replacement
Year	Costs
2015	\$4.24
2016	\$3.25
2017	\$2.22

Multi Family Common Areas

¹⁰⁴ Based on lamp life / assumed annual run hours.

¹⁰⁸ Note, these values have been adjusted by the appropriate In Service Rate.

¹⁰² Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International, Ecova and Optimal Energy.

¹⁰³ Ihid

¹⁰⁵ Assumes rated life of incandescent bulb of 1000 hours (simplified to 1 year for calculation).

The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard, so the lifetime of these EISA qualified bulbs is assumed to be 1000 hours.

Assumes 8000 hours rated life for CFL (8000 hours is the average rated life of ENERGY STAR bulbs (http://www.energystar.gov/index.cfm?c=cfls.pr_crit_cfls)

Page 45 of 507

Year	NPV of baseline Replacement Costs
2015	\$26.63
2016	\$21.98
2017	\$17.09

Page 46 of 507

Hardwired CFL Fixtures (Exterior)*

Unique Measure Code(s): RS_LT_RTR_CFLFEX_0415 and RS_LT_INS_CFLFEX_0415

Effective Date: June 2015

End Date: TBD

Measure Description

An ENERGY STAR lighting fixture wired for exclusive use with pin-based compact fluorescent lamps is installed in an exterior residential setting. This measure could relate to either retrofit or new installation, and for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline condition is a standard incandescent/halogen exterior light fixture meeting the standards described in the Energy and Independence and Security Act of 2007¹⁰⁹.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR lighting exterior fixture for pinbased compact fluorescent lamps.

Annual Energy Savings Algorithm

 Δ kWh = #Iamps * ((WattsBase - WattsEE) /1000) * ISR * HOURS * WHFe_{Cool} * WHFe_{Heat}

Will Che

Where:

WattsBase

= Based on lumens of CFL bulb 110:

Minimum Lumens	Maximum Lumens	WattsBase
4000	6000	300
3001	3999	200

¹⁰⁹ For text of Energy and Independence and Security Act, see http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf

Base wattage is based upon the post first phase of EISA wattage and wattage bins consistent with ENERGY STAR, v1.1;

http://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V1%201_Specification.pd f

Page 47 of 507

Minimum Lumens	Maximum Lumens	WattsBase
2600	3000	150
2000	2599	72
1600	1999	72
1100	1599	53
800	1099	43
450	799	29
250	449	25

#lamps = Number of lamps in fixture. If unknown, assume 1.

ISR = In Service Rate or percentage of units rebated that get installed

 $= 0.87^{111}$

HOURS = Average hours of use per year

 $= 1643 (4.5 \text{ hrs per day})^{112}$

Illustrative example - do not use as default assumption A 2 x 23W, 1600 lumen fixture is purchased and installed in an unknown location:

$$\Delta$$
kWh = (2 * ((72-23)/1000)) * 0.87 * 1643
= 138 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (\#lamps * ((WattsBase - WattsEE) / 1000)) * ISR * CF$$

Where:

CF = Summer Peak Coincidence Factor for measure = 0.018 113

¹¹¹ Consistent with Efficiency Vermont and CT Energy Efficiency Fund; based on Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, p. 42 (Table 4-7).

Updated results from above study, presented in 2005 memo; http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodelivered.p

¹¹³ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

Page 48 of 507

Illustrative example - do not use as default assumption A 2 x 23W, 1600 lumen lamp fixture is purchased and installed in an unknown location:

$$\Delta$$
kW = (2* (72-23) / 1000) * 0.87 * 0.018

= 0.0015 kW

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

The incremental cost for an exterior fixture is assumed to be \$17¹¹⁴.

Measure Life

An additional provision in the Energy Independence and Security Act of 2007 requires that by January 1, 2020, all lamps meet efficiency criteria of at least 45 lumens per watt, in essence making the CFL baseline.

The measure life of an exterior fixture 115 will therefore need to be reduced each year and be equal to the remaining number of years before 2020, i.e. for installations in 2016 the measure life should be 4 years etc.

Operation and Maintenance Impacts

In order to account for the shift in baseline due to the Federal Legislation discussed above, the levelized baseline replacement cost over the lifetime of the CFL is calculated (see MidAtlantic Lighting adjustments and O&M_042015.xls). The key assumptions used in this calculation are documented below:

⁻

¹¹⁴ ENERGY STAR Qualified Lighting Savings Calculator default incremental cost input for exterior fixture

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/LightingCalculator.xlsx?b299 -55ae&b299-55ae)

This Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007 (http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf) gives 15 years for an exterior fluorescent fixture.

Page 49 of 507

	Baseline		Efficient
	Standard	Efficient	CFL
	Incandescent	Incandescent	
Replacement Cost	\$0.50	\$1.40 ¹¹⁶	\$3.20 ¹¹⁷
Component Life (years) (based on lamp life / assumed annual run hours)	0.6 ¹¹⁸	0.6 ¹¹⁹	4.9 ¹²⁰

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below:

Year	NPV of baseline Replacement Costs ¹²¹
2015	\$8.01
2016	\$6.34
2017	\$4.59

¹¹⁶ Based on Northeast Regional Residential Lighting Strategy (RLS) report, prepared by EFG, D&R International, Ecova and Optimal Energy.

¹¹⁸ Assumes rated life of incandescent bulb of 1000 hours.

¹¹⁹ The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard, so the lifetime of these EISA qualified bulbs is assumed to be

¹²⁰ Assumes rated life of 8000 hours.

¹²¹ Note, these values have been adjusted by the appropriate In Service Rate.

Page 50 of 507

Solid State Lighting (LED) Recessed Downlight Luminaire*

Unique Measure Code: RS_LT_TOS_SSLDWN_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure describes savings from the purchase and installation of a Solid State Lighting (LED) Recessed Downlight luminaire in place of an incandescent downlight lamp (i.e. time of sale). The SSL downlight should meet the ENERGY STAR Luminaires Version 2.0 specification¹²². The characterization of this measure should not be applied to other types of LEDs.

Note, this measure assumes the baseline is a Bulged Reflector (BR) lamp. This lamp type is generally the cheapest and holds by far the largest market share for this fixture type. They currently are *not* subject to EISA regulations and so this characterization does not include the baseline shift provided in other lighting measures.

The measure provides assumptions for two markets (Residential and Multi-Family).

Definition of Baseline Condition

The baseline is the purchase and installation of a standard BR30-type incandescent downlight light bulb.

Definition of Efficient Condition

The efficient condition is the purchase and installation of an ENERGY STAR Solid State Lighting (LED) Recessed Downlight luminaire.

Annual Energy Savings Algorithm

 Δ kWh = ((WattsBase - WattsEE) /1,000) * ISR * HOURS * (WHFe_{Heat} + (WHFe_{Cool} - 1))

Where:

WattsBase = Connected load of baseline lamp

ENERGY STAR specification can be viewed here: https://www.energystar.gov/sites/default/files/asset/document/Luminaires%20V2%200%20Final.pdf

Page 51 of 507

= Actual if retrofit, if LED lumens is known - find the equivalent baseline wattage from the table below 123, if unknown assume 65W 124

Bulb Type	Lower Lumen	Upper Lumen	WattsBase
	Range 400	Range 449	40
			40
Reflector with medium screw bases w/	450	499	45
diameter <=2.25"	500	649	50
	650	1199	65
	640	739	40
	740	849	45
	850	1179	50
R, PAR, ER, BR, BPAR or similar bulb	1180	1419	65
shapes with medium screw bases w/	1420	1789	75
diameter >2.5" (*see exceptions below)	1790	2049	90
	2050	2579	100
	2580	3429	120
	3430	4270	150
	540	629	40
	630	719	45
	720	999	50
R, PAR, ER, BR, BPAR or similar bulb	1000	1199	65
shapes with medium screw bases w/ diameter > 2.26" and ≤ 2.5" (*see	1200	1519	75
exceptions below)	1520	1729	90
,	1730	2189	100
	2190	2899	120
	2900	3850	150
	400	449	40
*ER30, BR30, BR40, or ER40	450	499	45
	500	649-1179 ¹²⁵	50
*BR30, BR40, or ER40	650	1419	65
*R20	400	449	40
· KZU	450	719	45

¹²³ Based on ENERGY STAR equivalence table; http://www.energystar.gov/index.cfm?c=cfls.pr_cfls_lumens 124 Baseline wattage based on common 65 Watt BR30 incandescent bulb (e.g. http://www.destinationlighting.com/storeitem.jhtml?iid=16926)

The upper bounds for these categories depends on the lower bound of the next higher wattage, which varies by bulb type.

Page 52 of 507

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
*All reflector lamps	200	299	20
below lumen ranges specified above	300	399-639 ¹²⁶	30

WattsEE = Connected load of efficient lamp

= Actual. If unknown assume 9.2W 127

ISR = In Service Rate or percentage of units rebated that get

installed. = 1.0¹²⁸

HOURS = Average hours of use per year

Installation Location	Daily Hours	Annual Hours
Residential interior and in-unit Multi Family	2.46	898 ¹²⁹
Multi Family Common Areas	16.3	5,950 ¹³⁰
Unknown	2.46	898

WHFe_{Cool} = Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

	WHFe _{Cool}
Building with cooling	1.12 ¹³¹
Building without	1.0
cooling or exterior	
Unknown	1.10 ¹³²

(http://site4.marketsmartinteractive.com/products.htm). Adjusted by ratio of Im/w in ENERGY STAR V2.0 compared to ENERGY STAR V1.2 specification.

¹²⁶ As above.

¹²⁷ Energy Efficient wattage based on 12 Watt LR6 Downlight from LLF Inc.

¹²⁸ Based upon recommendation in NEEP EMV Emerging Tech Research Report.

¹²⁹ Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 14. This assumption is consistent with the CFL measures. To date there has not been sufficient data available to provide a separate LED hours assumption, and this should be reviewed in future years.

¹³⁰ Multifamily common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

¹³¹ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

The value is estimated at 1.10 (calculated as 1 + (0.89*(0.33 / 2.8)). Based on assumption that 89%

Page 53 of 507

 $WHFe_{Heat}$

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / nHeat) * %ElecHeat)

If unknown assume 0.894¹³³

HF

= Heating Factor or percentage of light savings that must be heated

= 47%¹³⁴ for interior or unknown location

= 0% for exterior or unheated location

ηHeat

= Efficiency in COP of Heating equipment

= actual. If not available use 135:

System Type	Age of Equipment	HSPF Estimate	ηHeat (COP Estimate)
	Before 2006	6.8	2.00
Heat Pump	2006 - 2014	7.7	2.26
	2015 on	8.2	2.40
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.67 ¹³⁶

%ElecHeat

= Percentage of home with electric heat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ¹³⁷

of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.).

¹³⁷ Based on KEMA baseline study for Maryland.

¹³³ Calculated using defaults; 1+((0.47/1.67)*0.375)=0.894

This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

¹³⁵ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

¹³⁶ Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.

Illustrative example - do not use as default assumption Residential interior and in-unit Multi Family

$$\Delta kWh = ((65 - 9.2) / 1,000) * 1.0 * 898 * (0.894 + (1.10 - 1))$$

= 49.8 kWh

Multi Family Common Areas

$$\Delta$$
kWh = ((65 - 9.2) / 1,000) * 1.0 * 5950 * (0.894 + (1.10 - 1))

= 330 kWh

Summer Coincident Peak kW Savings Algorithm

ΔkW = ((WattsBase - WattsEE) /1000) * ISR * WHFd * CF

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ¹³⁸
Building without	1.0
cooling	
Unknown	1.21 ¹³⁹

CF = Summer Peak Coincidence Factor for measure

Installation Location	Туре	Coincidence Factor CF
Residential interior and	Utility Peak CF	0.082 ¹⁴⁰
in-unit Multi Family	PJM CF	0.084 ¹⁴¹
Multi Family Common Areas	PJM CF	0.43 ¹⁴²

¹³⁸ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

¹³⁹ The value is estimated at 1.18 (calculated as 1 + (0.78 * 0.66 / 2.8)).

Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014)
 Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 16.
 Ihid

¹⁴² Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

Page 55 of 507

Unknown	Utility Peak CF	0.082
	PJM CF	0.084

Illustrative example - do not use as default assumption

$$\Delta kW_{PJM}$$
 = ((65 - 9.2) / 1,000) * 1.0 * 1.21 * 0.084

= 0.0057 kW

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel):

$$\Delta$$
MMBtuPenalty¹⁴³ = - ((((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that must

be heated

= 47%¹⁴⁴ for interior or unknown location

= 0% for exterior or unheated location

0.003412 =Converts kWh to MMBtu

nHeat = Efficiency of heating system

 $=72\%^{145}$

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat
Electric	0%
Fossil Fuel	100%
Unknown	62.5% ¹⁴⁶

Illustrative example - do not use as default assumption

¹⁴³ Negative value because this is an increase in heating consumption due to the efficient lighting.

This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

¹⁴⁵ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midw est%20Region.xls).

¹⁴⁶ Based on KEMA baseline study for Maryland.

Page 56 of 507

A luminaire in a home with 75% AFUE gas furnace:

= - 0.11 MMBtu

If home heating fuel is unknown:

Annual Water Savings Algorithm

n/a

Incremental Cost

If the implementation strategy allows the collection of actual costs, or an appropriate average, then that should be used. If not, the incremental cost for this measure is assumed to be $\$36^{147}$.

Measure Life

The measure life is assumed to be 20 yrs for Residential and Multi Family inunit, and 8.4 years for Multi Family common areas for downlights featuring inseparable components, and 4.2 years for downlights with replaceable parts. 148

Operation and Maintenance Impacts

The levelized baseline replacement cost over the lifetime of the SSL is calculated (see MidAtlantic Lighting adjustments and O&M_042015.xls). The key assumptions used in this calculation are documented below:

BR-type

¹

¹⁴⁷ Based on VEIC product review, April 2015. Baseline bulbs available in \$3-\$5 range, and SSL bulbs available in \$20-\$60 range. Incremental cost of \$36 therefore assumed (\$4 for the baseline bulb and \$40 for the SSL). Note, this product is likely to fall rapidly in cost, so this should be reviewed frequently.

The ENERGY STAR Spec for SSL Recessed Downlights requires luminaires to maintain >=70% initial light output for 25,000 hrs in an indoor application for separable luminaires and 50,000 for inseparable luminaires. Measure life is capped at 20 years.

Page 57 of 507

	Incandescent
Replacement Cost	\$4.00
Component Life ¹⁴⁹ (years)	2.2 ¹⁵⁰
Residential interior	
and in-unit Multi	
Family or unknown.	
Multi Family Common	0.34 ¹⁵¹
Areas	

The calculated net present value of the baseline replacement costs is \$19.99 for Residential interior and in-unit Multi Family and \$77 for downlights featuring inseparable components installed in Multifamily common areas and \$40 for downlights with replaceable parts installed in Multifamily common areas.

 $^{^{149}}$ Based on lamp life / assumed annual run hours. 150 Assumes rated life of BR incandescent bulb of 2000 hours, based on product review. Lamp life is therefore 2000/898 = 2.2 years.

151 Calculated as 2000/5950 = 0.34 years.

Page 58 of 507

ENERGY STAR Integrated Screw Based SSL (LED) Lamp*

Unique Measure Code: RS_LT_TOS_SSLDWN_0516

Effective Date: May 2016

End Date: TBD

Measure Description

This measure describes savings from the purchase and installation of an ENERGY STAR Integrated Screw Based SSL (LED) Lamp in place of an incandescent lamp. Note: In December 2015, ENERGY STAR published V2.0 of the Product Specification for Lamps (Light Bulbs). Products that certify to both specifications are available until January 2, 2017, when only Lamps 2.0 products can carry the ENERGY STAR mark. Product brand owners may have products certified to V2.0 as early as December 31, 2015. Therefore, where applicable, this measure includes parameters for both the ENERGY STAR Product Specification for Lamps (Light Bulbs) V1.1 (i.e., the current version of the specification) and V2.0. Beginning January 2, 2017, the savings assumptions for the V1.1 specification will no longer be effective.

The measure provides assumptions for two markets (Residential and Multi-Family).

Definition of Baseline Condition

For time of sale replacement, the baseline wattage is assumed to be an incandescent or EISA compliant (where applicable) bulb installed in a screw-base socket ¹⁵². Note that the baseline will be EISA compliant bulbs for all categories to which EISA applies. If the in situ lamp wattage is known and lower than the EISA mandated maximum wattage (where applicable), the baseline wattage should be assumed equal to the in situ lamp wattage.

Definition of Efficient Condition

The high efficiency wattage is assumed to be an ENERGY STAR qualified Integrated Screw Based SSL (LED) Lamp. As noted in the measure description, eligible products may be certified to either V1.1 or V2.0. The ENERGY STAR specifications can be viewed here: http://1.usa.gov/1QJFLgT

Annual Energy Savings Algorithm

 Δ kWh = ((WattsBase - WattsEE) /1000) * ISR * HOURS * (WHFe_{Heat} + (WHFe_{Cool} - 1))

¹⁵² For text of Energy and Independence and Security Act, see http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf

Page 59 of 507

Where:

WattsBase = Based on lumens of the LED - find the ewquivalent

baseline wattage from the table below.

WattsEE = Actual LED wattage

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	250	449	25
	450	799	29
	800	1099	43
	1100	1599	53
Standard A-Type	1600	1999	72
	2000	2599	72
	2600	3000	150
	3001	3999	200
	4000	6000	300
	250	449	25
	450	799	40
	800	1099	60
3-Way (Highest Setting), bug, marine, rough service, infrared	1100	1599	75
	1600	1999	100
	2000	2549	125
	2550	2999	150
	90	179	10
Globe	180	249	15
(medium and intermediate bases less than 750 lumens)	250	349	25
andin 730 famensy	350	749	40
Decorative	70	89	10
(Shapes B, BA, C, CA, DC, F, G, medium	90	149	15
and intermediate bases less than 750	150	299	25
lumens)	300	749	40
	90	179	10
Globe	180	249	15
(candelabra bases less than 1050	250	349	25
lumens)	350	499	40
	500	1049	60
Decorative	70	89	10

Page 60 of 507

Bulb Type	Lower Lumen	Upper Lumen	WattsBase
	Range	Range	
(Shapes B, BA, C, CA, DC, F, G,	90	149	15
candelabra bases less than 1050	150	299	25
lumens)	300	499	40
	500	1049	60
	400	449	40
Reflector with medium screw bases w/	450	499	45
diameter <=2.25"	500	649	50
	650	1199	65
	640	739	40
	740	849	45
	850	1179	50
R, PAR, ER, BR, BPAR or similar bulb	1180	1419	65
shapes with medium screw bases w/	1420	1789	75
diameter >2.5" (*see exceptions below)	1790	2049	90
	2050	2579	100
	2580	3429	120
	3430	4270	150
	540	629	40
	630	719	45
	720	999	50
R, PAR, ER, BR, BPAR or similar bulb	1000	1199	65
shapes with medium screw bases w/	1200	1519	75
diameter > 2.26" and ≤ 2.5" (*see exceptions below)	1520	1729	90
exceptions below)	1730	2189	100
	2190	2899	120
	2900	3850	150
	400	449	40
*ER30, BR30, BR40, or ER40	450	499	45
	500	649-1179 ¹⁵³	50
*BR30, BR40, or ER40	650	1419	65
	400	449	40
*R20	450	719	45
*All reflector lamps	200	299	20
below lumen ranges specified above	300	399-639 ¹⁵⁴	30
-		l	I

¹⁵³ The upper bounds for these categories depends on the lower bound of the next higher wattage, which varies by bulb type.
154 As above.

Page 61 of 507

ISR = In Service Rate or percentage of units rebated that get

installed. = 0.98¹⁵⁵

HOURS = Average hours of use per year

Installation Location	Daily Hours	Annual Hours
Residential interior and in-unit Multi Family	2.46	898 ¹⁵⁶
Multi Family Common Areas	16.3	5,950 ¹⁵⁷
Exterior	4.5	1,643 ¹⁵⁸
Unknown	2.46	898 ¹⁵⁹

WHFe_{Cool}

= Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

 $^{^{155}}$ First year ISR of 0.9 (EMPOWER MD Lighting Study, EY5). Assume lifetime ISR of 0.99 (2006-2008 California Residential Lighting Evaluations, and used in the Uniform Methods Project). Assume half of bulbs not installed in year one are installed in year two, and the other half in year three. Using a discount rate of 5%, this gives $0.90 + 0.045 * 0.95 + 0.045 * 0.95^2 = 0.98$

¹⁵⁶ Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014) Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 14. To date there has not been sufficient data available to provide a separate LED hours assumption, and this should be reviewed in future years.

¹⁵⁷ Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area "Non-Area Specific" assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., "Massachusetts Multifamily Program Impact Analysis", July 2012, p 2-4.

¹⁵⁸ Updated results from Nexus Market Research, "Impact Evaluation of the Massachusetts, Rhode Island and Vermont 2003 Residential Lighting Programs", Final Report, October 1, 2004, presented in 2005 memo;

http://publicservice.vermont.gov/energy/ee_files/efficiency/eval/marivtfinalresultsmemodelivered.pdf

¹⁵⁹ Based on EmPOWER Maryland 2011Evaluation Report; Chapter 5: Residential Lighting and Appliances.

Page 62 of 507

	WHFe _{Cool}
Building with cooling	1.12 ¹⁶⁰
Building without	1.0
cooling or exterior	
Unknown	1.10 ¹⁶¹

WHFe_{Heat}

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating - see calculation of heating penalty in that section).

= 1 - ((HF / nHeat) * %ElecHeat)

If unknown assume 0.894¹⁶²

HF

= Heating Factor or percentage of light savings that must be heated

= 47%¹⁶³ for interior or unknown location

= 0% for exterior or unheated location

nHeat

= Efficiency in COP of Heating equipment = actual. If not available use 164:

System	Age of	HSPF	ηHeat

¹⁶⁰ The value is estimated at 1.12 (calculated as 1 + (0.33 / 2.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 2.8 COP (starting from standard assumption of SEER 10.5 central AC unit, converted to 9.5 EER using algorithm (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003); A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder), converted to COP = EER/3.412 = 2.8COP).

The value is estimated at 1.10 (calculated as 1 + (0.89*(0.33 / 2.8)). Based on assumption that 89% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.).

¹⁶² Calculated using defaults; 1+ ((0.47/1.67) * 0.375) = 0.894

¹⁶³ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

¹⁶⁴ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 63 of 507

Туре	Equipment	Estimate	(COP Estimate)
	Before 2006	6.8	2.00
Heat Pump	2006 - 2014	7.7	2.26
	2015 on	8.2	2.40
Resistance	N/A	N/A	1.00
Unknown	N/A	N/A	1.67 ¹⁶⁵

%ElecHeat = Percentage of home with electric heat

Heating fuel	%ElecHeat
Electric	100%
Fossil Fuel	0%
Unknown	37.5% ¹⁶⁶

Illustrative example - do not use as default assumption

A 10W 550 lumen LED directional lamp with medium screw bases diameter <= 2.25" is installed in a residential interior location.

$$\Delta kWh = ((50 - 10) / 1,000) * 0.98 * 898 * (0.894 + (1.10 - 1))$$

= 35 kWh

Baseline Adjustment

Currently the EISA legislation only applies to omnidirectional bulbs, with Decorative <40 watts and Directional being exceptions. If additional legislation is passed, this TRM will be adjusted accordingly.

To account for these new standards, the savings for this measure should be reduced to account for the higher baselines in 2020. The following table shows the calculated adjustments. The calculated energy savings for omnidirectional lamps should be multiplied by the appropriate factor from the table below for years 2020 and beyond ¹⁶⁷:

_

¹⁶⁵ Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.

¹⁶⁶ Based on KEMA baseline study for Maryland.

See 'ESTAR Integrated Screw SSL Lamp_032014.xls' for details. The Minimum Lamp Efficacy Requirements in ENERGY STAR Product Specification for Lamps (Light Bulbs) V2.0 vary by Color Rendering Index (CRI).

Page 64 of 507

		Mid-life Adjus	tment in 20	020
Lower Lumen Range	Upper Lumen Range	ENERGY STAR	ENERGY V2	
		V1.1	CRI>=90	CRI<90
200	449	100%	100%	100%
450	799	100%	100%	100%
800	1099	9%	16%	19%
1,100	1599	11%	20%	24%
1,600	1999	21%	23%	27%
2,000	2599	23%	26%	30%
2,600	3000	100%	100%	100%
3001	3999	100%	100%	100%
4000	6000	100%	100%	100%

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBase - WattsEE) / 1000) * ISR * WHFd * CF$

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling savings from efficient lighting

	WHFd
Building with cooling	1.24 ¹⁶⁸
Building without	1.0
cooling or exterior	
Unknown	1.21 ¹⁶⁹

 $^{^{168}}$ The value is estimated at 1.24 (calculated as 1 + (0.66 / 2.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

¹⁶⁹ The value is estimated at 1.18 (calculated as 1 + (0.78 * 0.66 / 2.8)).

Page 65 of 507

Cr = Summer Peak Continuence ractor for measur	CF	= Summer Peak Coincidence Factor for measure
--	----	--

Installation Location	Туре	Coincidence
		Factor CF
Residential interior and	Utility Peak CF	0.082 ¹⁷⁰
in-unit Multi Family	PJM CF	0.084 ¹⁷¹
Multi Family Common Areas	PJM CF	0.43 ¹⁷²
Exterior	PJM CF	0.018 ¹⁷³
Unknown	Utility Peak CF	0.082
	PJM CF	0.084

Illustrative example - do not use as default assumption

A 10W 550 lumen LED directional lamp with medium screw bases diameter <= 2.25" is installed in a residential interior location.

$$\Delta kW_{PJM}$$
 = ((50 - 10)/ 1,000) * 0.98 * 1.21 * 0.084
= 0.0040 kW

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel):

$$\Delta$$
MMBtuPenalty = - ((((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

Where:

HF = Heating Factor or percentage of light savings that must be heated

= 47%¹⁷⁴ for interior or unknown location

Based on Navigant Consulting "EmPOWER Maryland Evaluation Year 5 (June 1, 2013 - May 31, 2014)
 Residential Lighting Program: Hours of Use/Metering Study." April 10, 2015, page 16.
 Ibid.

¹⁷² Consistent with "Lodging Common Area" coincidence factor in Commercial Screw base CFL measure characterization, based on 'Development of Interior Lighting Hours of Use and Coincidence Factor Values for EmPOWER Maryland Commercial Lighting Program Evaluations, Itron, 2010'.

¹⁷³ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

Page 66 of 507

= 0% for exterior or unheated location

0.003412 = 0 nHeat = 1

=Converts kWh to MMBtu = Efficiency of heating system

_**72**0/17

%FossilHeat = Percentage of home with non-electric heat

Heating fuel	%FossilHeat
Electric	0%
Fossil Fuel	100%
Unknown	62.5% ¹⁷⁶

Illustrative example - do not use as default assumption

A 10W 550 lumen LED directional lamp with medium screw bases diameter <= 2.25" is installed in a residential interior location with unknown heating fuel.

Annual Water Savings Algorithm

n/a

Incremental Cost

If the implementation strategy allows the collection of actual costs, or an appropriate average, then that should be used. If not, the incremental cost for this measure is presented below¹⁷⁷:

Lamp Type	LED Wattage	Lamp Costs			
		Efficient	Baseline	Incremental Cost	
	LLD Wattage		Incandescent Inc	Incandescent	
		LED		or EISA	
			compliant	complaint	
Omnidirectional	<15W	\$6.11	\$1.50	\$4.61	

¹⁷⁵ This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xls).

¹⁷⁶ Based on KEMA baseline study for Maryland.

¹⁷⁷ Omindirectional and directional costs based on NEEP 2014-2015 Residential Lighting Strategy Update. Decorative Costs under 15W based on typical costs on 1000bulbs.com. Higher wattage decorative based on VEIC study of units rebated through Efficiency Vermont Retail program.

Page 67 of 507

	>=15W	\$6.81	\$1.50	\$5.31
Decorative	<15W	\$8.00	\$1.00	\$7.00
	15<= to <25W	\$25.00	\$1.00	\$24.00
	>=25W	\$25.00	\$1.00	\$24.00
Directional	< 20W	\$17.63	\$5.00	\$12.63
	>=20W	\$70.78	\$5.00	\$65.78

Measure Life

The tables below show the assumed measure life for ENERGY STAR Versions 1.1 and 2.0.

	Measure Life, Energy Star V1.1				
	Rated Life ¹⁷⁸	Residential interior, in-unit Multi Family or unknown	Multi Family Common Areas	Exterior	Unknown
Omnidirectional	25,000	20	4.2	15.2	20
Decorative	15,000	16.7	2.5	9.1	13.6
Directional	25,000	20	4.2	15.2	20

	Measure Life, Energy Star V2.0				
	Rated Life ¹⁷⁹	Residential interior, in-unit Multi Family or unknown	Multi Family Common Areas	Exterior	Unknown
Omnidirectional	15,000	16.7	2.5	8.1	13.6
Decorative	15,000	16.7	2.5	9.1	13.6
Directional	25,000	20	4.2	15.2	20

Operation and Maintenance Impacts

_

 $^{^{178}}$ The ENERGY STAR Spec V1.1 for Integrated Screw Based SSL bulbs requires lamps to maintain >=70% initial light output for 25,000 hrs in a residential application for omnidirectional and directional bulbs, and 15,000 hrs for decorative bulbs. Lifetime capped at 20 years. 179 The ENERGY STAR Spec v2.0 for Integrated Screw Based SSL bulbs requires lamps to maintain >=70%

^{1/9} The ENERGY STAR Spec v2.0 for Integrated Screw Based SSL bulbs requires lamps to maintain >=70% initial light output for 25,000 hrs in a residential application for directional bulbs, and 15,000 hrs for omni directional and decorative bulbs. Lifetime capped at 20 years.

For Decorative and Directional bulbs, without a baseline shift, the following component costs and lifetimes will be used to calculate O&M savings:

		Lamp Lifetime ¹⁸⁰				
Lamp Type	Baseline Lamp Cost	Residential interior, in-unit Multi Family	Multi Family Common Areas	Exterior	Unknown	
Decorative	\$1.00	1.1	0.2	0.6	0.9	
Directional <15W	\$5.00	1.1	0.2	0.6	0.9	
Directional >=15W	\$5.00	1.1	0.2	0.6	0.9	

For Omni-directional bulbs, to account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the LED is calculated (see 'ESTAR Integrated Screw SSL Lamp_041816.xls'). The key assumptions used in this calculation are documented below:

	EISA 2012-2014 Compliant	EISA 2020 Compliant
Replacement Cost <10W	\$1.50	\$2.86
Replacement Cost >=10W	\$1.50	\$3.19
		8,000 (for Residential Interior
Component Life (hours)	1000	and Exterior)
		10,000 (for MF
		Common Areas) 181

The calculation results in the following assumptions of equivalent annual baseline replacement cost:

ENERGY STAR V1.1			NPV of baseline Replacement Costs		
mnidir ctional	Location	LED Wattage	2016	2017	
on On	Residential interior,	<10W	\$5.67	\$4.84	

Assumes incandescent baseline lamp life of 1000 hours.Assumed higher lamp life for instances with longer run hours and therefore less switching.

Page 69 of 507

in-unit Multi Family and unknown	>=10W	\$5.98	\$5.15
Multi Family Common	<10W	\$29.23	\$23.44
Areas	>=10W	\$29.23	\$23.44
Exterior	<10W	\$10.72	\$9.20
Exterior	>=10W	\$10.72	\$9.20

	ENERGY STAR V2.0	NPV of baseline Replacement Costs		
	Location	LED Wattage	2016	2017
nal	Residential interior,	<10W	\$5.32	\$4.49
Omnidirectional	in-unit Multi Family and unknown	>=10W	\$5.55	\$4.80
nid	Multi Family Common	<10W	\$18.43	\$18.43
Om	Areas		\$18.43	\$18.43
	Exterior	<10W	\$9.12	\$7.60
	Exterior		\$9.12	\$7.60

Page 70 of 507

Refrigeration End Use

Freezer

Unique Measure Code(s): RS_RF_TOS_FREEZER_0414

Effective Date: June 2014

End Date: TBD

Measure Description

A freezer meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard (NAECA). Energy usage specifications are defined in the table below (note, AV is the freezer Adjusted Volume and is calculated as 1.73*Total Volume): 182

			September 2014	Assumptions afte	r September 2014
Product Category	Volume (cubic feet)	Federal Baseline Maximum Energy Usage in kWh/year ¹⁸³	ENERGY STAR Maximum Energy Usage in kWh/year ¹⁸⁴	Federal Baseline Maximum Energy Usage in kWh/year ¹⁸⁵	ENERGY STAR Maximum Energy Usage in kWh/year ¹⁸⁶
Upright Freezers with Manual Defrost	7.75 or greater	7.55*AV+258.3	6.795*AV+232.47	5.57*AV + 193.7	5.01*AV + 174.3
Upright Freezers with Automatic Defrost	7.75 or greater	12.43*AV+326.1	11.187*AV+293.49	8.62*AV + 228.3	7.76*AV + 205.5
Chest Freezers and all other Freezers except Compact Freezers	7.75 or greater	9.88*AV+143.7	8.892*AV+129.33	7.29*AV + 107.8	6.56*AV + 97.0
Compact Upright Freezers with Manual Defrost	< 7.75 and <=36 inches in height	9.78*AV+250.8	7.824*AV+200.64	8.65*AV + 225.7	7.79*AV + 203.1
Compact Upright Freezers with Automatic Defrost	< 7.75 and <=36 inches in height	11.40*AV+391	9.12*AV+312.8	10.17*AV + 351.9	9.15*AV + 316.7
Compact Chest Freezers	<7.75 and <=36 inches in height	10.45*AV+152	8.36*AV+121.6	9.25*AV + 136.8	8.33*AV + 123.1

Definition of Baseline Condition

The baseline equipment is assumed to be a model that meets the federal

186

http://www.energystar.gov/products/specs/sites/products/files/ENERGY%20STAR%20Final%20Version%205.0%20Residential%20Refrigerators%20and%20Freezers%20Specification.pdf

http://www.energystar.gov/ia/products/appliances/refrig/NAECA_calculation.xls?c827-f746

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43

http://www.energystar.gov/ia/products/appliances/refrig/NAECA_calculation.xls?c827-f746

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43

Page 71 of 507

minimum standard for energy efficiency. The standard varies depending on the size and configuration of the freezer (chest freezer or upright freezer, automatic or manual defrost) and is defined in the table above. Note that the Federal Standard will increase on September 1, 2014.

Definition of Efficient Condition

The efficient equipment is defined as a freezer meeting the efficiency specifications of ENERGY STAR, as defined below and calculated above:

Equipment	Volume	Criteria
Full Size Freezer	7.75 cubic feet or greater	At least 10% more energy
		efficient than the minimum
		federal government
		standard (NAECA).
Compact Freezer	Less than 7.75 cubic feet	At least 20% more energy
	and 36 inches or less in	efficient than the minimum
	height	federal government
		standard (NAECA).

Note that the ENERGY STAR level will increase in line with the Federal Standard increase on September 1, 2014.

Annual Energy Savings Algorithm

 $\Delta kWh = kWh_{Base} - kWh_{ESTAR}$

Where:

 kWh_{BASE} = Baseline kWh consumption per year as calculated

in algorithm provided in table above.

 kWh_{ESTAR} = ENERGY STAR kWh consumption per year as

calculated in algorithm provided in table above.

Illustrative example - do not use as default assumption

A 12 cubic foot Upright Freezers with Manual Defrost before September 2014:

$$\Delta$$
kWh = (7.55 * (12 * 1.73) + 258.3) - (6.795 * (12 * 1.73) + 232.47)
= 359.5 - 323.6
= 41.5 kWh

Page 72 of 507

If volume is unknown, use the following default values:

Product	Volume	Assumptions up to Assumptions after September 2014 September 2014					Weighting for unknown	
Category	Used ¹⁸⁷	kWh _{BASE}	kWh _{ESTAR}	kWh Savings	kWh _{BASE}	kWh _{ESTAR}	kWh Savings	configuration
Upright Freezers with Manual Defrost	27.9	469.1	422.2	46.9	349.2	314.2	35.0	0.0%
Upright Freezers with Automatic Defrost	27.9	673.2	605.9	67.3	469.0	422.2	46.8	39.5%
Chest Freezers and all other Freezers except Compact Freezers	27.9	419.6	377.6	42.0	311.4	280.2	31.2	40.5%
Compact Upright Freezers with Manual Defrost	10.4	352.3	281.9	70.5	467.2	420.6	46.6	10.0%
Compact Upright Freezers with Automatic Defrost	10.4	509.3	407.5	101.9	635.9	572.2	63.7	6.0%
Compact Chest Freezers	10.4	260.5	208.4	52.1	395.1	355.7	39.4	4.0%

If configuration is unknown assume 58.8 kWh¹⁸⁸ for installations before September 1, 2014 and 41.2kWh for installations after September 1, 2014.

 187 Volume is based on ENERGY STAR Calculator assumption of 16.14 ft³ average volume, converted to Adjusted volume by multiplying by 1.73.

¹⁸⁸ Unknown configuration is based upon a weighted average of the different configurations. Data is taken from the DOE Technical Support Document

⁽http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrig_finalrule_tsd.pdf). Weighting based on 80% Standard v 20% Compact (2007 annual shipments p3-26) and product class market shares from pages 9-17 and 9-24. See 'Freezer default calcs.xls' for more details.

Page 73 of 507

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (\Delta kWh/8760) * TAF * LSAF$

Where:

TAF = Temperature Adjustment Factor

 $= 1.23^{189}$

LSAF = Load Shape Adjustment Factor

 $= 1.15^{190}$

Illustrative example - do not use as default assumption A 12 cubic foot Upright Freezers with Manual Defrost installed before September 1, 2014:

 Δ kW = 41.5 / 8760 * 1.23 * 1.15

= 0.0067 kW

If volume is unknown, use the following default values:

Product Category

Assumptions
up to
after
September
September

_

Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space. Although this evaluation is based upon refrigerators only it is considered a reasonable estimate of the impact of cycling on freezers and gave exactly the same result as an alternative methodology based on Freezer eShape data.

Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, (extrapolated by taking the ratio of existing summer to existing annual profile for hours ending 15 through 18, and multiplying by new annual profile).

Page 74 of 507

	2014	2014
	kW Savings	kW Savings
Upright Freezers with Manual Defrost	0.0076	0.0057
Upright Freezers with Automatic Defrost	0.0109	0.0076
Chest Freezers and all other Freezers except Compact Freezers	0.0068	0.0050
Compact Upright Freezers with Manual Defrost	0.0114	0.0075
Compact Upright Freezers with Automatic Defrost	0.0164	0.0103
Compact Chest Freezers	0.0084	0.0064

If configuration is unknown assume 0.0095 kW for installations before September 1, 2014 and 0.0067kW for installations after September 1, 2014.

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is \$35¹⁹¹.

Measure Life

The measure life is assumed to be 12 years ¹⁹².

Operation and Maintenance Impacts

n/a

_

¹⁹¹ Based on review of data from the Northeast Regional ENERGY STAR Consumer Products Initiative.

[&]quot;2009 ENERGY STAR Appliances Practices Report", submitted by Lockheed Martin, December 2009.

192 Energy Star Freezer Calculator;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?a8f b-c882&a8fb-c882

Page 75 of 507

Page 76 of 507

Refrigerator

Unique Measure Code(s): RS_RF_TOS_REFRIG_V0414

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the purchase and installation of a new refrigerator meeting either ENERGY STAR or Consortium for Energy Efficiency (CEE) TIER 2 specifications (defined as requiring >= 20% or >= 25% less energy consumption than an equivalent unit meeting federal standard requirements respectively). The algorithms for calculating Federal Baseline and ENERGY STAR consumption are provided below (note, Adjusted Volume is calculated as the fresh volume + (1.63 * Freezer Volume). This is a time of sale measure characterization.

	Assumptions up to	September 2014	Assumptions after September 2014			
Product Category	Federal Baseline Maximum Energy Usage in kWh/year ¹⁹³	ENERGY STAR Maximum Energy Usage in kWh/year ¹⁹⁴	Federal Baseline Maximum Energy Usage in kWh/year ¹⁹⁵	ENERGY STAR Maximum Energy Usage in kWh/year ¹⁹⁶		
Refrigerators and Refrigerator-freezers with manual defrost	8.82*AV+248.4	7.056*AV+198.72	6.79AV + 193.6	6.11 * AV + 174.2		
2. Refrigerator-Freezer partial automatic defrost	8.82*AV+248.4	7.056*AV+198.72	7.99AV + 225.0	7.19 * AV + 202.5		
3. Refrigerator-Freezers automatic defrost with top-mounted freezer without through-the-door ice service and all- refrigeratorsautomatic defrost	9.80*AV+276	7.84*AV+220.8	8.07AV + 233.7	7.26 * AV + 210.3		
4. Refrigerator-Freezers automatic defrost with side-mounted freezer without through-the-door ice service	4.91*AV+507.5	3.928*AV+406	8.51AV + 297.8	7.66 * AV + 268.0		

 $^{^{193}\} http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43$

http://www.energystar.gov/products/specs/sites/products/files/ENERGY%20STAR%20Final%20Version%205.0%20Residential%20Refrigerators%20and%20Freezers%20Specification.pdf

http://www.energystar.gov/ia/products/appliances/refrig/NAECA_calculation.xls?c827-f746

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43

Page 77 of 507

5. Refrigerator-Freezers automatic defrost with bottom-mounted freezer without through-the-door ice service	4.60*AV+459	3.68*AV+367.2	8.85AV + 317.0	7.97 * AV + 285.3
6. Refrigerator-Freezers-automatic defrost with top-mounted freezer with through-the-door ice service	10.20*AV+356	8.16*AV+284.8	8.40AV + 385.4	7.56 * AV + 355.3
7. Refrigerator-Freezers automatic defrost with side-mounted freezer with through-the-door ice service	10.10*AV+406	8.08*AV+324.8	8.54AV + 432.8	7.69 * AV + 397.9

Note CEE Tier 2 standard criteria is 15% less consumption than a new baseline unit

Definition of Baseline Condition

The baseline condition is a new refrigerator meeting the minimum federal efficiency standard for refrigerator efficiency as presented above. Note that the Federal Standard will increase on September 1, 2014.

Definition of Efficient Condition

The efficient condition is a new refrigerator meeting either the ENERGY STAR or CEE TIER 2 efficiency standards as presented above. Note that the Federal Standard will increase on September 1, 2014.

Annual Energy Savings Algorithm

$$\Delta kWh = kWhBASE - kWhES$$

Where:

kWhBASE = Annual energy consumption of baseline unit as calculated in

algorithm provided in table above.

kWhEE = Annual energy consumption of energy efficient unit

as calculated in algorithm provided in table above.

Illustrative example - do not use as default assumption

A 14 cubic foot Refrigerator and 6 cubic foot Freezer, with automatic defrost with side-mounted freezer without through-the-door ice service, installed before September 2014:

Page 78 of 507

If volume is unknown, use the following defaults, based on an assumed Adjusted Volume of 25.8^{197} :

	Assum	ptions prio	r to Sept	ember 1 st ,	2014	Assumptions after September 1 st , 2014					
Product Category	New Baseline UEC _{BASE}	New Eff UEC		Δk\	۷h	New Baseline UEC _{BASE}	New Eff UEC		ΔkW	/h	Weighting (%)
		ENERGY STAR	CEE T2	ENERGY STAR	CEE T2		ENERGY STAR	CEE T2	ENERGY STAR	CEE T2	
Refrigerators and Refrigerator- freezers with manual defrost	475.7	380.5	356.8	95.1	118.9	368.6	331.6	276.4	36.9	92.1	0.27
2. Refrigerator- Freezerpartial automatic defrost	475.7	380.5	356.8	95.1	118.9	430.9	387.8	323.2	43.1	107.7	0.27
3. Refrigerator- Freezers automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigerators automatic defrost	528.5	422.8	396.4	105.7	132.1	441.7	397.4	331.2	44.3	110.4	57.45
4. Refrigerator- Freezers automatic defrost with side- mounted freezer without through- the-door ice service	634.0	507.2	475.5	126.8	158.5	517.1	465.4	387.8	51.7	129.3	1.40
5. Refrigerator- Freezers automatic defrost with bottom- mounted freezer without through- the-door ice service	577.5	462.0	433.2	115.5	144.4	545.1	490.7	408.8	54.4	136.3	16.45

 $[\]overline{}^{197}$ Volume is based on the ENERGY STAR calculator average assumption of 14.75 ft 3 fresh volume and 6.76 ft 3 freezer volume.

Page 79 of 507

6. Refrigerator- Freezers automatic defrost with top-mounted freezer with through-the-door ice service	618.8	495.1	464.1	123.8	154.7	601.9	550.1	451.4	51.7	150.5	0.27
7. Refrigerator- Freezers automatic defrost with side- mounted freezer with through-the- door ice service	666.3	533.0	499.7	133.3	166.6	652.9	596.1	489.6	56.8	163.2	24.10

If configuration is unknown assume 114.5 kWh¹⁹⁸ for ENERGY STAR and 143.1 kWh for CEE T2 for installations before September 1, 2014 and 49.1 kWh for ENERGY STAR and 127.9 kWh for CEE T2 for installations after September 1, 2014.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (\Delta kWh/8760) * TAF * LSAF$

Where:

TAF = Temperature Adjustment Factor

 $= 1.23^{199}$

LSAF = Load Shape Adjustment Factor

 $= 1.15^{200}$

If volume is unknown, use the following defaults:

¹⁹⁸ Unknown configuration is based upon a weighted average of the different configurations. Data is taken from the 2011 DOE Technical Support Document (http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128). Projected product class market shares from pages 9-12 for year 2014. See 'Refrigerator default calcs.xls' for more details. Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space.

Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, (extrapolated by taking the ratio of existing summer to existing annual profile for hours ending 15 through 18, and multiplying by new annual profile).

Page 80 of 507

Product Category	Septembe cha	rtions prior to r 2014 standard ange ΔkW	Assumptions after September 2014 standard change		
	ENERGY STAR	CEE T2	ENERGY STAR	CEE T2	
Refrigerators and Refrigerator-freezers with manual defrost	0.014	0.018	0.006	0.014	
Refrigerator-Freezer partial automatic defrost	0.014	0.018	0.007	0.016	
3. Refrigerator-Freezers automatic defrost with top- mounted freezer without through-the-door ice service and all-refrigerators automatic defrost	0.016	0.020	0.007	0.017	
4. Refrigerator-Freezers automatic defrost with side- mounted freezer without through-the-door ice service	0.019	0.024	0.008	0.019	
5. Refrigerator-Freezers automatic defrost with bottom-mounted freezer without through-the-door ice service	0.017	0.022	0.008	0.021	
6. Refrigerator-Freezers automatic defrost with top- mounted freezer with through-the-door ice service	0.019	0.023	0.008	0.023	
7. Refrigerator-Freezers automatic defrost with side- mounted freezer with through-the-door ice service	0.020	0.025	0.009	0.025	

If configuration is unknown assume 0.017 kW for ENERGY STAR and 0.022 kW for CEE T2 for installations before September 1, 2014 and 0.007 kW for ENERGY STAR and 0.019 kW for CEE T2 for installations after September 1, 2014.

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Page 81 of 507

Incremental Cost

The incremental cost for this measure is assumed to be \$26 for an ENERGY STAR unit²⁰¹ and \$140 for a CEE Tier 2 unit.²⁰²

Measure Life

The measure life is assumed to be 12 Years. 203

Operation and Maintenance Impacts

n/a

²⁰¹ Based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. See "Refrigerator Default Calcs.xlsx".

²⁰² Based on Department of Energy, "TECHNICAL REPORT: Analysis of Amended Energy Conservation Standards for Residential Refrigerator-Freezers", October 2005.

203 From ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?50 35-d681&5035-d681

Page 82 of 507

Refrigerator Early Replacement

Unique Measure Code(s): RS_RF_RTR_REFRIG_0414

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the early removal of an existing inefficient Refrigerator unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR or CEE Tier 2 qualifying unit. This measure is suitable for a Low Income or a Home Performance program.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

This is a retrofit measure.

Definition of Baseline Condition

The baseline condition is the existing inefficient refrigerator unit for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new replacement unit meeting the minimum federal efficiency standard.

Definition of Efficient Condition

The efficient condition is a new refrigerator meeting either the ENERGY STAR, or CEE TIER 2 efficiency standards (defined as 20% or 25% above federal standards respectively).

Annual Energy Savings Algorithm

Remaining life of existing unit (first 4 years²⁰⁴)

 $\Delta kWh = kWhEXIST - kWhFF$

Remaining measure life (next 8 years)

 $\Delta kWh = kWhBASE - kWhEE$

²⁰⁴ Assumed to be 1/3 of the measure life.

Page 83 of 507

Where:

= Annual energy consumption of existing unit kWhFXIST

kWhBASE = Annual energy consumption of new baseline unit

> = 572.3 for units prior to September 2014 = 511.7 for units after September 2014²⁰⁶

= Annual energy consumption of ENERGY STAR unit kWhFF

> = 457.8 for units prior to September 2014 = 462.6 for units after September 2014²⁰⁷

Or = Annual energy consumption of CEE Tier 2 unit

= 429.2 for units prior to September 2014 = 383.8 for units after September 2014²⁰⁸

Timing	Efficient unit specification	First 4 years ΔkWh	Remaining 8 years ∆kWh	Equivalent Mid Life Savings Adjustment (after 4 years)	Equivalent Weighted Average Annual Savings ²⁰⁹
Assumptions prior	ENERGY STAR	688.2	114.5	16.6%	344.0
to September 2014	CEE T2	716.8	143.1	20.0%	372.6
Assumptions after	ENERGY STAR	683.4	49.1	7.2%	302.9
September 2014	CEE T2	762.2	127.9	16.8%	381.7

Summer Coincident Peak kW Savings Algorithm

= $(\Delta kWh/8760)$ * TAF * LSAF ΔkW

²⁰⁵ Based on EmPower 2011 Interim Evaluation Report Chapter 5: Lighting and Appliances, Table 15, p33. This suggests an average UEC of 1,146kWh.

²⁰⁶ kWh assumptions based on using the NAECA algorithms in each product class and calculating a weighted average of the different configurations. Data for weighting is taken from the 2011 DOE Technical Support Document (http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128). Projected product class market shares from pages 9-12 for year 2014. See 'Refrigerator default calcs.xls' for more details.

²⁰⁷ kWh assumptions based on using the ENERGY STAR algorithms in each product class and calculating a weighted average of the different configurations.

²⁰⁸ kWh assumptions based on 25% less than baseline consumption and calculating a weighted average of the different configurations.

²⁰⁹ These values are provided in case the utility screening tool does not allow for this mid life baseline adjustment. The values are determined by calculating the Net Present Value of the 12 year annual savings values and finding the equivalent annual savings that produces the same result. The Real Discount Rate of 5.0% is used.

Page 84 of 507

Where:

TAF = Temperature Adjustment Factor

 $= 1.23^{210}$

LSAF = Load Shape Adjustment Factor

 $= 1.15^{211}$

Timing	Efficient unit specification	First 4 years ΔkW	Remaining 8 years ΔkW	Equivalent Mid Life Savings Adjustment (after 4 years)	Equivalent Weighted Average Annual Savings
Assumptions prior	ENERGY STAR	0.111	0.018	16.6%	0.056
to September 2014	CEE T2	0.116	0.023	20.0%	0.060
Assumptions after	ENERGY STAR	0.110	0.008	7.2%	0.049
September 2014	CEE T2	0.123	0.021	16.8%	0.062

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

Incremental Cost

The initial full measure cost for an Energy Star refrigerator is assumed to be \$748 and Tier 2 is \$862. The avoided replacement cost (after 4 years) of a baseline replacement refrigerator is \$722. 212

_

Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space.

Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, (extrapolated by taking the ratio of existing summer to existing annual profile for hours ending 15 through 18, and multiplying by new annual profile).

²¹² Full ENERGY STAR and baseline costs based on "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. See "Refrigerator Default Calcs.xlsx". Full CEE Tier 2 cost is based upon incremental cost estimate derived from "TECHNICAL REPORT: Analysis of Amended Energy Conservation Standards for Residential Refrigerator-Freezers". http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/refrigerator_report_1.pdf

Page 85 of 507

Measure Life

The measure life is assumed to be 12 Years. ²¹³

Operation and Maintenance Impacts

n/a

²¹³ From ENERGY STAR calculator:

Page 86 of 507

Refrigerator and Freezer Early Retirement

Unique Measure Code(s): RS_RF_ERT_REFRIG_0414, RS_RF_ERT_FREEZE_0414

Effective Date: June 2014

End Date: TBD

Measure Description

This measure involves the removal of an existing inefficient refrigerator²¹⁴ from service, prior to its natural end of life (early retirement). The program should target refrigerators with an age greater than 10 years, though it is expected that the average age will be greater than 20 years based on other similar program performance. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit 215.

Definition of Baseline Condition

The existing refrigerator baseline efficiency is based upon evaluation of a number of existing programs and evaluations.

Definition of Efficient Condition

The existing inefficient refrigerator is removed from service and not replaced.

Annual Energy Savings Algorithm

Refrigerators:

Energy savings for retired refrigerators are based upon a linear regression model using the following coefficients²¹⁶:

Independent Variable Description	Estimate Coefficient
Intercept	0.80460
Age (years)	0.02107
Pre-1990 (=1 if manufactured pre-	
1990)	1.03605
Size (cubic feet)	0.05930
Dummy: Single Door (=1 if single door)	-1.75138

²¹⁴ This measure assumes a mix of primary and secondary refrigerators will be replaced. By definition, the refrigerator in a household's kitchen that satisfies the majority of the household's demand for refrigeration is the primary refrigerator. One or more additional refrigerators in the household that satisfy supplemental needs for refrigeration are referred to as secondary refrigerators.

Note that the hypothetical nature of this measure implies a significant amount of risk and uncertainty in developing the energy and demand impact estimates. ²¹⁶ EmPOWER Maryland Impact Evaluation, Program Year 6

Page 87 of 507

Dummy: Side-by-Side (= 1 if side-by-	
side)	1.11963
Dummy: Primary Usage Type (in	
absence of the program)	
(= 1 if primary unit)	0.55990
Interaction: Located in Unconditioned	
Space x HDD/365.25	-0.04013
Interaction: Located in Unconditioned	
Space x CDD/365.25	0.02622

 $\Delta kWh = [0.80460 + (Age * 0.02107) + (Pre-1990 * 1.03605) + (Size * 0.05930) + (Single-$ Door * -1.75138) + (Side-by-side * 1.11963) + (Primary * 0.55990) + (HDD/365.25 * Unconditioned * -0.04013) + (CDD/365.25 * Unconditioned * 0.02622)] * 365.25 * Part Use

Where:

HDD

- = Heating Degree Days
- = dependent on location. Use actual for location or defaults below²¹⁷

Location	Heating Degree Days (65°F set point)	HDD / 365.25
Wilmington, DE	4,298	11.8
Baltimore, MD	4,529	12.4
Washington, DC	3,947	10.8

CDD

- = Cooling Degree Days
- = dependent on location. Use actual for location or defaults below²¹⁸

Location	Cooling Degree Days (65°F set point)	CDD / 365.25
Wilmington, DE	1,162	3.2
Baltimore, MD	1,266	3.5
Washington, DC	1,431	3.9

 $^{^{217}}$ The 10 year average annual heating degree day value is calculated for each location, using a balance point of 65 degrees as used in the EmPower Appliance Recycling Evaluation. 218 lbid.

Page 88 of 507

Part Use Factor

= To account for those units that are not running throughout the entire year as reported by the customer. Default of 0.95 for refrigerations and 0.86 for freezers.²¹⁹

Illustrative example - can be used as default assumption only if required data tracking is not available

Using participant population mean values from BGE EY4 and default part use factor:

$$\Delta$$
kWh = [0.80460 + (18.61 * 0.02107) + (0.20 * 1.03605) + (19.43 * 0.05930) + (0.02 * -1.75138) + (0.34 * 1.11963) + (0.64 * 0.55990) + (2.91 * -0.04013) + (0.77 * 0.02622)] * 365.25 * 0.95 = 1,098 kWh

Freezers:

Energy savings for freezers are based upon a linear regression model using the following coefficients²²⁰:

Independent Variable Description	Estimate Coefficient
Intercept	-0.95470
Age (years)	0.0453
Pre-1990 (=1 if manufactured pre-1990)	0.54341
Size (cubic feet)	0.12023
Chest Freezer Configuration (=1 if chest freezer)	0.29816
Interaction: Located in Unconditioned Space x HDD/365.25	-0.03148
Interaction: Located in Unconditioned Space x CDD/365.25	0.08217

 Δ kWh = [-0.95470 + (Age * 0.04536) + (Pre-1990 * 0.54341) + (Size * 0.12023) + (Chest Freezer * 0.29816) + (HDDs/365.25 *

^{2.}

²¹⁹ Based on EmPower DRAFT EY6 Participant Survey Results: Appliance Recycling Program Report²²⁰ EmPOWER Maryland Impact Evaluation, Program Year 6

Page 89 of 507

Illustrative example - can be used as default assumption only if required data tracking is not available.

Using participant population mean values from BGE EY4 and default part use factor:

= 715 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (\Delta kWh/8760) * TAF * LSAF$$

Where:

TAF = Temperature Adjustment Factor

 $= 1.23^{221}$

LSAF = Load Shape Adjustment Factor

 $= 1.066^{222}$

Illustrative example - can be used as default assumption only if required data tracking is not available

Using participant population mean values from BGE EY4 and default part use factor:

Refrigerator:

 $\Delta kW = 1098/8760 * 1.23 * 1.066$

= 0.164 kW

Freezer:

 $\Delta kW = 715/8760 * 1.23 * 1.066$

Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space.

Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, using the average Existing Units Summer Profile for hours ending 15 through 18.

Page 90 of 507

= 0.107 kW

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

Incremental Cost

The incremental cost for this measure will be the actual cost associated with the removal and recyling of the secondary refrigerator.

Measure Life

The measure life is assumed to be 8 Years. 223

Operation and Maintenance Impacts

n/a

 $^{^{223}}$ KEMA "Residential refrigerator recycling ninth year retention study", 2004.

Page 91 of 507

Heating Ventilation and Air Conditioning (HVAC) End Use

Central Furnace Efficient Fan Motor

Unique Measure Code(s): RS_HV_RTR_FANMTR_0510 and

RS_HV_TOS_FANMTR_0510 Effective Date: June 2014

End Date: TBD

Measure Description

This measure involves the installation of a high efficiency brushless permanent magnet fan motor (BPM or ECM), hereafter referred to as "efficient fan motor". This measure could apply to fan motors installed with a furnace or with a central air conditioning unit and could apply when retrofitting an existing unit or installing a new one.

If a new unit is installed, the program should require that it meet ENERGY STAR efficiency criteria in order to qualify for the incentive, although the savings estimations below relate only to the efficiency gains associated with an upgrade to the efficient fan motor.

For homes that install an efficient furnace fan and have central A/C, both the cooling and heating savings values should be included.

Definition of Baseline Condition

A standard low-efficiency permanent split capacitor (PSC) fan motor.

Definition of Efficient Condition

A high efficiency brushless permanent magnet fan motor (BPM or ECM).

Annual Energy Savings Algorithm

Heating Season kWh Savings from efficient fan motor = 241kWh ²²⁴

Cooling Season kWh Savings from efficient fan motor = 178kWh ²²⁵

The average heating savings from Scott Pigg (Energy Center of Wisconsin), "Electricity Use by New Furnaces: A Wisconsin Field Study", Technical Report 230-1, October 2003, is 400kWh. An estimate for Mid-Atlantic is provided by multiplying this by the ratio of heating degree days in Baltimore MD compared to Wisconsin (4704 / 7800).

The average cooling savings from Scott Pigg (Energy Center of Wisconsin), "Electricity Use by New Furnaces: A Wisconsin Field Study", Technical Report 230-1, October 2003, is 70 to 95kWh. An estimate for Mid-Atlantic is provided by multiplying by the ratio of full load cooling hours in Baltimore compared

Page 92 of 507

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0^{226}$

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$200. 227

Measure Life

The measure life is assumed to be 18 years. 227

Operation and Maintenance Impacts

n/a

to Southern Wisconsin (1050/487). Full load hour estimates from:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls.

²²⁶ See write up in Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, page 38-39.
²²⁷ Sachs and Smith, April 2003; Saving Energy with Efficient Furnace Air Handlers: A Status Update and Program Recommendations.

Page 93 of 507

Room Air Conditioner*

Unique Measure Code(s): RS_HV_TOS_RA/CES_0414 and RS_HV_TOS_RA/CT2_0414

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the purchase (time of sale) and installation of a room air conditioning unit that meets the ENERGY STARminimum qualifying efficiency specifications presented below. Note that if the AC unit is connected to a network in a way to enable it to respond to energy related commands, it gets a 5% extra CEER allowance. In these instances, the efficient CEER, would be 0.95 multiplied by the appropriate CEER from the table below.

	et Type and Class (Btu/hour)	Federal Standard with louvered sides (CEER)	Federal Standard without louvered sides (CEER)	ENERGY STAR with louvered sides (CEER)	ENERGY STAR without louvered sides (CEER)	
	< 8,000	11.0	10.0	12.1	11.0	
	8,000 to 10,999	10.9	9.6	12.0	10.6	
Without	11,000 to 13,999	10.9	9.5	12.0	10.5	
Reverse	14,000 to 19,999	10.7	9.3	11.8	10.2	
Cycle	20,000 to 24,999	9.4	9.4	10.3	10.3	
	25,000 to 27,999	9.0	9.4	10.3	10.3	
	>=28,000	9.0	9.4	9.9	10.3	
With	<14,000	NA	9.3		10.2	
Reverse	>= 14,000	NA	8.7		9.6	
Cycle	<20,000	9.8	NA	10.8	NA	
Cycle	>=20,000	9.3	NA	10.2	NA	
Casement only		9.5		10.5		
Casement-Slider		10	.4	11	1.4	

Definition of Baseline Condition

The baseline condition is a window AC unit that meets the minimum federal efficiency standards as of June 1, 2014²²⁸ presented above.

Although the Federal baseline presented does not come in to effect until June 2014, (http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/41)

Page 94 of 507

Definition of Efficient Condition

The baseline condition is a window AC unit that meets the ENERGY STAR v4.0.

Annual Energy Savings Algorithm

ΔkWH = (Hours * Btu/hour * (1/CEERbase - 1/CEERee))/1000

Where:

Hours = Run hours of Window AC unit

 $= 325^{229}$

Btu/hour = Size of rebated unit

When available, the actual size of the rebated unit should be used in the calculation. In the absence of this data, the following

default value can be used:

= 8500 ²³⁰

CEERbase = Efficiency of baseline unit in Btus per Watt-hour

= Actual (see table above)

If average deemed value required use 10.9 231

CEERee = Efficiency of ENERGY STAR unit in Btus per Watt-hour

= Actual

If average deemed value required use 12.0²³² for an ENERGY

 $STAR^{233}$

Using deemed values above:

AkWHENERGY STAR

= (325 * 8500 * (1/10.9 - 1/11.3)) / 1000

according to ENERGY STAR Shipment Data the estimated market penetration of ENERGY STAR v2.0 Room AC went from 33% in 2010 to 62% in 2011 and 58% in 2012. The new Federal Standard level is equivalent to ENERGY STAR v2.0 and with the market preparing for the Standard change it is appropriate to use the updated rating from the start of the year.

²²⁹ VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at 31%. Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC. ²³⁰ Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

 231 Minimum Federal Standard for most common Room AC type - 8000-14,999 capacity range with louvered sides.

²³² Minimum qualifying for ENERGY STAR most common Room AC type - 8000-14,999 capacity range with louvered sides.

²³³ Minimum qualifying for CEE Tier 2 most common Room AC type - 8000-14,999 capacity range with louvered sides.

Page 95 of 507

= 23.2 kWh

Summer Coincident Peak kW Savings Algorithm

ΔkW = Btu/hour * (1/CEERbase - 1/CEERee))/1000 * CF

Where:

CF = Summer Peak Coincidence Factor for measure

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (hour

ending 5pm on hottest summer weekday)

 $= 0.31^{234}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (June to

August weekdays between 2 pm and 6 pm) valued at peak

weather

 $= 0.3^{235}$

Using deemed values above:

ΔkW_{ENERGY} STAR SSP

= (8500 * (1/10.9 - 1/12)) / 1000 * 0.31

= 0.022 kW

∆kW_{ENERGY STAR PJM}

= (8500 * (1/10.9 - 1/12)) / 1000 * 0.30

= 0.021 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$54 for units less than 6,000 Btu/hr, and \$39 for units greater or equal to 6,000 Btu/hr. 236

²³⁴ Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

²³⁵ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW CF%20Res%20RAC.pdf).

From Lekov, Alex et al. Evaluation of Energy-Efficiency Standards for Room Air Conditioners in US" Sept 2012. Use average of Efficiency levels 4 and 5 to approximate current energy star standards.

Page 96 of 507

Measure Life

The measure life is assumed to be 12 years. 237

Operation and Maintenance Impacts n/a

 $^{^{237}}$ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 97 of 507

ENERGY STAR Central A/C*

Unique Measure Code(s): RS_HV_TOS_CENA/C_0415, RS_HV_RTR_CENA/C_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of a new Central Air Conditioning ducted split system meeting ENERGY STAR efficiency standards presented below.

Efficiency Level	SEER Rating	EER Rating
Federal Standard	14	11.5 ²³⁸
ENERGY STAR	15	12.5

This measure could relate to:

- a) Time of Sale the installation of a new Central AC system meeting ENERGY STAR specifications replacing an existing unit at the end of its useful life or the installation of a new system in a new home.
- b) Early Replacement the early removal of an existing functioning unit prior to its natural end of life and replacement with an ENERGY STAR unit. Savings are calculated between existing unit and efficient unit consumption during the assumed remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

The savings methodology provided is applicable only where the baseline and efficient capacities are equal.

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition

The baseline condition for the Time of Sale is a central air conditioning ducted split system that meets the minimum Federal standards as presented above.

²³⁸ Typical EER for units with SEER of 14, from the AHRI directory

Page 98 of 507

The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the measure life.

Definition of Efficient Condition

The efficient condition is a central air conditioning ducted split system that meets the ENERGY STAR standards presented above.

Annual Energy Savings Algorithm

Time of Sale:

ΔkWH = (Hours * Btu/hour * (1/SEERbase - 1/SEERee))/1000

Early replacement 239:

 Δ kWH for remaining life of existing unit (1st 6 years):

= ((Hours * Btu/hour * (1/SEERexist - 1/SEERee))/1000)

ΔkWH for remaining measure life (next 12 years):

= ((Hours * Btu/hour * (1/SEERbase - 1/SEERee))/1000)

Where:

Hours = Full load cooling hours

Dependent on location as below:

Location	Run Hours
Wilmington, DE	524 ²⁴⁰
Baltimore, MD	542 ²⁴¹
Washington, DC	681

Btu/Hour = Size of equipment in Btu/hour (note 1 ton = 12,000Btu/hour)

= Actual installed

__

The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new base to efficient savings)/(existing to efficient savings).

²⁴⁰ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)
²⁴¹ Based on average of 5 utilities in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

SEERbase = Seasonal Energy Efficiency Ratio Efficiency of baseline unit

 $= 14^{242}$

SEERexist = Seasonal Energy Efficiency Ratio of existing unit (kBtu/kWh)

= Use actual SEER rating where it is possible to measure or

reasonably estimate. If unknown assume 10.0

SEERee = Seasonal Energy Efficiency Ratio Efficiency of ENERGY STAR unit

= Actual installed

Illustrative example - do not use as default assumption

Time of Sale example: a 3 ton unit with SEER rating of 15, in Baltimore:

Early Replacement example: a 3 ton unit with SEER rating of 15 replaces an existing unit in Baltimore:

Summer Coincident Peak kW Savings Algorithm

Time of Sale:

Early replacement:

ΔkW for remaining life of existing unit (1st 6 years):

²⁴² Minimum Federal Standard.

²⁴³ VEIC estimate based on Department of Energy Federal Standard between 1992 and 2006. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

Page 100 of 507

= Btu/hour * (1/EERexist - 1/EERee)/1000 * CF

ΔkW for remaining measure life (next 12 years):

= Btu/hour * (1/EERbase - 1/EERee)/1000 * CF

Where:

EERbase = Energy Efficiency Ratio Efficiency of baseline unit

= 11.5

EERexist = EER Efficiency of existing unit

= Actual EER of unit should be used, if EER is unknown, use 9.2²⁴⁴

EERee = Energy Efficiency Ratio Efficiency of ENERGY STAR unit

= Actual installed

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (hour

ending 5pm on hottest summer weekday)

 $= 0.69^{245}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C (June to

August weekdays between 2 pm and 6 pm) valued at peak

weather = 0.66 ²⁴⁶

Illustrative example - do not use as default assumption Time of Sale example: a 3 ton unit with EER rating of 12.5:

$$\Delta kW_{SSP}$$
 = (36000 * (1/11.5 - 1/12.5)) / 1000 * 0.69

= 0.17 kW

$$\Delta kW_{PJM}$$
 = (36000 * (1/11.5 - 1/12.5)) / 1000 * 0.66

= 0.17 kW

Early Replacement example: a 3 ton unit with SEER rating of 15 replaces an existing unit in Baltimore:

 ΔkW for remaining life of existing unit (1st 6 years):

$$\Delta kW_{SSP}$$
 = (36000 * (1/9.2 - 1/12.5)) / 1000 * 0.69

= 0.71 kW

$$\Delta kW_{PJM}$$
 = (36000 * (1/9.2 - 1/12.5)) / 1000 * 0.66

²⁴⁴ Based on SEER of 10,0, using formula above to give 9.2 EER.

²⁴⁵ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

²⁴⁶ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

Page 101 of 507

= 0.68 kW

ΔkW for remaining measure life (next 12 years):

$$\Delta kW_{SSP}$$
 = (36000 * (1/11.5 - 1/12.5)) / 1000 * 0.69

= 0.17 kW

$$\Delta kW_{PJM}$$
 = (36000 * (1/11.5 - 1/12.5)) / 1000 * 0.66

= 0.17 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

Time of Sale:

The incremental cost for this measure is provided below: 247

Efficiency Level	Cost per
	Ton
SEER 15	\$92
SEER 16	\$184
SEER 17	\$276
SEER 18	\$369
SEER 19	\$461
SEER 20	\$553
SEER 21	\$645

Early replacement:

The incremental capital cost for this measure is the actual cost of removing the existing unit and installing the new one. If this is unknown, assume (note these costs

²⁴⁷ Costs based upon average cost per ton from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. Note SEER 17 and 18 are extrapolated from other data points.

Page 102 of 507

are per ton of unit capacity)²⁴⁸:

	Full Retrofit Cost (including labor)
Efficiency	per Ton of
(SEER)	Capacity (\$/ton)
15	\$2,403
16	\$2,495
17	\$2,588
18	\$2,680
19	\$2,772
20	\$2,864
21	\$2,956

Assumed deferred cost (after 6 years) of replacing existing equipment with new baseline unit is assumed to be \$2,286 per ton²⁴⁹. This cost should be discounted to present value using the utilities discount rate.

Measure Life

The measure life is assumed to be 18 years. 250

Remaining life of existing equipment is assumed to be 6 years²⁵¹.

Operation and Maintenance Impacts

n/a

24

²⁴⁸ Costs based upon average cost per ton for Equipment and Labor from Itron Measure Cost Study Results Matrix Volume 1 (part of "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014).
²⁴⁹ Ibid.

²⁵⁰ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

²⁵¹ Assumed to be one third of effective useful life

Page 103 of 507

Air Source Heat Pump*

Unique Measure Code: RS_HV_TOS_ASHP_0415, RS_HV_RTR_ASHP_0415,

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of a new Air Source Heat Pump split system

meeting ENERGY STAR efficiency standards presented below:

Efficiency Level	HSPF	SEER Rating	EER Rating ²⁵²
Federal Standard as	8.2	14	11.8 ²⁵³
of 1/1/2015			
ENERGY STAR	8.5	15	12

This measure could relate to:

- a) Time of Sale the installation of a new Air Source Heat Pump system meeting ENERGY STAR specifications replacing an existing unit at the end of its useful life or the installation of a new system in a new home.
- b) Early Replacement the early removal of existing functioning electric heating and cooling prior to its natural end of life and replacement with an ENERGY STAR unit. Savings are calculated between existing unit and efficient unit consumption during the assumed remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

The savings methodology provided is applicable only where the baseline and efficient capacities are equal.

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition

HSPF, SEER and EER refer to Heating Seasonal Performance Factor, Seasonal Energy Efficiency Ratio and Energy Efficiency Ratio, respectively.

Page 104 of 507

The baseline condition for the Time of Sale measure is an Air Source Heat Pump split system that meets the minimum Federal standards defined above.

The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline of the same equipment type for the remainder of the measure life as provided below:

Existing Equipment Type	HSPF	SEER Rating	EER Rating
ASHP	8.2	14	11.8
Electric Resistance and Central AC	3.41	13	11.0

Definition of Efficient Condition

The efficient condition is an Air Source Heat Pump split system that meets the ENERGY STAR standards defined above or other specifications as determined by the programs.

Annual Energy Savings Algorithm

Time of Sale:

ΔkWH = (FLHcool * BtuH * (1/SEERbase - 1/SEERee))/1,000 + (FLHheat * BtuH * (1/HSPFbase - 1/HSPFee))/1,000

Early replacement 254:

 Δ kWH for remaining life of existing unit (1st 6 years):

= (FLHcool * BtuH_{cool} * (1/SEERexist - 1/SEERee))/1,000 + (FLHheat * BtuH_{Heat} * (1/HSPFexist - 1/HSPFee))/1,000

 Δ kWH for remaining measure life (next 12 years):

= (FLHcool * BtuH $_{Cool}$ * (1/SEERbasereplace - 1/SEERee))/1,000 + (FLHheat * BtuH $_{Heat}$ * (1/HSPFbasereplace - 1/HSPFee))/1,000

Where:

FLHcool = Full Load Cooling Hours

= Dependent on location as below:

Location	FLHcool	
Wilmington, DE	719 ²⁵⁵	

nt savings).

s in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

Page 105 of 507

Baltimore, MD	744 ²⁵⁶
Washington, DC	935

 $BtuH_{Cool}$ = Cooling capacity of Air Source Heat Pump (1 ton =

12,000Btuh) = Actual

SEERbase = Seasonal Energy Efficiency Ratio of baseline Air Source

Heat Pump = 14²⁵⁷

SEERexist = Seasonal Energy Efficiency Ratio of existing cooling

system (kBtu/kWh)

= Use actual SEER rating where it is possible to measure or

reasonably estimate. If not, assume the following dependent on type of existing cooling system:

Existing Cooling System	SEERexist ²⁵⁸
Air Source Heat Pump or	10.0
Central AC	
No central cooling ²⁵⁹	Make '1/SEERexist' = 0

SEERee = Seasonal Energy Efficiency Ratio of efficient Air Source

Heat Pump = Actual

SEERbasereplace = Seasonal Energy Efficiency Ratio of new baseline replacement of same equipment type as existing:

Existing SEER Rating
Equipment Type
ASHP 14
Central AC or no 13

FLHheat = Full Load Heating Hours

replaced cooling

= Dependent on location as below:

Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

Minimum Federal Standard

rd between 1992 and 2006. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used. urages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

Page 106 of 507

Location	FLHheat
Wilmington, DE	935 ²⁶⁰
Baltimore, MD	866 ²⁶¹
Washington, DC	822

 $BtuH_{Heat}$ = Heating capacity of Air Source Heat Pump (1 ton =

12,000Btuh)

= Actual

HSPFbase = Heating Seasonal Performance Factor of baseline Air

Source Heat Pump

 $= 8.2^{262}$

HSPFexist = Heating System Performance Factor²⁶³ of existing heating

system (kBtu/kWh)

= Use actual HSPF rating where it is possible to measure or

reasonably estimate. If not available use:

Existing Heating System	HSPF_exist
Air Source Heat Pump	5.96 ²⁶⁴
Electric Resistance	3.41 ²⁶⁵

HSPFee = Heating Seasonal Performance Factor of efficient Air

Source Heat Pump

= Actual

HSPFbasereplace = Heating System Performance Factor of new baseline

replacement of same equipment type as existing

(kBtu/kWh)

Existing Equipment Type	HSPF
ASHP	8.2
Electric Resistance and Central AC	3.41

Illustrative example - do not use as default assumption

gs_calc/ASHP_Sav_Calc.xls)

, table 30, page 48.

Minimum Federal Standard

son to adjust the rated HSPF for geographical/climate variances.

HP SEER rating assumption of 10.0.

Electric resistance has a COP of 1.0 which equals 1/0.293 = 3.41 HSPF.

Page 107 of 507

Time of Sale example: a 3 ton unit with a SEER rating of 15 and HSPF of 8.5 in Baltimore, MD:

= 261.7 kWh

Early Replacement example: a 3 ton unit with a SEER rating of 14.5 and HSPF of 8.4 in Baltimore, MD is installed replacing an existing working Central AC system with a SEER rating of 10 and electric resistance heating:

$$\Delta$$
kWH (for first 6 years) = $(744 * 36,000 * (1/10 - 1/15))/1,000 + (866 * 36,000 * (1/3.41 - 1/8.5))/1,000$

= 6,368 kWh

$$\Delta$$
kWH (for remaining 12 years) = $(744 * 36,000 * (1/13 - 1/15))/1,000 + (866 * 36,000 * (1/3.41 - 1/8.5))/1,000$

= 5,749 kWh

Summer Coincident Peak kW Savings Algorithm

Time of Sale:

$$\Delta kW = BtuH_{Cool} * (1/EERbase - 1/EERee))/1,000 * CF$$

Early replacement:

ΔkW for remaining life of existing unit (1st 6 years):

=
$$BtuH_{Cool}$$
 * (1/EERexist - 1/EERee)/1000 * CF

 Δ kW for remaining measure life (next 12 years):

Where:

EERbase = Energy Efficiency Ratio (EER) of Baseline Air Source Heat Pump

Page 108 of 507

 $= 11.8^{266}$

EERexist

Energy Efficiency Ratio of existing cooling system (kBtu/hr / kW)

= Use actual EER rating where it is possible to measure or reasonably estimate. If EER unknown but SEER available convert using the equation:

 $EER = (-0.02 * SEER^2) + (1.12 * SEER)^{26}$

If SEER rating unavailable use:

Existing Cooling System	EERexist ²⁶⁸
Air Source Heat Pump or	9.2
Central AC	
No central cooling ²⁶⁹	Make '1/EERexist' = 0

EERee

= Energy Efficiency Ratio (EER) of Efficient Air Source Heat

Pump = Actual

If EER is unknown, calculate based on formula presented above.

EERbasereplace

= Energy Efficiency Ratio of new baseline replacement of same equipment type as existing:

1 1 31	3
Existing Equipment Type	EER Rating
ASHP	11.8
Electric Resistance and Central AC	11.0

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{270}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

o perform this calculation we are using this formula: (-0.02 * SEER2) + (1.12 * SEER) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder).

From Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder.

Estimated by converting the SEER 10 assumption using the algorithm provided.

e is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

ners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

Page 109 of 507

$$= 0.66^{271}$$

Illustrative example - do not use as default assumption
Time of Sale example: a 3 ton unit with EER rating of 12.0 in Baltimore, MD:

$$\Delta kW_{SSP}$$
 = 36,000 * (1/11.8 - 1/12))/1,000 * 0.69
= 0.035kW

Early Replacement example: a 3 ton unit with an EER rating of 12 in Baltimore, MD is installed replacing an existing working Central AC system with an EER rating of 9.2 and electric resistance heating:

ΔkW for remaining life of existing unit (1st 6 years):

$$\Delta kW_{SSP}$$
 = 36,000 * (1/9.2 - 1/12))/1,000 * 0.69
= 0.63 kW

ΔkW for remaining measure life (next 12 years):

$$\Delta kW_{SSP}$$
 = 36,000 * (1/11 - 1/12))/1,000 * 0.69
= 0.15 kW

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

The incremental cost for this measure is provided in the table below²⁷². Note these incremental costs are per ton of capacity, so for example a 3 ton, 15 SEER unit would have an incremental cost of \$510.

Efficiency	Incremental	
(SEER)	Cost per Ton of	

Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66. osts based upon average cost per ton from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014. Note SEER 17 and 18 are extrapolated from other data points.

Page 110 of 507

	Capacity
15	\$170
16	\$340
17	\$529
18	\$710

Early replacement: The capital cost for this measure is the actual cost of removing the existing unit and installing the new one. If this is unknown, assume the following (note these costs are per ton of unit capacity)²⁷³:

Efficiency (SEER)	Full Retrofit Cost (including labor) per Ton of Capacity (\$/ton)
15	\$2,544
16	\$3,120
17	\$3,309
18	\$3,614

Assumed deferred cost (after 6 years) of replacing existing equipment with new baseline unit is assumed to be \$2,355 per ton of capacity²⁷⁴. This cost should be discounted to present value using the utilities discount rate.

Measure Life

The measure life is assumed to be 18 years²⁷⁵.

Operation and Maintenance Impacts

n/a

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

²⁷⁵ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 111 of 507

Duct Sealing

Unique Measure Code: RS_HV_RTR_DCTSLG_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure is the sealing of ducts using mastic sealant, aerosol or UL-181 compliant duct sealing tape.

Three methodologies for evaluating the savings associated with sealing the ducts are provided. The first method is provided only as a tool for prescreening potential measures involving a careful visual inspection of the duct work, followed by two further methods that requires the use of a blower door either of which can be used to evaluate savings.

- Feasibility Evaluation of Distribution Efficiency this methodology should not be used for claiming savings but can be a useful tool to help evaluate the potential from duct sealing. It requires evaluation of three duct characteristics below, and use of the Building Performance Institutes 'Distribution Efficiency Look-Up Table';
 - http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf
 - a. Percentage of duct work found within the conditioned space
 - b. Duct leakage evaluation
 - c. Duct insulation evaluation
- Modified Blower Door Subtraction this technique is described in detail on p44 of the Energy Conservatory Blower Door Manual; http://www.energyconservatory.com/download/bdmanual.pdf
 It involves performing a whole house depressurization test and repeating the test with the ducts excluded.
- 3. Duct Blaster Testing as described in RESNET Test 803.7; http://www.resnet.us/standards/DRAFT_Chapter_8_July_22.pdf
 This involves using a blower door to pressurize the house to 25 Pascals, and pressurizing the duct system using a duct blaster to reach equilibrium with the inside. The air required to reach equilibrium provides a duct leakage estimate.

Page 112 of 507

This is a retrofit measure. Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition

The existing baseline condition is leaky duct work within the unconditioned space in the home.

Definition of Efficient Condition

The efficient condition is sealed duct work throughout the unconditioned space in the home.

Annual Energy Savings Algorithm

Methodology 1: Feasibility Evaluation of Distribution Efficiency (not for claiming savings)

Estimate of Cooling savings from reduction in Air Conditioning Load:

Determine Distribution Efficiency by evaluating duct system before and after duct sealing using Building Performance Institute "Distribution Efficiency Look-Up Table"

$$\Delta$$
kWh _{cooling} = ((((DE_{after} - DE_{before})/DE_{after})) * FLHcool * BtuH) / 1,000 / η Cool

Where:

 DE_{after} = Distribution Efficiency after duct sealing DE_{before} = Distribution Efficiency before duct sealing

FLHcool = Full Load Cooling Hours

= Dependent on location as below:

Page 113 of 507

Location	FLHcool
Wilmington, DE	524 ²⁷⁶
Baltimore, MD	542 ²⁷⁷
Washington, DC	681

BtuH = Size of equipment in Btuh (note 1 ton = 12,000Btuh)

= Actual

ηCool = Efficiency in SEER of Air Conditioning equipment

= actual. If not available use²⁷⁸:

Equipment Type	Age of Equipment	SEER Estimate
Central AC	Before 2006	10
	After 2006	13
Heat Pump	Before 2006	10
	2006-2014	13
	2015 on	14

Illustrative example - do not use as default assumption Duct sealing in a house in Wilmington DE, with 3-ton SEER 11 central air conditioning and the following duct evaluation results:

 $\begin{array}{ll} DE_{before} & = 0.80 \\ DE_{after} & = 0.90 \end{array}$

Energy Savings:

 Δ kWh = ((0.90 - 0.80)/0.90) * 524 * 36,000) / 1,000 / 11

= 191 kWh

Estimate of Heating savings for homes with electric heat (Heat Pump of resistance):

_

²⁷⁶ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

277 Rased on average of 5 utilities in Maryland from Navigant Consulting "EmployER Maryland

Based on average of 5 utilities in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

²⁷⁸ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 114 of 507

kWh = $(((((DE_{after} - DE_{before})/DE_{after})) * FLHheat * BtuH) / 1,000,000 / \etaHeat) * 293.1$

Where:

FLHheat = Full Load Heating Hours

= Dependent on location as below:

Location	FLHheat
Wilmington, DE	935 ²⁷⁹
Baltimore, MD	866 ²⁸⁰
Washington, DC	822

BtuH = Size of equipment in Btuh (note 1 ton = 12,000Btuh)

= Actual

ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use 281 :

System Type	Age of Equipment	HSPF Estimate	COP Estimate
Heat	Before 2006	6.8	2.00
Pump	2006-2014	7.7	2.26
	2015 on	8.2	2.40
Resistance	n/a	n/a	1.00

Illustrative example - do not use as default assumption Duct sealing in a 2.5 COP heat pump heated house in Baltimore, MD with the following duct evaluation results:

 $\begin{array}{ll} DE_{before} & = 0.80 \\ DE_{after} & = 0.90 \end{array}$

Energy Savings:

-

²⁷⁹ Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls)

280 Based on average of 5 utilities, two program years, in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

²⁸¹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 115 of 507

$$\Delta$$
kWh = ((((0.90 - 0.80)/0.90) * 866 * 36,000) / 1,000,000 / 2.5) * 293.1

= 406 kWh

Methodology 2: Modified Blower Door Subtraction

Claiming Cooling savings from reduction in Air Conditioning Load:

a. Determine Duct Leakage rate before and after performing duct sealing:

Duct Leakage (CFM50_{DL}) = (CFM50_{Whole House} - CFM50_{Envelope Only}) * SCF

Where:

CFM50_{Whole House} = Standard Blower Door test result finding Cubic Feet per

Minute at 50 Pascal pressure differential

CFM50_{Envelope Only} = Blower Door test result finding Cubic Feet per Minute at

50 Pascal pressure differential with all supply and return

registers sealed.

SCF = Subtraction Correction Factor to account for

underestimation of duct leakage due to connections between the duct system and the home. Determined by measuring pressure in duct system with registers sealed and using look up table provided by Energy Conservatory.

 Calculate duct leakage reduction, convert to CFM25_{DL}²⁸² and factor in Supply and Return Loss Factors

Duct Leakage Reduction (Δ CFM25_{DL}) = (Pre CFM50_{DL} - Post CFM50_{DL}) * 0.64 * (SLF + RLF)

Where:

SLF = Supply Loss Factor

= % leaks sealed located in Supply ducts * 1 ²⁸³

²⁸² 25 Pascals is the standard assumption for typical pressures experienced in the duct system under normal operating conditions. To convert CFM50 to CFM25 you multiply by 0.64 (inverse of the "Can't Reach Fifty" factor for CFM25; see Energy Conservatory Blower Door Manual).

²⁸³ Assumes that for each percent of supply air loss there is one percent annual energy penalty. This assumes supply side leaks are direct losses to the outside and are not recaptured back to the house. This could be adjusted downward to reflect regain of usable energy to the house from duct leaks. For example, during the winter some of the energy lost from supply leaks in a crawlspace will probably be regained back to the house (sometimes 1/2 or more may be regained). More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from http://www.energyconservatory.com/download/dbmanual.pdf

Page 116 of 507

Default = 0.5^{284}

= Return Loss Factor RLF

= % leaks sealed located in Return ducts * 0.5²⁸⁵

Default = 0.25^{286}

c. Calculate Energy Savings:

 $= ((\Delta CFM25_{DI})/(Capacity * 400)) * FLHcool * BtuH) / 1000 /$ $\Delta kWh_{cooling}$ nCool

Where:

= Duct leakage reduction in CFM25 $\Delta CFM25_{DI}$

= Capacity of Air Cooling system (tons) Capacity

400 = Conversion of Capacity to CFM (400CFM / ton)

= Full Load Cooling Hours FLHcool

= Dependent on location as below:

Location	FLHcool
Wilmington, DE	524 ²⁸⁷
Baltimore, MD	542 ²⁸⁸
Washington, DC	681

= Size of equipment in Btuh (note 1 ton = 12,000Btuh) BtuH

= Actual

= Efficiency in SEER of Air Conditioning equipment nCool

= actual. If not available use²⁸⁹:

http://www.energyconservatory.com/download/dbmanual.pdf

²⁸⁴ Assumes 50% of leaks are in supply ducts.

Assumes that for each percent of return air loss there is a half percent annual energy penalty. Note that this assumes that return leaks contribute less to energy losses than do supply leaks. This value could be adjusted upward if there was reason to suspect that the return leaks contribute significantly more energy loss than "average" (e.g. pulling return air from a super heated attic), or can be adjusted downward to represent significantly less energy loss (e.g. pulling return air from a moderate temperature crawl space) . More information provided in "Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements" from

²⁸⁶ Assumes 50% of leaks are in return ducts.

²⁸⁷ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) 288 Based on average of 5 utilities in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system

Page 117 of 507

Equipment Type	Age of Equipment	SEER Estimate
Central AC	Before 2006	10
	After 2006	13
Heat Pump	Before 2006	10
	2006-2014	13
	2015 on	14

Illustrative example - do not use as default assumption Duct sealing in a house in Wilmington, DE with 3 ton, SEER 11 central air conditioning and the following blower door test results:

Before:

 $\begin{array}{lll} \text{CFM50}_{\text{Whole House}} & = 4,800 \text{ CFM50} \\ \text{CFM50}_{\text{Envelope Only}} & = 4,500 \text{ CFM50} \\ \text{House to duct pressure} & = 45 \text{ Pascals} \\ \end{array}$

= 1.29 SCF (Energy Conservatory look up

table)

After:

 $\begin{array}{lll} \text{CFM50}_{\text{Whole House}} & = 4,600 \text{ CFM50} \\ \text{CFM50}_{\text{Envelope Only}} & = 4,500 \text{ CFM50} \\ \text{House to duct pressure} & = 43 \text{ Pascals} \\ \end{array}$

= 1.39 SCF (Energy Conservatory look up

table)

Duct Leakage at CFM50:

 $CFM50_{DL before} = (4,800 - 4,500) * 1.29$

= 387 CFM50

 $CFM50_{DL after} = (4,600 - 4,500) * 1.39$

= 139 CFM50

Duct Leakage reduction at CFM25:

 $\Delta CFM25_{DL}$ = (387 - 139) * 0.64 * (0.5 + 0.25) = 119 CFM25

efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 118 of 507

Energy Savings:

Claiming Heating savings for homes with electric heat (Heat Pump):

 Δ kWh = (((Δ CFM25_{DL} / (Capacity * 400)) * FLHheat * BtuH) / 1,000,000 / η Heat) * 293.1

Where:

 $\Delta CFM25_{DL}$ = Duct leakage reduction in CFM25

Capacity = Capacity of Air Cooling system (tons)

400 = Conversion of Capacity to CFM (400CFM / ton)

FLHheat = Full Load Heating Hours

= Dependent on location as below:

Location	FLHheat
Wilmington, DE	935 ²⁹⁰
Baltimore, MD	866 ²⁹¹
Washington, DC	822

BtuH = Size of equipment in Btuh (note 1 ton = 12,000Btuh)

= Actual

ηHeat = Efficiency in COP of Heating equipment

= actual. If not available use 292 :

System	Age of	HSPF	COP
Type	Equipment	Estimate	Estimate
Heat	Before 2006	6.8	2.00
Pump	2006-2014	7.7	2.26
	2015 on	8.2	2.40
Resistance	n/a	n/a	1.00

^

²⁹⁰ Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E's full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator.

⁽http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls)

²⁹¹ Based on average of 5 utilities, two program years, in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

²⁹² These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Illustrative example - do not use as default assumption Duct sealing in a 3-ton 2.5 COP heat pump heated house in Baltimore, MD with the blower door results described above:

$$\Delta$$
kWh = (((119 / (3 * 400)) * 866 * 36,000) / 1,000,000 / 2.5) * 293.1
= 362 kWh

Methodology 3: Duct Blaster Testing

<u>Claiming Cooling savings from reduction in Air Conditioning Load:</u>

$$\Delta kWh_{cooling}$$
 = (((Pre_CFM25 - Post_CFM25)/ (Capacity * 400)) * FLHcool * BtuH) / 1000 / η Cool

Where:

Pre_CFM25 = Duct leakage in CFM25 as measured by duct blaster test before sealing

Post_CFM25 = Duct leakage in CFM25 as measured by duct blaster test after sealing

All other variables as provided above.

Illustrative example - do not use as default assumption Duct sealing in a house in Wilmington, DE with 3 ton, SEER 11 central air conditioning and the following duct blaster test results:

$$Pre_CFM25$$
 = 220 CFM25
 $Post_CFM25$ = 80 CFM25
 Δ kWh = (((220 - 80) / (3 * 400)) * 524 * 36,000) / 1,000 / 11
= 200 kWh

<u>Claiming Heating savings for homes with electric heat (Heat Pump):</u>

Page 120 of 507

Where:

All other variables as provided above.

Illustrative example - do not use as default assumption Duct sealing in a 3-ton 2.5 COP heat pump heated house in Baltimore, MD with the duct blaster results described above:

$$\Delta$$
kWh = ((((220 - 80) / (3 * 400)) * 866 * 36,000) / 1,000,000 / 2.5) *

293.1

= 426 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / FLHcool * CF$

Where:

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (hour

ending 5pm on hottest summer weekday)

 $= 0.69^{293}$

 CF_{PIM} = PJM Summer Peak Coincidence Factor for Central A/C (June to

August weekdays between 2 pm and 6 pm) valued at peak

weather = 0.66 ²⁹⁴

Annual Fossil Fuel Savings Algorithm

For homes with Fossil Fuel Heating:

Methodology 1: Feasibility Evaluation of Distribution Efficiency (not for claiming savings)

$$\Delta$$
MMBTUfossiI fuel = ((((DE_{after} - DE_{before})/ DE_{after})) * FLHheat * BtuH) / 1,000,000 / ηHeat

Where:

 DE_{after} = Distribution Efficiency after duct sealing DE_{before} = Distribution Efficiency before duct sealing

²⁹³ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

²⁹⁴ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

Page 121 of 507

FLHheat = Full Load Heating Hours

= 620²⁹⁵

BtuH = Capacity of Heating System

= Actual

ηHeat = Efficiency of Heating equipment

= Actual²⁹⁶. If not available use 84%²⁹⁷.

Illustrative example - do not use as default assumption
Duct sealing in a fossil fuel heated house with a 100,000Btuh, 80% AFUE natural gas
furnace, with the following duct evaluation results:

 $\begin{array}{ll} DE_{before} & = 0.80 \\ DE_{after} & = 0.90 \end{array}$

Energy Savings:

 Δ MMBTU = ((0.90 - 0.80)/0.90) * 620 * 100,000) / 1,000,000 / 0.80

= 8.6 MMBtu

Methodology 2: Modified Blower Door Subtraction

 Δ MMBTU = (((Δ CFM25_{DL} / (BtuH * 0.0126)) * FLHheat * BtuH) / 1,000,000 /

ηHeat

Where:

 $\Delta CFM25_{DL}$ = Duct leakage reduction in CFM25 BtuH = Capacity of Heating System (Btuh)

= Actual

0.0126 = Conversion of Capacity to CFM $(0.0126CFM / Btuh)^{298}$

295 Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be

appropriate to this FLHheat assumption. ²⁹⁶ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test.

²⁹⁷ The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%.

²⁹⁸ Based on Natural Draft Furnaces requiring 100 CFM per 10,000 BTU, Induced Draft Furnaces requiring 130CFM per 10,000BTU and Condensing Furnaces requiring 150 CFM per 10,000 BTU (rule of thumb from http://contractingbusiness.com/enewsletters/cb_imp_43580/). Data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggested that in 2000, 32% of furnaces

Page 122 of 507

FLHheat = Full Load Heating Hours

 $=620^{299}$

ηHeat = Efficiency of Heating equipment

= Actual³⁰⁰. If not available use 84%³⁰¹.

Illustrative example - do not use as default assumption

Duct sealing in a house with a 100,000Btuh, 80% AFUE natural gas furnace and with the blower door results described above:

Energy Savings:

 Δ MMBTU = (((119 / (100,000 * 0.0126)) * 620 * 100,000) / 1,000,000 / 0.80

= 7.3 MMBtu

Methodology 3: Duct Blaster Testing

Where:

All variables as provided above

Illustrative example - do not use as default assumption Duct sealing in a house with a 100,000Btuh, 80% AFUE natural gas furnace and with the duct blaster results described above:

Energy Savings:

= 8.6 MMBtu

purchased in Maryland were condensing units. Therefore a weighted average required airflow rate is calculated assuming a 50:50 split of natural v induced draft non-condensing furnaces, as 126 per 10,000BTU or 0.0126/Btu.

²⁹⁹ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

³⁰⁰Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test.

³⁰¹ The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%.

Page 123 of 507

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual labor and material cost to seal the ducts.

Measure Life

The measure life is assumed to be 20 years 302.

Operation and Maintenance Impacts

n/a

 $^{^{302}}$ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 124 of 507

Ductless Mini-Split Heat Pump*

Unique Measure Code: RS_HV_TOS_MSHP_0415, RS_HV_RTR_ASHP_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of new ENERGY STAR rated ductless "mini-split" heat pump(s) (DMSHP). A ductless mini-split heat pump (DMSHP) is a type of heat pump with an outdoor condensing unit connected via refrigerant line to one or more indoor evaporator coils. Ductless mini-split heat pumps deliver cooling at the same or higher efficiency as standard central AC units, but can also deliver heat. Further, since the units do not require ductwork, they avoid duct losses.

This measure could be installed in either an existing or in a new home and the characterization is designed to allow the calculation of the impact on electric and/or gas consumption following the installation of a DHP system. The characterization requires that the program implementer perform a custom calculation to determine how much existing and supplemental heating and/or cooling load the DHP will replace based on a combination of billing data, the percentage of conditioned space covered by the DMSHP, the existing equipment and its hours of operation, proposed hours of operation, and the size of the conditioned space. Where possible, this should be treated as a custom measure, due to the number of variables needed, including usage patterns and types of baseline systems.

Definition of Baseline Condition

The baseline condition for early replacement is the existing heating and cooling (if applicable) systems within the home. If cooling equipment is not previously present, it is presumed that some type of cooling equipment would have been installed and the time of sale baseline described next should be used for the cooling baseline assumption.

The baseline condition in time of sale / new construction is a standard-efficiency ductless unit meeting the following efficiency standards:

Year	SEER	EER	HSPF
2015	14	11.8 ³⁰³	8.2

³⁰³ The Federal Standard does not include an EER requirement, so it is approximated with this formula:

Page 125 of 507

Definition of Efficient Condition

The efficient condition is an ENERGY STAR ductless heat pump exceeding all of the following efficiency standards; 14.5 SEER, 12 EER, 8.2 HSPF.

Annual Energy Savings Algorithm

If displacing/replacing electric heat:

```
 \begin{array}{l} \Delta kWh_{total} = \Delta kWh_{cool} + \Delta kWh_{heat} \\ \Delta kWh_{cool} = CoolingLoadDHP * (1/SEER_{base}* (1 + \Delta DL_{impr} \ x \ DL_{cool}) \\ - 1/SEER_{ee}) \\ \Delta kWh_{heat} = HeatLoadElectricDHP * (3.412/HSPF_{base}* (1 + \Delta DL_{impr}* DL_{heat}) - 3.412/HSPF_{ee}) \end{array}
```

If displacing/replacing gas heat:

```
 \begin{split} \Delta kWh_{total} &= \Delta kWh_{cool} \text{- Total\_kWh}_{heat} \\ \Delta kWh_{cool} &= CoolingLoadDHP * (1/SEER_{base}* (1 + \Delta DL_{impr} \text{ x } DL_{cool}) \\ &- 1/SEER_{ee}) \\ Total\_kWh_{heat} &= (HeatLoadGasDHP * 293.1 * 3.412 / HSPFee) \end{split}
```

Where:

CoolingLoadDHP

= Cooling load (kWh) that the DHP will now provide

= Actual

SEERbase

= Efficiency in SEER of existing Air Conditioner or baseline ductless heat pump (kBtu cooling/ kWh consumed)

Early Replacement = Use actual SEER rating where it is possible to measure or reasonably estimate. If unknown assume 10.0³⁰⁴ for Central AC or 8.5 for Room AC³⁰⁵. If no cooling

(-0.02 * SEER2) + (1.12 * SEER) Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

³⁰⁴ VEIC estimate based on Department of Energy Federal Standard between 1992 and 2006. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

Page 126 of 507

exists but the customer is looking for a cooling solution, assume 14.0. If no cooling exists or was planned at the home, make 1/SEER = 0 (resulting in a negative value i.e. increase in cooling load).

Time of Sale / New Construction = 14.0^{306}

SEERee = Efficiency in SEER of efficient ductless heat pump

= Actual (kBtu cooling/ kWh consumed)

HeatLoadElectricDHP

= Heating load (kWh) that the DHP will now provide

= Actual³⁰⁷

DL_{cool} = 1 if duct leakage applies based on baseline cooling

equipment (0 otherwise)

DL_{heat} = 1 if duct leakage applies based on baseline heating

equipment (0 otherwise)

 ΔDL_{impr} = Duct loss improvement factor, 0.15

3.412 = Converts 1/HSPF to 1/COP

HSPFbase = Heating Seasonal Performance Factor of existing system

or baseline ductless heat pump for new construction

Early Replacement = Use actual HSPF rating where it is possible

to measure or reasonably estimate.

If unknown assume 3.412³⁰⁸ for resistance heat, 5.96³⁰⁹ for

ASHP.

Time of Sale / New Construction = 8.2^{310}

³⁰⁵ Estimated by converting the assumption of existing unit EER efficiency in the Room Air Conditioner Early Replacement measure (7.7EER) in to SEER using the assumption EER≈SEER/1.1.

³⁰⁶ Minimum Federal Standard

³⁰⁷ For example with a Manual-J calculation or similar modeling.

³⁰⁸ Assume COP of 1.0 converted to HSPF by multiplying by 3.412.

³⁰⁹ This is estimated based on finding the average HSPF/SEER ratio from the AHRI directory data (using the least efficient models - SEER 12 and SEER 13) - 0.596, and applying to the existing ASHP SEER rating assumption of 10.0.

³¹⁰ Minimum Federal Standard

Page 127 of 507

HSPFee = Heating Seasonal Performance Factor of ENERGY STAR

ductless heat pump³¹¹

= Actual

HeatLoadGasDHP = Heating load (MMBtu) that the DHP will now provide

= Actual³¹²

293.1 = Converts MMBtu to kWh

AFUEexist = Efficiency of existing furnace or boiler

= Use actual AFUE rating where it is possible to measure or

reasonably estimate. If unknown assume 78%³¹³.

3.412 = Converts heat pump HSPF in to COP

See example calculations at end of characterization.

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = BtuH_{Cool} * (1/EERbase * (1 + \Delta DL_{impr} * DL_{cool}) - 1/EERee))/1,000 * CF$$

Where:

 $BtuH_{Cool}$ = Cooling capacity of ductless heat pump (1 ton =

12,000Btuh) = Actual

EERbase = Energy Efficiency Ratio (EER) of Baseline Air Source Heat

Pump

³¹¹ HSPF ratings for Heat Pumps account for the seasonal average efficiency of the units and are based on testing within AHRI climate zone 4 which encompasses all of the Mid Atlantic region. There should therefore be no reason to adjust the rated HSPF for geographical/climate variances.

³¹² For example with a Manual-J calculation or similar modeling.

This has been estimated assuming that the average efficiency of existing heating systems is likely to include newer more efficient systems.

Page 128 of 507

Early Replacement = Use actual EER rating where it is possible to measure or reasonably estimate.

If unknown assume 9.1³¹⁴ for Central AC or 7.7 for Room

 AC^{315} .

If no cooling is at the home, make 1/EER = 0 (resulting in a negative value i.e. increase in load).

Time of Sale / New Construction = 8.5^{316}

EERee = Energy Efficiency Ratio (EER) of Efficient ductless heat

pump = Actual.

DL_{cool} = 1 if duct leakage applies based on baseline cooling

equipment (0 otherwise)

 ΔDL_{impr} = Duct loss improvement factor, 0.15

CF = Coincidence Factor for measure. Assumptions for both

Central AC and Room AC are provided below. The

appropriate selection depends on whether the DHP is being used similarly to a central AC (thermostatically controlled) or a room AC (controlled with need). If unknown assume

Room AC.

CF_{SSP Room AC} = Summer System Peak Coincidence Factor for Room A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.31^{317}$

 $CF_{PJM Room AC}$ = PJM Summer Peak Coincidence Factor for Room A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.3^{318}$

 $^{\rm 314}$ Based on converting the SEER 10 to EER using the assumption EER*SEER/1.1.

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res%20RAC.pdf).

Using the assumption of existing unit EER efficiency in the Room Air Conditioner Early Replacement measure, based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

³¹⁶ Typical EER for DMSHP units with a SEER of 14 from the AHRI database

³¹⁷ Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

³¹⁸ Consistent with coincidence factors found in:

Page 129 of 507

CF_{SSP Central AC} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{319}$

CF_{PJM Central AC} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{320}$

See example calculations at end of characterization.

Annual Fossil Fuel Savings Algorithm

If the existing heating system is gas fired, the savings from the measure represent the displaced gas heating consumption, and the DHP represents added electric load.

 Δ MMBtu = HeatLoadGasReplaced / AFUEexist * (1 + Δ DL_{impr} * DL_{heat})

Where:

HeatLoadGasReplaced

= Heating load (MMBtu) that the DHP will now provide in

place of gas unit

= Actual³²¹

AFUEexist = Efficiency of existing heating system

= Use actual AFUE rating where it is possible to measure or

reasonably estimate. If unknown assume 78% for early

retiremens, or 82% for replace on burnouts³²².

DL_{heat} = 1 if duct leakage applies based on baseline heating

equipment (0 otherwise)

³¹⁹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

³²⁰ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

³²¹ For example with a Manual-J calculation or similar modeling.

This has been estimated assuming that the average efficiency of existing heating systems is likely to include newer more efficient systems.

Page 130 of 507

 ΔDL_{impr}

= Duct loss improvement factor, 0.15

See example calculations at end of characterization.

Annual Water Savings Algorithm n/a

Incremental Cost

Early Replacement: the actual full cost of the DHP installation should be used if available, if not defaults are provided in the table below:

Unit Size	Early Replacement: Full Install Cost ³²³
1-Ton	\$3,000
1.5-Ton	\$3750
2-Ton	\$4,500
2.5-Ton	\$5,250
3-Ton	\$6,000

If the DHP installation results in the early removal of existing operating heating or cooling equipment (that otherwise would have needed to be replaced in the future) then the deferred replacement of that equipment should be accounted for. This deferred replacement cost should be estimated based on the existing equipment or the following defaults can be used:

Central AC - \$2,185 per ton³²⁴.

Central Ducted Air Source Heat Pump - \$2,166 per ton³²⁵

Furnace - \$2,311 ³²⁶

325 Ibid.

22

³²³ Based upon review of *Ductless Heat Pumps for Residential Customers in Connecticut*, Swift, Joseph R and Rebecca A. Meyer, The Connecticut Light & Power Company, 2010 ACEEE Summer Study on Energy Efficiency in Buildings (2-292). Also supported by findings in NEEP *Northeast/Mid-Atlantic Air-Source Heat Pump Market Strategies Report*, January 2014 and NEEP *Incremental Cost Study Phase Two Final Report*, January 2013. If existing heating and cooling load is replaced at the end of its life, then a baseline cost should be determined and subtracted from the full install cost.

³²⁴ Costs based upon average cost per ton for Equipment and Labor from Itron Measure Cost Study Results Matrix Volume 1 (part of "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014).

Page 131 of 507

Boiler - \$3,834 327

The deferred replacement cost should be discounted to today's dollar assuming it would have occurred in 6 years (3rd of measure life) and subtracted from the full DHP install cost presented above.

Time of Sale / New construction: an estimated incremental cost from a SEER 14 baseline is provided below:

Unit Size	Time of Sale / New Construction: Incremental Cost ³²⁸
1-Ton	\$603
1.5-Ton	\$624
2-Ton	\$601
2.5-Ton	\$600
3-Ton	\$600

Measure Life

The measure life is assumed to be 18 years³²⁹. If an early replacement measure results in the removal of existing operating heating or cooling equipment, it is assumed that it would have needed replacing in 6 years.

Operation and Maintenance Impacts

n/a

https://neep.org/Assets/uploads/files/emv/emv-library/measure_life_GDS%5B1%5D.pdf

³²⁶ Boiler and Furnace Costs derived from Page E-3 of Appendix E of Residential Furnaces and Boilers Final Rule Technical Support Document:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/fb_tsd_0907.html. Plus \$300 labor estimate based on Itron Measure Cost Study Results Matrix Volume 1.

³²⁷ Ibid. Labor estimated as \$500.

³²⁸ Incremental costs against a SEER 13 mini-split as presented in NEEP *Incremental Cost Study Phase Two Final Report*, January 2013. Results for 1 and 1.5 ton are based upon 21 SEER (most represented) and 18 SEER for 2 ton (only value provided). Values for 2.5 and 3 ton are assumed consistent with the other sizes.

³²⁹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 132 of 507

Illustrative examples - do not use as default assumption

Early Replacement:

A 1.5 ton, 20 SEER, 14 EER, 12 HSPF, DHP replaces 5000 kWh of existing electric resistance heat load in a home without existing cooling in Baltimore, MD. DHP is estimated to provide 2,000kWh of cooling load.

A 2.5 ton, 18 SEER, 13.5 EER, 11 HSPF, DHP displaces all of existing gas heat (78% AFUE) in a home with central cooling in Baltimore, MD. The heating load is estimated as 40 MMBtu and cooling load of 4000 kWh.

Page 133 of 507

ΔMMBtu = HeatLoadGasReplaced / AFUEexist

= 40 / 0.78

= 51.3 MMBtu

Time of Sale / New Construction

Two 1.5 ton, 18 SEER, 13.5 EER, 11 HSPF, DHP is installed in a new home in Baltimore, MD. The estimated heat load is 12,000kWh and the cooling load is 6,000kWh

ΔkWH = (CoolingLoadDHP * (1/SEERbase - 1/SEERee)) + (HeatLoadElectricDHP * (3.412/HSPFbase - 3.412/HSPFee)

= (6000 * (1/14 - 1/18)) + (12,000 * (3.412/8.2 - 3.412/11))

= 1,366kWh

 ΔkW_{SSP} = BtuH_{Cool} * (1/EERbase - 1/EERee))/1,000 * CF

= (36,000 * (1/11.8 - 1/13.5)) / 1000) * 0.31

= 0.12 kW

Page 134 of 507

HE Gas Boiler

Unique Measure Code: RS_HV_TOS_GASBLR_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure characterization provides savings for the purchase and installation of a new residential sized ENERGY STAR-qualified high efficiency gas-fired boiler for residential space heating, instead of a new baseline gas boiler. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition

The baseline condition is a boiler that meets the minimum Federal baseline AFUE for boilers. For boilers manufactured after September 2012, the Federal baseline is 82% AFUE.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR qualified boiler with an AFUE rating \geq 85%.

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

ΔMMBtu = (EFLHheat * Btuh * ((AFUEee/AFUEbase) - 1)) /1,000,000

Where:

EFLHheat = Equivalent Full Load Heating Hours

Page 135 of 507

Location	EFLH
Wilmington, DE	848 ³³⁰
Baltimore, MD	620 ³³¹
Washington, DC	528 ³³²

BtuH = Input Capacity of Boiler

= Actual

AFUEbase = Efficiency in AFUE of baseline boiler

= 82%

AFUEee = Efficiency in AFUE of efficient boiler

= Actual

Illustrative example - do not use as default assumption
The purchase and installation of a 100,000 Btuh input capacity, 90% AFUE boiler in Maryland:

 Δ MMBtu = (620 * 100,000 * ((0.9/0.82) - 1)) /1,000,000

= 6.0 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental install cost for this measure is provided below 333:

Efficiency of	Incremental

³³⁰ Based on simulation model as described in ODC Delaware Technical Resource Manual, April 30, 2012; http://www.dnrec.delaware.gov/energy/information/otherinfo/Documents/EM-and-V-guidance-documents/DELAWARE_TRM_August%202012.pdf

VEIC believes it is reasonable to assume that the cost provided from this study for an 85% unit is appropriate for units in the 85-90% AFUE range and the cost for the 91% unit can be used for 91+% units. This is based on the observation that most of the products available in the 85-90 range are in the lower end of the range, as are those units available above 91% AFUE.

³³¹ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

332 Full load heating hours derived by adjusting FLH_{heat} for Baltimore, MD based on Washington, DC HDD

 $^{^{332}}$ Full load heating hours derived by adjusting FLH_{heat} for Baltimore, MD based on Washington, DC HDD base 60° F: $620^{*}2957/3457 = 528$ hours.

³³³ Costs derived from Page E-13 of Appendix E of Residential Furnaces and Boilers Final Rule Technical Support Document:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/fb_fr_tsd/appendix_e.pdf

Page 136 of 507

Boiler (AFUE)	Cost
85% - 90%	\$725
91% +	\$1272

Measure Life

The measure life is assumed to be 18 years 334.

Operation and Maintenance Impacts n/a

 334 Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 137 of 507

Condensing Furnace (gas)*

Unique Measure Code: RS_HV_TOS_GASFUR_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure characterization provides savings for the purchase and installation of a new residential sized ENERGY STAR-qualified high efficiency gas-fired condensing furnace for residential space heating, instead of a new baseline gas furnace. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition

The baseline condition is a non-condensing gas furnace with an AFUE of 80% 335.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR qualified gas-fired condensing furnace with an AFUE rating \geq 90%.

Annual Energy Savings Algorithm

n/a. Note, if the furnace has an ECM fan, electric savings should be claimed as characterized in the "Central Furnace Efficient Fan Motor" section of the TRM.

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

ΔMMBtu = (EFLHheat * Btuh * ((AFUEee/AFUEbase) - 1) /1,000,000

Where:

EFLHheat = Equivalent Full Load Heating Hours

³³⁵ Current federal minimum. See http://www.regulations.gov/#!documentDetail;D=EERE-2006-STD-0102-0008.

Page 138 of 507

Location	EFLH
Wilmington, DE	848 ³³⁶
Baltimore, MD	<i>620</i> ³³⁷
Washington, DC	<i>528</i> ³³⁸

BtuH = Input Capacity of Furnace

= Actual

AFUEbase = Efficiency in AFUE of baseline Furnace

= 0.80

AFUEee = Efficiency in AFUE of efficient Furnace

= Actual

Illustrative example - do not use as default assumption
The purchase and installation of a 100,000 Btuh, 92% AFUE furnace in Maryland:

 Δ MMBtu = (620 * 100,000 * ((0.92/0.8) - 1) /1,000,000

= 9.3 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is provided below³³⁹:

Efficiency of	Incremental
Furnace	Cost

-

http://www1.eere.energy.gov/buildings/appliance_standards/residential/fb_tsd_0907.html

³³⁶ Based on simulation model as described in ODC Delaware Technical Resource Manual, April 30, 2012; http://www.dnrec.delaware.gov/energy/information/otherinfo/Documents/EM-and-V-guidance-documents/DELAWARE_TRM_August%202012.pdf

Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

 $^{^{338}}$ Full load heating hours derived by adjusting FLH_{heat} for Baltimore, MD based on Washington, DC HDD base 60° F: 620° 2957/3457 = 528 hours.

Costs derived from Page E-3 of Appendix E of Residential Furnaces and Boilers Final Rule Technical Support Document:

Page 139 of 507

(AFUE)	
90%	\$630
92%	\$802
96%	\$1,747

Measure Life

The measure life is assumed to be 18 years 340.

Operation and Maintenance Impacts

n/a

 340 Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 140 of 507

Programmable Thermostat

Unique Measure Code: RS_HV_RTR_PRGTHE_0711

Effective Date: June 2014

End Date: TBD

Measure Description

Programmable Thermostats can save energy through the advanced scheduling of setbacks to heating setpoints. Typical usage reduces the heating setpoint during times of the day when occupants are usually not at home (e.g. work hours) or during the night.

Note, savings are only provided for the reduction in heating load for fossil fuel fired heating systems. A literature review could not find any appropriate defensible source of cooling savings from programmable thermostats. It is inappropriate to assume a similar pattern of savings from setting your thermostat down during the heating season and up during the cooling season.

This is a retrofit measure.

Definition of Baseline Condition

A standard, non-programmable thermostat for central heating system (baseboard electric is excluded from this characterization).

Definition of Efficient Condition

A programmable thermostat is installed and programmed by a professional.

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

 Δ MMBtu = (Savings %) x (Heat Consumption)

Where:

Savings % = Estimated percent reduction in heating load due to programmable thermostat

Page 141 of 507

=
$$6.8\%$$
 ³⁴¹
Heat Consumption = Annual Home Heating Consumption (MMBtu) = 50.1 ³⁴²

 Δ MMBtu = 0.068 * 50.1

= 3.41 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual unit cost and if installed via program administrators should also include labor cost³⁴³.

Measure Life

The measure life is assumed to be 10 years³⁴⁴.

Operation and Maintenance Impacts

n/a

³⁴¹ 2007, RLW Analytics, "Validating the Impact of Programmable Thermostats"

³⁴² 50.1 MMBtu heating consumption is estimated based on the MD Residential Baseline Database, subtracting Base load from Base + Heat.

The range of costs observed in VEIC's review of other utilities TRMs was \$35-\$40 for the unit, \$100 for labor. In the absence of actual program costs, this cost could be used.

³⁴⁴ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 142 of 507

Room Air Conditioner Early Replacement

Unique Measure Code: RS_HV_RTR_RA/CES_0414

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes the early removal of an existing inefficient Room Air Conditioner unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR qualifying unit. This measure is suitable for a Low Income or a Home Performance program.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

This is a retrofit measure.

Definition of Baseline Condition

The baseline condition is the existing inefficient room air conditioning unit for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new replacement unit meeting the minimum federal efficiency standard (i.e. with an efficiency rating of 10.9 CEER³⁴⁵).

Definition of Efficient Condition

The efficient condition is a new replacement room air conditioning unit meeting the ENERGY STAR efficiency standard (i.e. with an efficiency rating greater than or equal to 11.3^{-346}).

Annual Energy Savings Algorithm

Savings for remaining life of existing unit (1st 3 years) $\Delta kWh = (Hours * BtuH * (1/EERexist - 1/EERee))/1,000$

Savings for remaining measure life (next 9 years)

³⁴⁵ Minimum Federal Standard for most common Room AC type - 8000-14,999 capacity range with louvered sides.

³⁴⁶ Minimum qualifying for ENERGY STAR most common Room AC type - 8000-14,999 capacity range with louvered sides.

Page 143 of 507

 Δ kWh = (Hours * BtuH * (1/EERbase - 1/EERee))/1,000

Where:

Hours = Run hours of Window AC unit

 $= 325^{347}$

Btuh = Capacity of replaced unit

= Actual or 8,500 if unknown ³⁴⁸

EERexist = Efficiency of existing unit in Btus per Watt-hour

 $= 7.7^{349}$

EERbase = Efficiency of baseline unit in Btus per Watt-hour

 $= 10.9^{350}$

EERee = Efficiency of ENERGY STAR unit in Btus per Watt-hour

= Actual

Illustrative example - do not use as default assumption Replacing existing 8,500 Btuh Room AC unit with a new ENERGY STAR unit with EER rating of 11.3:

Savings for remaining life of existing unit (1st 3 years)

 ΔkWh = (325 * 8,500 * (1/7.7- 1/11.3)) / 1,000

= 114 kWh

Savings for remaining measure life (next 9 years)

 ΔkWh = (325 * 8,500 * (1/10.9 - 1/11.3)) / 1,000

= 9 kWh

Summer Coincident Peak kW Savings Algorithm

Savings for remaining life of existing unit (1st 3 years)

2

350 Minimum Federal Standard for capacity range.

³⁴⁷ VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at 31%. Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC. ³⁴⁸ Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

Page 144 of 507

$$\Delta kW = ((BtuH * (1/EERexist - 1/EERee))/1000) * CF$$

$$\Delta kW = ((BtuH * (1/EERbase - 1/EERee))/1000) * CF$$

Where:

CF_{SSP} = Summer System Peak Coincidence Factor for Room A/C (hour

ending 5pm on hottest summer weekday)

 $= 0.31^{351}$

 CF_{PIM} = PJM Summer Peak Coincidence Factor for Room A/C (June to

August weekdays between 2 pm and 6 pm) valued at peak

weather = 0.3³⁵²

Illustrative example - do not use as default assumption Replacing existing 8,500 Btuh Room AC unit with a new ENERGY STAR unit with EER rating of 11.3.

Savings for remaining life of existing unit (1st 3 years)

$$\Delta kW_{SSP}$$
 = ((8,500 * (1/7.7 - 1/11.3)) / 1,000) * 0.31

= 0.11 kW

Savings for remaining measure life (next 9 years)

$$\Delta kW_{SSP}$$
 = ((8,500 * (1/10.9 - 1/11.3)) / 1,000) * 0.31

= 0.0086 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual cost of the replacement unit and any cost of installation labor.

³⁵¹ Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

³⁵² Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res%20RAC.pdf).

Page 145 of 507

Note, the deferred baseline replacement cost is presented under Operation and Maintenance Impacts.

Measure Life

The measure life is assumed to be 12 years³⁵³. Note this characterization also assumes there is 3 years of remaining useful life of the unit being replaced³⁵⁴.

Operation and Maintenance Impacts

The net present value of the deferred replacement cost (the cost associated with the replacement of the existing unit with a standard unit that would have occurred in 3 years, had the existing unit not been replaced) should be calculated as:

NPV_{deferred replacement cost} = (Actual Cost of ENERGY STAR unit - $$40^{355}$) * $69\%^{356}$.

Note that this is a lifecycle cost savings (i.e. a negative cost).

⁻

³⁵³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Based on Connecticut TRM; Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year

³⁵⁵ Incremental cost of ENERGY STAR unit over baseline unit; consistent with Time of Sale Room AC measure.

³⁵⁶ 69% is the ratio of the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit. The calculation is done in this way to allow the use of the known ENERGY STAR replacement cost to calculate an appropriate baseline replacement cost.

Page 146 of 507

Room Air Conditioner Early Retirement / Recycling

Unique Measure Code: RS_HV_ERT_RA/C_0414

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes the savings resulting from implementing a drop off service taking existing working inefficient Room Air Conditioner units from service, prior to their natural end of life. This measure assumes that a percentage of these units will ultimately be replaced with a baseline standard efficiency unit (note that if it is actually replaced by a new ENERGY STAR qualifying unit, the savings increment between baseline and ENERGY STAR should be captured under the ENERGY STAR Room AC Time of Sale measure).

Definition of Baseline Condition

The baseline condition is the existing inefficient room air conditioning unit.

Definition of Efficient Condition

Not applicable. This measure relates to the retiring of an existing inefficient unit. A percentage of units however are assumed to be replaced with a baseline new unit and the savings are therefore reduced to account for these replacement units.

Annual Energy Savings Algorithm

 ΔkWh = ((Hours * BtuH * (1/EERexist))/1,000) -

(%replaced * ((Hours * BtuH * (1/EERnewbase))/ 1,000)

Where:

Hours = Run hours of Window AC unit

= 325 ³³⁷

Btu/hour = Capacity of replaced unit

= Actual or 8,500 if unknown 358

³⁵⁷ VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at 31%. Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC. ³⁵⁸ Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

Page 147 of 507

EERexist = Efficiency of existing unit in Btus per Watt-hour

= Actual or 7.7 if unknown 359

%replaced = Percentage of units dropped off that are replaced in the home

 $= 76\%^{360}$

EERnewbase = Efficiency of new baseline unit in Btus per Watt-hour

 $= 10.9^{361}$

Illustrative example - do not use as default assumption The turn in of an 8,500 Btuh, 7.7 EER unit:

 Δ kWh = ((325 * 8,500 * (1/7.7))/1,000) - (0.76 * ((325 * 8,500 * (1/10.9))/1,000)

= 166 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((BtuH * (1/EERexist))/1,000) - ((Replaced * ((BtuH * (1/EERnewbase))/1,000) * CF)$

Where:

CF_{SSP} = Summer System Peak Coincidence Factor for Room A/C (hour

ending 5pm on hottest summer weekday)

 $=0.31^{362}$

 CF_{PJM} = PJM Summer Peak Coincidence Factor for Room A/C (June to

August weekdays between 2 pm and 6 pm) valued at peak

weather = 0.3³⁶³

25.0

³⁵⁹ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report."

³⁶⁰ Based on Nexus Market Research Inc, RLW Analytics, December 2005; "Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report." Report states that 63% were replaced with ENERGY STAR units and 13% with non-ENERGY STAR. However this formula assumes all are non-ENERGY STAR since the increment of savings between baseline units and ENERGY STAR would be recorded by the Time of Sale measure when the new unit is purchased.

³⁶¹ Minimum Federal Standard for most common Room AC type - 8000-14,999 capacity range with louvered sides. Note that we assume the replacement is only at federal standard efficiency for the reason explained above.

³⁶² Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

³⁶³ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res%20RAC.pdf).

Page 148 of 507

Illustrative example - do not use as default assumption The turn in of an 8500 Btuh, 7.7 EER unit:

$$\Delta kW_{SSM}$$
 = ((8,500 * (1/7.7))/1,000) - (0.76 * ((8,500 * (1/10.9))/1,000) * 0.31

= 0.16 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual implementation cost for recycling the existing unit, plus \$129 to account for the replacement of 76% of the units³⁶⁴.

Measure Life

The measure life is assumed to be 3 years³⁶⁵.

Operation and Maintenance Impacts

The net present value of the deferred replacement cost (the cost associated with the replacement of those units that would be replaced, with a standard unit that would have had to have occurred in 3 years, had the existing unit not been replaced) is calculated as \$89.36³⁶⁶.

³⁶⁴ \$129 replacement cost is calculated by multiplying the percentage assumed to be replaced - 76% by the assumed cost of a standard efficiency unit of \$170 (ENERGY STAR calculator;

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC. xls); 0.76 * 170 = \$129.2.

³⁶⁵ 3 years of remaining useful life based on Connecticut TRM; Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year

³⁶⁶ Determined by calculating the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit costing multiplied by the 76%, the percentage of units being replaced (i.e. 0.76 * \$170 = \$129.2. Baseline cost from ENERGY STAR calculator:

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls)

Page 149 of 507

Boiler Pipe Insulation

Unique Measure Code: RS_HV_RTR_PIPEIN_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure describes adding insulation to un-insulated boiler pipes in unconditioned basements or crawlspaces.

Note, the algorithm provided to calculate savings may be used to determine an appropriate deemed savings value if the programs can provide appropriate average values for each of the variables.

This is a retrofit measure.

Definition of Baseline Condition

The baseline condition is an un-insulated boiler pipe.

Definition of Efficient Condition

The efficient condition is installing pipe wrap insulation to a length of boiler pipe.

Annual Energy Savings Algorithm

N/A

Summer Coincident Peak kW Savings Algorithm

N/A

Annual Fossil Fuel Savings Algorithm

 $\Delta MMBtu = (((1/R_{exist} * C_{exist}) - (1/R_{new} * C_{new})) * FLH_heat * L * \Delta T) / \eta Boiler$

/1,000,000

Where:

 R_{exist} = Pipe heat loss coefficient of uninsulated pipe [(hr-°F-ft²)/Btu]

 $= 0.5^{367}$

 R_{new} = Pipe heat loss coefficient of insulated pipe [(hr-°F-ft²)/Btu]

= Actual (0.5 + R value of insulation)

EFLH_heat = Equivalent Full load hours of heating

³⁶⁷ Assumption based on data obtained from the 3E Plus heat loss calculation software provided by the NAIMA (North American Insulation Manufacturer Association) and derived from Table 15 and Table 16 of 2009 ASHRAE Fundamentals Handbook, Chapter 23 Insulation for Mechanical Systems, page 23.17.

Page 150 of 507

Location	EFLH
Wilmington, DE	848 ³⁶⁸
Baltimore, MD	620 ³⁶⁹
Washington, DC	528 ³⁷⁰

L = Length of boiler pipe in unconditioned space covered by pipe wrap (ft)

= Actual

 C_{exist} = Circumference of bare pipe (ft) (Diameter (in) * π /12)

= Actual (0.5" pipe = 0.131ft, 0.75" pipe = 0.196ft)

 C_{new} = Circumference of pipe with insulation(ft) (Diameter (in) * π /12)

= Actual

ΔT = Average temperature difference between circulated heated water and unconditioned space air temperature (°F) 371

Pipes location	Outdoor Reset Controls	ΔT (°F)
Unconditioned	Boiler without reset control	110
basement	Boiler with reset control	70
Crawlspace	Boiler without reset control	120
Crawispace	Boiler with reset control	80

ηBoiler = Efficiency of boiler = 0.8 372

Illustrative example - do not use as default assumption Insulating 15 feet of 0.75" pipe with R-3 wrap (0.75" thickness) in a crawl space in Wilmington, DE with a boiler without reset controls:

³⁶⁸ Based on simulation model as described in ODC Delaware Technical Resource Manual, April 30, 2012; http://www.dnrec.delaware.gov/energy/information/otherinfo/Documents/EM-and-V-guidance-documents/DELAWARE_TRM_August%202012.pdf

³⁶⁹ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

 $^{^{370}}$ Full load heating hours derived by adjusting FLH_{heat} for Baltimore, MD based on Washington, DC HDD base 60° F: 620° 2957/3457 = 528 hours.

³⁷¹ Assumes 160°F water temp for a boiler without reset control, 120°F for a boiler with reset control, and 50°F air temperature for pipes in unconditioned basements 40°F for pipes in crawlspaces (Zone 4; NCDC 1881-2010 Normals, average of monthly averages Nov - Apr for zones 1-3 and Nov-March for zones 4 and 5).

³⁷² Assumed efficiency of existing boilers.

Page 151 of 507

$$\Delta \text{MMBtu} = (((1/R_{\text{exist}} * C_{\text{exist}}) - (1/R_{\text{new}} * C_{\text{new}})) * \text{FLH_heat} * L * \Delta T) / \eta \text{Boiler}$$

$$/1,000,000$$

$$= (((1/0.5 * 0.196) - (1/3.5 * ((0.75+0.75+0.75) * \pi/12))) * 848 * 15 * 120) / 0.8 / 1,000,000$$

= 0.43 MMBtu

Annual Water Savings Algorithm

N/A

Incremental Cost

The measure cost including material and installation is assumed to be \$3 per linear foot³⁷³.

Deemed Lifetime of Efficient Equipment

The assumed lifetime of the measure is 15 years³⁷⁴.

Operation and Maintenance Impacts

N/A

Associates, June 2007.

 $^{^{373}}$ Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com). 374 Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 152 of 507

Boiler Reset Controls*

Unique Measure Code: RS_HV_TOS_BLRRES_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to improving system efficiency by adding controls to residential heating boilers to vary the boiler entering water temperature relative to heating load as a function of the outdoor air temperature to save energy. The water can be run a little cooler during fall and spring, and a little hotter during the coldest parts of the winter. A boiler reset control has two temperature sensors - one outside the house and one in the boiler water. As the outdoor temperature goes up and down, the control adjusts the water temperature setting to the lowest setting that is meeting the house heating demand. There are also limits in the controls to keep a boiler from operating outside of its safe performance range.

Definition of Baseline Condition

Existing condensing boiler in a single family residential setting without boiler reset controls.

Definition of Efficient Condition

Natural gas single family residential customer adding boiler reset controls capable of resetting the boiler supply water temperature in an inverse fashion with outdoor air temperature. The system must be set so that the minimum temperature is not more than 10 degrees above manufacturer's recommended minimum return temperature. This boiler reset measure is limited to existing condensing boilers serving a single family residence. Boiler reset controls for non-condensing boilers in single family residences should be implemented as a custom measure, and the cost-effectiveness should be confirmed.

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

ΔMMBtu = (Savings %) * (EFLHheat * Btuh)/ 1,000,000

Where:

Savings % = Estimated percent reduction in heating load due to boiler reset

controls being installed

 $=5\%^{375}$

EFLHheat = Equivalent Full Load Heating Hours

Location	EFLH
Wilmington, DE	848 ³⁷⁶
Baltimore, MD	620 ³⁷⁷
Washington, DC	<i>528</i> ³⁷⁸

BtuH = Input Capacity of Boiler

= Actual

Illustrative example - do not use as default

A boiler reset control is applied to a 80,000 BtuH boiler in Baltimore, MD.

 Δ MMBtu = 0.05 * (620 * 80,000)/1,000,000

= 2.48 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

-

³⁷⁵ Energy savings factor for residential applications taken from an article published by the Energy Solutions Center, a consortium of natural gas utilities, equipment manufacturers and vendors. See: http://www.cleanboiler.org/Eff_Improve/Efficiency/Boiler_Reset_Control.asp

³⁷⁶ Based on simulation model as described in ODC Delaware Technical Resource Manual, April 30, 2012; http://www.dnrec.delaware.gov/energy/information/otherinfo/Documents/EM-and-V-guidance-documents/DELAWARE_TRM_August%202012.pdf

³⁷⁷ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

appropriate to this FLHheat assumption.

378 Full load heating hours derived by adjusting FLH_{heat} for Baltimore, MD based on Washington, DC HDD base 60°F: 620 *2957/3457 = 528 hours.

Page 154 of 507

The cost of this measure is \$612³⁷⁹

Measure Life

The life of this measure is 18 years 380

Operation and Maintenance Impacts

n/a

 $^{^{379}}$ Nexant. Questar DSM Market Characterization Report. August 9, 2006.

The Brooklyn Union Gas Company d/b/a National Grid NY Case 08-G-1016 High-Efficiency Heating and Water Heating and Controls Gas Energy Efficiency Program Implementation Plan, P 37 https://www.nationalgridus.com/non_html/eer/nydown/NYC%20Expedited%20Program%20Implementation%20Plan.pdf

Page 155 of 507

Ground Source Heat Pumps

Unique Measure Code: RS_HV_TOS_GSHPS_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure characterizes the installation of an ENERGY STAR qualified Ground Source Heat Pump (GSHP) either during new construction or at Time of Sale/Replacement of an existing system(s). The baseline is always assumed to be a new baseline Air Source Heat Pump. Savings are calculated due to the GSHP providing heating and cooling more efficiently than a baseline ASHP, and where a desuperheater is installed, additional Domestic Hot Water (DHW) savings due to displacing existing water heating.

The ENERGY STAR efficiency standards are presented below.

ENERGY STAR Requirements (Effective January 1, 2012)

Product Type	Cooling EER	Heating COP	
Water-to-air			
Closed Loop	17.1	3.6	
Open Loop	21.1	4.1	
Water-to-Water			
Closed Loop	16.1	3.1	
Open Loop	20.1	3.5	
DGX	16	3.6	

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition

New Construction:

The baseline equipment is assumed to be an Air Source Heat Pump meeting the Federal Standard efficiency level; 14 SEER, 8.2 HSPF and 11.8³⁸¹ EER. If a

³⁸¹ The Federal Standard does not include an EER requirement, so it is approximated with this formula: (-0.02 * SEER2) + (1.12 * SEER) Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder.

Page 156 of 507

desuperheater is installed, the baseline for DHW savings is assumed to be a Federal Standard electric hot water heater, with Energy Factor calculated as follows³⁸²:

For <=55 gallons: EF = 0.96 - (0.0003 * rated volume in gallons) For >55 gallons: EF = 2.057 - (0.00113 * rated volume in gallons)

If size is unknown, assume 50 gallon; 0.945 EF.

Time of Sale:

The baseline equipment is assumed to be an Air Source Heat Pump meeting the Federal Standard efficiency level; 14 SEER, 8.2 HSPF and 11.8 EER. If a desuperheater is installed, the baseline for DHW savings is assumed to be the existing home's hot water heater fuel and efficiency.

If electric DHW, and unknown efficiency - assume efficiency is equal to pre 4/2015 Federal Standard:

EF = $0.93 - (0.00132 * rated volume in gallons)^{383}$

If size is unknown, assume 50 gallon; 0.864 EF

If gas water heater, and unknown efficiency - assume efficiency is equal to pre 4/2015 Federal Standard:

EF = $(0.67 - 0.0019 * rated volume in gallons)^{384}$.

If size is unknown, assume 40 gallon; 0.594 EF

If DHW fuel is unknown, assume electric DHW provided above.

Definition of Efficient Condition

In order for this characterization to apply, the efficient equipment must be a Ground Source Heat Pump unit meeting the minimum ENERGY STAR efficiency level standards effective at the time of installation as detailed above.

Annual Energy Savings Algorithm

 $\Delta kWh = [Cooling savings] + [Heating savings] + [DHW savings]$

³⁸² Minimum Federal Standard as of 4/1/2015;

http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf

383 Federal Standard from 2004 until 2015, Federal Register Vol. 66, No. 11/1/17/2001, page 4497,

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf

384 Federal Standard from 2004 until 2015, Federal Register Vol. 66, No. 11/1/17/2001, page 4497

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf

Page 157 of 507

= [(FLHcool * Capacity_cooling * (1/SEER_{base}- (1/EER_{PL})/1000] + [FLHheat * Capacity_heating * (1/HSPF_{base} - (1/COP_{PL} * 3.412)))/1000] + [ElecDHW * %DHWDisplaced * (((1/EF_{ELEC}) * GPD * Household * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0) / 3412)]

Where:

FLHcool

= Full load cooling hours Dependent on location as below:

Location	Run Hours
Wilmington, DE	524 ³⁸⁵
Baltimore, MD	542 ³⁸⁶
Washington, DC	681

Capacity_cooling = Cooling Capacity of Ground Source Heat Pump (Btu/hr)

= Actual (1 ton = 12,000Btu/hr)

SEERbase = SEER Efficiency of new replacement baseline unit

 $= 14^{387}$

EER_{Pl} = Part Load EER Efficiency of efficient GSHP unit³⁸⁸

= Actual installed

FLHheat = Full load heating hours

Location	EFLH
Wilmington, DE	848 ³⁸⁹
Baltimore, MD	620 ³⁹⁰

³⁸⁵ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.

(http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

³⁸⁶ Based on average of 5 utilities in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

³⁸⁷ Minimum Federal Standard as of 1/1/2015;

http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf ³⁸⁸ As per conversations with David Buss territory manager for Connor Co, the SEER and COP ratings of an ASHP equate most appropriately with the part load EER and COP of a GSHP.

³⁸⁹ Based on simulation model as described in ODC Delaware Technical Resource Manual, April 30, 2012; http://www.dnrec.delaware.gov/energy/information/otherinfo/Documents/EM-and-V-guidance-documents/DELAWARE TRM August%202012.pdf

³⁹⁰ Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report",

Page 158 of 507

Capacity_heating = Heating Capacity of Ground Source Heat Pump (Btu/hr) = Actual (1 ton = 12,000Btu/hr)

HSPF_{base} =Heating System Performance Factor of new replacement

baseline heating system (kBtu/kWh)

 $=8.2^{392}$

COP_{PL} = Part Load Coefficient of Performance of efficient unit³⁹³

= Actual Installed

3.412 = Constant to convert the COP of the unit to the Heating Season

Performance Factor (HSPF).

ElecDHW = 1 if existing DHW is electrically heated

= 0 if existing DHW is not electrically heated

%DHWDisplaced = Percentage of total DHW load that the GSHP will provide

= Actual if known

= If unknown and if desuperheater installed assume 44% 394

= 0% if no desuperheater installed

EF_{ELEC} = Energy Factor (efficiency) of electric water heater

For new construction assume federal standard³⁹⁵:

For <=55 gallons: 0.96 - (0.0003 * rated volume in gallons)

For >55 gallons: 2.057 - (0.00113 * rated volume in

gallons)

If size is unknown, assume 50 gallon; 0.945 EF.

June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf

Full load heating hours derived by adjusting FLH_{heat} for Baltimore, MD based on Washington, DC HDD base 60°F: 620 *2957/3457 = 528 hours.

³⁹² Minimum Federal Standard as of 1/1/2015;

http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf ³⁹³ As per conversations with David Buss territory manager for Connor Co, the SEER and COP ratings of an ASHP equate most appropriately with the part load EER and COP of a GSHP.

³⁹⁴ Assumes that the desuperheater can provide two thirds of hot water needs for eight months of the year (2/3 * 2/3 = 44%). Based on input from Doug Dougherty, Geothermal Exchange Organization. ³⁹⁵ Minimum Federal Standard as of 4/1/2015;

Page 159 of 507

For Time of Sale, if electric DHW use Actual efficiency. If unknown - assume efficiency is equal to pre 4/2015 Federal Standard:

 $EF = 0.93 - (0.00132 * rated volume in gallons)^{396}$

If size is unknown, assume 50 gallon; 0.864 EF

GPD = Gallons Per Day of hot water use per person

= 45.5 gallons hot water per day per household/2.59 people per

household³⁹⁷

= 17.6

Household = Average number of people per household

 $= 2.53^{398}$

365.25 = *Days per year*

yWater = Specific weight of water

= 8.33 pounds per gallon

 T_{OUT} = Tank temperature

= 125°F

 T_{IN} = Incoming water temperature from well or municipal system

 $= 60.9^{399}$

1.0 = Heat Capacity of water (1 Btu/lb*°F)

3412 = Conversion from Btu to kWh

Illustrative Example - do not use as default assumption

20

³⁹⁶ Federal Standard from 2004 until 2015, Federal Register Vol. 66, No. 11/1/17/2001, page 4497, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf
³⁹⁷ Based upon email message from Maureen Hodgins, Research Manager for Water Research Foundation, on August 26, 2014.

³⁹⁸ US Energy Information Administration, Residential Energy Consumption Survey 2009; http://www.eia.gov/consumption/residential/data/2009/xls/HC9.10%20Household%20Demographics%2 0in%20South%20Region.xls

³⁹⁹ Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential Retrofit Programs." April 4, 2014, Appendix E, page 66.

REGIONAL EVALUATION,

For example, a 3 ton unit with Part Load EER rating of 19 and Part Load COP of 4.4 with desuperheater is installed with a 50 gallon electric water heater in single family house in Baltimore:

$$\Delta kWh = [(FLHcool * Capacity_cooling * (1/SEER_{base} - (1/EER_{PL})/1000] + \\ [(FLHheat * Capacity_heating * (1/HSPFbase - (1/COP_{PL} * 3.412)))/1000] \\ + [ElecDHW * %DHWDisplaced * (((1/EF_{ELEC\ EXIST}) * GPD * Household * \\ 365.25 * \gamma Water * (T_{OUT} - T_{IN}) * 1.0) / 3412)]$$

= 367 + 1235 + 1185

= 2787 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (Capacity_cooling * (1/EERbase - 1/EER_{FL}))/1000) * CF$

Where:

EERbase = EER Efficiency of new replacement unit

 $= 11.8^{400}$

EER_{FL} = Full Load EER Efficiency of ENERGY STAR GSHP unit 401

= Actual

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C (hour

ending 5pm on hottest summer weekday)

 $= 0.69^{402}$

 CF_{PIM} = PJM Summer Peak Coincidence Factor for Central A/C (June to

August weekdays between 2 pm and 6 pm) valued at peak

weather = 0.66 403

10

 $^{^{400}}$ The Federal Standard does not include an EER requirement, so it is approximated with the conversion formula from Wassmer, M. 2003 thesis referenced below.

⁴⁰¹ As per conversations with David Buss territory manager for Connor Co, the EER rating of an ASHP equate most appropriately with the full load EER of a GSHP.

⁴⁰² Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

Page 161 of 507

Illustrative Example- do not use as default assumption

New Construction or Time of Sale:

For example, a 3 ton unit with Full Load EER rating of 19:

 ΔkW_{SSP} = ((36,000 * (1/11.8 - 1/19))/1000) * 0.69

= 0.80 kW

 ΔkW_{PJM} = ((36,000 * (1/11 - 1/19))/1000) * 0.66

= 0.76 kW

Annual Fossil Fuel Savings Algorithm

Savings for Time of Sale where existing hot water heater is gas fired:

 Δ MMBtu = [DHW Savings]

= [(1 - ElecDHW) * %DHWDisplaced * (1/ $EF_{GAS\ BASE}$ * GPD * Household * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0) / 1,000,000)]

Where:

EF_{GAS EXIST} = Energy Factor (efficiency) of existing gas water heater

= Actual. If unknown assume efficiency is equal to pre 4/2015

Federal Standard:

 $= (0.67 - 0.0019 * rated volume in gallons)^{404}.$

If size is unknown, assume 40 gallon; 0.594 EF

All other variables provided above

Illustrative Example - do not use as default assumption

Time of Sale:

For example, a GSHP with desuperheater is installed with a 40 gallon gas water heater in single family house in Baltimore:

⁴⁰³ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

⁴⁰⁴ Federal Standard from 2004 until 2015, Federal Register Vol. 66, No. 11/1/17/2001, page 4497 http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/water_heater_fr.pdf

Page 162 of 507

ΔMMBtu

= [(1 - ElecDHW) * %DHWDisplaced * (1/ EF_{GAS BASE} * GPD * Household * 365.25 *
$$\gamma$$
Water * (T_{OUT} - T_{IN}) * 1.0) / 1,000,000)]
= [(1 - 0) * 0.44 * (((1/0.594) * 17.6 * 2.53 * 365.25 * 8.33 * (125 - 60.9) * 1)/1,000,000)]
= 6.4 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

New Construction and Time of Sale: The actual installed cost of the Ground Source Heat Pump should be used (default of \$3957 per ton⁴⁰⁵), minus the assumed installation cost of the baseline equipment (\$2355 per ton for ASHP⁴⁰⁶).

Measure Life

The expected measure life is assumed to be 25 years 407.

Operation and Maintenance Impacts

N/A

41

⁴⁰⁵ Based on data provided to VEIC in 'Results of HomE geothermal and air source heat pump rebate incentives documented by Illinois electric cooperatives'.

Based upon average cost per ton for Equipment and Labor for SEER 14 ASHP from Itron Measure Cost Study Results Matrix Volume 1 (part of "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014).

http://energy.gov/energysaver/articles/geothermal-heat-pumps. The ground loop has a much longer life, but the compressor and other mechanical components are the same as an ASHP. http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf

Page 163 of 507

High Efficiency Bathroom Exhaust Fan*

Unique Measure Code(s): RS_HV_TOS_BTHFAN_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This market opportunity is defined by the need for continuous mechanical ventilation due to reduced air-infiltration from a tighter building shell. In retrofit projects, existing fans may be too loud, or insufficient in other ways, to be operated as required for proper ventilation. This measure assumes a fan capacity of 50 CFM rated at a sound level of less than 2.0 sones at 0.1 inches of water column static pressure. This measure may be applied to larger capacity, up to 130 CFM, efficient fans with bi-level controls because the savings and incremental costs are very similar. All eligible installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2.

Definition of Baseline Condition

New standard efficiency (average CFM/Watt of 3.1⁴⁰⁸) exhaust-only ventilation fan, guiet (< 2.0 sones) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2409.

Definition of Efficient Condition

New efficient (average CFM/watt of 8.3410) exhaust-only ventilation fan, quiet (< 2.0 sones) Continuous operation in accordance with recommended ventilation rate indicated by ASHRAE 62.2411

Annual Energy Savings Algorithm

 $\Delta kWh = (CFM * (1/\eta Baseline - 1/\eta Efficient)/1000) * Hours$

Where:

= Nominal Capacity of the exhaust fan **CFM**

⁴⁰⁸ VEIC analysis looking at average baseline fan (i.e. non-Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM. 409 On off cycling controls may be required of baseline fans larger than 50CFM.

⁴¹⁰ VEIC analysis looking at average efficient fan (i.e. Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.

411 Bi-level controls may be used by efficient fans larger than 50 CFM

Page 164 of 507

nBaseline = Average efficacy for baseline fan

= 3.1 CFM/Watt⁴¹³

= Average efficacy for efficient fan = 8.3 CFM/Watt⁴¹⁴ nEffcient

= assumed annual run hours, Hours

= 8760 for continuous ventilation.

ΔkWh = (50 * (1/3.1 - 1/8.3)/1000) * 8760

= 88.5 kWh

Summer Coincident Peak kW Savings Algorithm

= (CFM * (1/nBaseline - 1/nEfficient)/1000) * CF ΔkW

Where:

CF = Summer Peak Coincidence Factor

= 1.0 (continuous operation)

Other variables as defined above

ΔkW = (50 * (1/3.1 - 1/8.3)/1000) * 1.0

= 0.0101 kW

Deemed Lifetime of Efficient Equipment

The expected measure life is assumed to be 19 years 415.

Deemed Measure Cost

Incremental cost per installed fan is \$43.50 for quiet, efficient fans⁴¹⁶.

⁴¹² 50CFM is the closest available fan size to ASHRAE 62.2 Section 4.1 Whole House Ventilation rates based upon typical square footage and bedrooms.

⁴¹³ VEIC analysis looking at average baseline fan (i.e. non-Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.

⁴¹⁴ VEIC analysis looking at average efficient fan (i.e. Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.

⁴¹⁵ Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting" and HVAC measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans. ⁴¹⁶ VEIC analysis using cost data collected from wholesale vendor; http://www.westsidewholesale.com/.

Page 165 of 507

ENERGY STAR Ceiling Fan

Unique Measure Code: RS_HV_TOS_ESCFN_0415, RS_HV_NC_ESCFN_0415

Effective Date: June 2015

End Date: TBD

Measure Description

A ceiling fan/light unit meeting the ENERGY STAR efficiency specifications is installed in place of a model meeting the federal standard. ENERGY STAR qualified ceiling fan/light combination units are over 60% more efficient than conventional fan/light units, and use improved motors and blade designs⁴¹⁷.

Due to the savings from this measure being derived from more efficient ventilation and more efficient lighting, and the loadshape and measure life for each component being very different, the savings are split in to the component parts and should be claimed together. Lighting savings should be estimated utilizing the General Purpose CFL Screw Based, Residential measure.

Definition of Baseline Equipment

The baseline equipment is assumed to be a standard fan with EISA qualified incandescent or halogen light bulbs.

Definition of Efficient Equipment

The efficient equipment is defined as an ENERGY STAR certified ceiling fan with integral CFL bulbs.

Annual Energy Savings Algorithm

 $\Delta kWh = \Delta kWh_{fan} + \Delta kWh_{Light}$

ΔkWh_{fan} = [Days * FanHours * ((%Low_{base} * WattsLow_{base}) + (%Med_{base} *

WattsMed_{base}) + (%High_{base} * WattsHigh_{base}))/1000] - [Days * FanHours * ((%Low_{ES} * WattsLow_{ES}) + (%Med_{ES} * WattsMed_{ES}) +

(%High_{ES} * WattsHigh_{ES}))/1000]

 ΔkWh_{light} = ((WattsBase - WattsEE)/1000) * ISR * HOURS * (WHFe_{Heat} +

(WHFe_{Cool} - 1))

See General Purpose CFL Screw Based, Residential measure (assume ISR = 1.0)

_

^{417 &}lt;a href="http://www.energystar.gov/products/certified-products/detail/ceiling-fans">http://www.energystar.gov/products/certified-products/detail/ceiling-fans

Page 166 of 507

Where⁴¹⁸:

Days = Days used per year

= Actual. If unknown use 365.25 days/year

FanHours = Daily Fan "On Hours"

= Actual. If unknown use 3 hours

%Low_{base} = Percent of time spent at Low speed of baseline

= 40%

WattsLow_{base} = Fan wattage at Low speed of baseline

= Actual. If unknown use 15 watts

%Med_{base} = Percent of time spent at Medium speed of baseline

= 40%

WattsMed_{base} = Fan wattage at Medium speed of baseline

= Actual. If unknown use 34 watts

%High_{base} = Percent of time spent at High speed of baseline

= 20%

WattsHigh_{base}= Fan wattage at High speed of baseline

= Actual. If unknown use 67 watts

***LowES = Percent of time spent at Low speed of ENERGY STAR*

= 40%

WattsLow_{ES} = Fan wattage at Low speed of ENERGY STAR

= Actual. If unknown use 6 watts

Med_{ES} = Percent of time spent at Medium speed of ENERGY STAR

= 40%

WattsMed_{ES} = Fan wattage at Medium speed of ENERGY STAR

= Actual. If unknown use 23 watts

%High_{ES} = Percent of time spent at High speed of ENERGY STAR

⁴¹⁸ All fan default assumptions are based upon assumptions provided in the ENERGY STAR Ceiling Fan Savings Calculator;

 $\frac{http://www.energystar.gov/buildings/sites/default/uploads/files/light_fixture_ceiling_fan_calculator.}{xlsx?8178-e52c}$

Page 167 of 507

= 20%

WattsHigh_{ES} = Fan wattage at High speed of ENERGY STAR = Actual. If unknown use 56 watts

For ease of reference, the fan assumptions are provided below in table form:

	Low Speed	Medium Speed	High Speed
Percent of Time at Given Speed	40%	40%	20%
Conventional Unit Wattage	15	34	67
ENERGY STAR Unit Wattage	6	23	56
ΔW	9	11	11

If the lighting WattsBase and WattsEE is unknown, assume the following $WattsBase = 3 \times 43 = 129 \text{ W}$

WattsEE = $1 \times 42 = 42 \text{ W}$

Deemed savings if using defaults provided above:

 ΔkWh_{fan} = [365.25 * 3 * ((0.4 * 15) + (0.4 * 34)+(0.2 * 67))/1000] -

[365.25 * 3 *((0.4 * 6)+(0.4 * 23)+(0.2 * 56))/1000]

= 36.2 - 25.0 = 11.2 kWh

 $\Delta kWh_{light} = ((129 - 42)/1000) * 1.0 * 898 * (0.894 + (1.09-1))$

= 76.9 kWh

 $\Delta kWh = 11.2 + 76.9$

= 88.1 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kW_{Fan} + \Delta kW_{light}$

 ΔkW_{Fan} = ((WattsHigh_{base} - WattsHigh_{ES})/1000) * CFfan

 ΔkW_{Light} = ((WattsBase - WattsEE) /1000) * ISR * WHFd * CFlight

See General Purpose CFL Screw Based, Residential measure (assume ISR = 1.0)

Where:

CFfan_{SSP} = Summer System Peak Coincidence Factor (hour ending 5pm on

hottest summer weekday)

Page 168 of 507

 $= 0.31^{419}$

CFfan_{PJM} = *PJM Summer Peak Coincidence Factor (June to August weekdays*

between 2 pm and 6 pm) valued at peak weather

 $=0.3^{420}$

CFlight = Summer Peak coincidence factor for lighting savings

Installation Location	Туре	Coincidence Factor CF
Residential interior and	Utility Peak CF	0.082 ⁴²¹
in-unit Multi Family	PJM CF	0.084 ⁴²²

Deemed savings if using defaults provided above:

$$\Delta kW_{fan ssp} = ((67-56)/1000) * 0.31$$

$$=0.0034 \text{ kW}$$

$$\Delta kW_{light ssp}$$
 =((129 - 42)/1000) * 1.0 * 1.18 * 0.073

$$= 0.0075 \text{ kW}$$

$$\Delta kW_{ssp} = 0.0034 + 0.0075$$

$$= 0.011 \text{ kW}$$

$$\Delta kW_{fan pjm} = ((67-56)/1000) * 0.3$$

$$\Delta kW_{light pjm} = ((129 - 42)/1000) * 1.0 * 1.18 * 0.084$$

$$= 0.0086 \text{ kW}$$

$$\Delta kW_{pjm} = 0.0033 + 0.0086$$

= 0.012 kW

Annual Fossil Fuel Savings Algorithm

⁴¹⁹ Assuming that the CF for a ceiling fan is the same as Room AC; Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

⁴²⁰ Assuming that the CF for a ceiling fan is the same as Room AC; Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW CF%20Res%20RAC.pdf).

Based on EmPOWER_EY5 Deemed Savings Recommendations_20Jan2015 DRAFT.

⁴²² Ibid.

Page 169 of 507

Heating penalty from improved lighting:

$$\Delta$$
MMBtuPenalty = - ((((WattsBase - WattsEE) / 1000) * ISR * Hours * HF * 0.003412) / η Heat) * %FossilHeat

See General Purpose CFL Screw Based, Residential measure (assume ISR = 1.0)

Deemed savings if using defaults provided above:

= -0.11

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental cost of unit is assumed to be \$46.423

Measure Life

The fan savings measure life is assumed to be 10 years.²

The lighting savings measure life is assumed to be 5 years as per General Purpose CFL Screw Based, Residential measure.

Operation and Maintenance Impacts

See General Purpose CFL Screw Based, Residential measure.

Deemed baseline O&M cost if using defaults provided above:

Year	NPV of baseline Replacement Costs Per bulb	Total NPV of baseline Replacement Costs (assuming 3 bulbs)
2015	\$3.83	\$11.49
2016	\$2.94	\$8.82
2017	\$2.01	\$6.03

http://www.energystar.gov/buildings/sites/default/uploads/files/light_fixture_ceiling_fan_calculator.xlsx?8178-e52c

⁴²³ ENERGY STAR Ceiling Fan Savings Calculator

Domestic Hot Water (DHW) End Use

Low Flow Shower Head

Unique Measure Code(s): RS_WT_INS_SHWRHD_0414 and

RS_WT_TOS_SHWRHD_0414
Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the installation of a low flow (≤2.0 GPM) showerhead in a home. This is a retrofit direct install measure or a new installation.

Definition of Baseline Condition

The baseline is a standard showerhead using 2.5 GPM. For direct install programs, utilities may choose to measure the actual flow rate of the existing showerhead and use that in the algorithm below

Definition of Efficient Condition

The efficient condition is an energy efficient showerhead using the rated GPM of the installed showerhead. If actual flow rates of the baseline fixtures are used in a direct install program, then the actual flow rate of the installed aerators should be used as well.

Annual Energy Savings Algorithm

If electric domestic water heater:

 Δ kWH 424 = ((((GPMbase - GPMlow) / GPMbase) * # people * gals/day/person * days/year) / SH/home * 8.3 * (TEMPsh - TEMPin) / 1,000,000) / DHW Recovery Efficiency /

0.003412

Where:

GPMbase = Gallons Per Minute of baseline showerhead

= 2.5 425 or actual flow rate if recorded

GPMIow = Gallons Per Minute of low flow showerhead

= Rated flow rate of unit installed or actual flow rate if

baseline flow rate used.

⁴²⁴ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all showerhead installations.

⁴²⁵ The Energy Policy Act of 1992 (EPAct) established the maximum flow rate for showerheads at 2.5 gallons per minute (gpm).

Page 171 of 507

people = Average number of people per household

 $= 2.56^{426}$

gals/day/person = Average gallons per day used for showering

= Time_{Shower} * GPM_{Base} * Showers_{Person}

= if unknown, use 11.6 427

days/y = Days shower used per year

= 365

Showers/home = Average number of showers in the home

 $= 1.6^{428}$

8.3 = Constant to convert gallons to lbs

TEMPsh = Assumed temperature of water used for shower

= 105

TEMPin = Assumed temperature of water entering house

 $= 60.9^{429}$

DHW Recovery Efficiency = Recovery efficiency of electric water heater

 $= 0.98^{430}$

0.003412 = Constant to convert MMBtu to kWh

Illustrative example - do not use as default assumption For a 2.0GPM rated showerhead:

$$\Delta$$
kWH = ((((2.5 - 2.0) / 2.5) *2.56 * 11.6 * 365) / 1.6 * 8.3 * (105-60.9) / 1,000,000) / 0.98 / 0.003412

= 148 kWh

4

428 Estimate based on review of a number of studies:

⁴³⁰ Electric water heater have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

⁴²⁶ US Energy Information Administration, Residential Energy Consumption Survey; http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc3demographics/pdf/tablehc11 3 ndf

⁴²⁷ Most commonly quoted value of gallons of water used per person per day (including in U.S. Environmental Protection Agency's "water sense" documents; http://www.epa.gov/watersense/docs/home_suppstat508.pdf)

a. Pacific Northwest Laboratory; "Energy Savings from Energy-Efficient Showerheads: REMP Case Study Results, Proposed Evaluation Algorithm, and Program Design Implications" http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=80456EF00AAB94DB204E848BAE65F199?purl=/10185385-CEkZMk/native/

b. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf 429 Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential Retrofit Programs." April 4, 2014, Appendix E, page 66.

Note, utilities may consider whether it is appropriate to claim kWh savings from the reduction in water consumption arising from this measure. The kWh savings would be in relation to the pumping and wastewater treatment. See water savings for characterization.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/hours * CF$

Where:

Hours = Average number of hours per year spent using shower

head

= (Gal/person * # people * 365) / SH/home / GPM / 60

= (11.6 * 2.56 * 365) / 1.6 / 2.5 / 60

= 45 hours

CF = Summer Peak Coincidence Factor for measure

 $= 0.00371^{431}$

Illustrative example - do not use as default assumption For a 2.0GPM rated showerhead:

 $\Delta kW = 148 / 45 * 0.00371$

= 0.0122 kW

Annual Fossil Fuel Savings Algorithm

If fossil fuel domestic water heater:

ΔMMBtu = ((((GPMbase - GPMlow) / GPMbase) * # people * gals/day * days/year)) / SH/home * 8.3 * (TEMPsh -

TEMPin) / 1,000,000) / Gas DHW Recovery Efficiency

Where:

Gas DHW Recovery Efficiency = Recovery efficiency of electric water heater

 ⁴³¹ Calculated as follows: Assume 9% showers take place during peak hours (based on: http://www.aquacraft.com/Download_Reports/DISAGGREGATED-HOT_WATER_USE.pdf)
 9% * 7.42 minutes per day (11.6 * 2.56 / 1.6 / 2.5 = 7.42) = 0.668 minutes
 = 0.668 / 180 (minutes in peak period) = 0.00371

Page 173 of 507

 $= 0.75^{432}$

All other variables

As above

Illustrative example - do not use as default assumption For a 2.0GPM rated showerhead:

$$\Delta$$
MMBtu = ((((2.5 - 2.0) / 2.5) * 2.56 * 11.6 * 365) / 1.6 * 8.3 * (105-60.9) / 1,000,000) / 0.75

= 0.661 MMBtu

Annual Water Savings Algorithm

Water Savings = (((GPMbase - GPMlow) / GPMbase) * # people * gals/day * days/year) / SH/home /748

Where:

748 = Constant to convert from gallons to CCF All other variables as above

Illustrative example - do not use as default assumption For a 2.0GPM rated showerhead:

= 1.81 CCF

kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities' must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

 Δ kWhwater433 = 2.07 kWh/CCF * Δ Water (CCF)

⁴³²Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.

⁴³³ This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, "Energy Savings Plan, Prepared for DC Water." Washington, D.C., 2010.

Page 174 of 507

Illustrative example - do not use as default assumption For a 2.0GPM rated showerhead:

 $\Delta kWh_{water} = 2.07 * 1.81$ = 3.7kWh

Incremental Cost

As a retrofit measure, the incremental cost will be the actual cost of installing the new showerhead. As a time of sale measure, the incremental cost is assumed to be \$6. 434

Measure Life

The measure life is assumed to be 10 years. 435

Operation and Maintenance Impacts

When a retrofit measure, there would be a very small O&M benefit associated with the deferral of the next replacement, but this has conservatively not been characterized.

See DC Water Conservation.xlsx for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region.
434 Navigant Consulting, Ontario Energy Board, "Measures and Assumptions for Demand Side Management (DSM) Planning", April 2009.

⁴³⁵ Consistent with assumptions provided on page C-6 of Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. (http://neep.org/uploads/EMV%20Forum/EMV%20Studies/measure_life_GDS%5B1%5D.pdf)

Page 175 of 507

Faucet Aerators

Unique Measure Code(s): RS_WT_INS_FAUCET_0414 and

RS_WT_TOS_FAUCET_0414 Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the installation of a low flow (≤ 1.5 GPM) faucet aerator in a home. This could be a retrofit direct install measure or a new installation.

Definition of Baseline Condition

The baseline is a standard faucet aerator using 2.2 GPM. For direct install programs, utilities may choose to measure the actual flow rate of the existing aerator and use that in the algorithm below

Definition of Efficient Condition

The efficient condition is an energy efficient faucet aerator using rated GPM of the installed aerator. If actual flow rates of the baseline fixtures are used in a direct install program, then the actual flow rate of the installed aerators should be used as well.

Annual Energy Savings Algorithm

If electric domestic water heater:

ΔkWH⁴³⁶ = (((((GPMbase - GPMIow) / GPMbase) * # people * gals/day/person * days/year * DR) / (F/home)) * 8.3 * (TEMPft - TEMPin) / 1,000,000) / DHW Recovery Efficiency / 0.003412

Where:

GPMbase

= Gallons Per Minute of baseline faucet

⁴³⁶ Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all faucet aerator installations.

Page 176 of 507

= 2.2 437 or actual flow rate if recorded

= Gallons Per Minute of low flow faucet **GPMIow**

= Rated flow rate of unit installed or actual flow rate if

baseline flow rate used.

= Average number of people per household # people

 $= 2.56^{438}$

gals/day/person = Average gallons per day used by faucet per person

= Time_{faucet} *GPM_{base} * Flow_{base} = if unknown, use 10.9 439

= Days faucet used per year days/y

= 365

DR = Percentage of water flowing down drain (if water is

collected in a sink, a faucet aerator will not result in any

saved water)

= 50% 440

F/home = Average number of faucets in the home

 $= 3.5^{441}$

8.3 = Constant to convert gallons to lbs

= Assumed temperature of water used by faucet TFMPft

= 80 Error! Bookmark not defined.

TEMPin = Assumed temperature of water entering house

 $= 60.9^{442}$

DHW Recovery Efficiency = Recovery efficiency of electric water heater

 $= 0.98^{443}$

0.003412 = Constant to converts MMBtu to kWh

⁴³⁷ In 1998, the Department of Energy adopted a maximum flow rate standard of 2.2 gpm at 60 psi for all faucets: 63 Federal Register 13307; March 18, 1998.

438 US Energy Information Administration, Residential Energy Consumption Survey;

http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc3demographics/pdf/tablehc11

439 Most commonly quoted value of gallons of water used per person per day (including in U.S. Environmental Protection Agency's "water sense" documents:

http://www.epa.gov/watersense/docs/home_suppstat508.pdf)

440 Estimate consistent with Ontario Energy Board, "Measures and Assumptions for Demand Side Management Planning."

⁴⁴¹ Estimate based on East Bay Municipal Utility District; "Water Conservation Market Penetration Study"

http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf 442 Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential Retrofit Programs," April 4, 2014, Appendix E, page

443 Electric water heater have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

Page 177 of 507

Illustrative example - do not use as default assumption For a 1.5 GPM rated aerator:

$$\Delta$$
kWH = ((((2.2 - 1.5) / 2.2) * 2.56 * 10.9 * 365 * 0.5) / 3.5 * 8.3 * (80-60.9) / 1,000,000) / 0.98 / 0.003412

= 22 kWh

Note, utilities may consider whether it is appropriate to claim kWh savings from the reduction in water consumption arising from this measure. The kWh savings would be in relation to the pumping and wastewater treatment. See water savings for characterization.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/hours * CF$

Where:

Hours = Average number of hours per year spent using faucet

= (Gal/person * # people * 365) /(F/home) / GPM / 60

= (10.9 * 2.56 * 365) / 3.5 / 2.2 / 60

= 22 hours

CF = Summer Peak Coincidence Factor for measure

 $= 0.00262^{444}$

Illustrative example - do not use as default assumption For a 1.5 GPM rated aerator:

 $\Delta kW = 22 / 22 * 0.00262$

= 0.0026 kW

Annual Fossil Fuel Savings Algorithm

If fossil fuel domestic water heater, MMBtu savings provided below:

⁴⁴⁴ Calculated as follows: Assume 13% faucet use takes place during peak hours (based on: http://www.aquacraft.com/Download_Reports/DISAGGREGATED-HOT_WATER_USE.pdf) 13% * 3.6 minutes per day (10.9 * 2.56 / 3.5 / 2.2 = 3.6) = 0.47 minutes = 0.47 / 180 (minutes in peak period) = 0.00262

Page 178 of 507

Where:

Gas DHW Recovery Efficiency = Recovery efficiency of electric water

heater = 0.75 ⁴⁴⁵

All other variables As above

Illustrative example - do not use as default assumption For a 1.5 GPM rated aerator:

$$\Delta$$
MMBtu = ((((2.2 - 1.5) / 2.2) * 2.56 * 10.9 * 365 * 0.5) / 3.5 * 8.3 * (80-60.9) / 1,000,000) / 0.75

= 0.098 MMBtu

Annual Water Savings Algorithm

Water Savings = (((GPMbase - GPMlow) / GPMbase) * # people * gals/day * days/year * DR) / (F/home) /748

Where:

748

= Constant to convert from gallons to CCF All other variables As above

Illustrative example - do not use as default assumption For a 1.5 GPM rated aerator:

= 0.619 CCF

kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities' must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

 Δ kWhwater446 = 2.07 kWh/CCF * Δ Water (CCF)

_

⁴⁴⁵ Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.

Page 179 of 507

Illustrative example - do not use as default assumption For a 1.5 GPM rated aerator:

 Δ kWh_{water} = 2.07 kWh/CCF * 0.619 CCF = 1.3 kWh

Incremental Cost

As a retrofit measure, the incremental cost will be the actual cost of installing the new aerator. As a time of sale measure, the incremental cost is assumed to be \$2.447

Measure Life

The measure life is assumed to be 5 years. 448

Operation and Maintenance Impacts

When a retrofit measure, there would be a very small O&M benefit associated with the deferral of the next replacement, but this has conservatively not been characterized.

This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, "Energy Savings Plan, Prepared for DC Water." Washington, D.C., 2010.
 See DC Water Conservation.xlsx for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region.
 Navigant Consulting, Ontario Energy Board, "Measures and Assumptions for Demand Side Management (DSM) Planning", April 2009.

⁴⁴⁸ Conservative estimate based on review of TRM assumptions from other States.

Page 180 of 507

Domestic Hot Water Tank Wrap

Unique Measure Code(s): RS_WT_INS_HWWRAP_0113

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to a Tank Wrap or insulation "blanket" that is wrapped around the outside of a hot water tank to reduce stand-by losses. This measure applies only for homes that have an electric water heater that is not already well insulated.

Definition of Baseline Condition

The baseline condition is a standard electric domestic hot water tank without an additional tank wrap.

Definition of Efficient Condition

The efficient condition is the same standard electric domestic hot water tank with an additional tank wrap.

Annual Energy Savings Algorithm

$$\Delta kWh = ((U_{base}A_{base} - U_{insul}A_{insul}) * \Delta T * Hours) / (3412 * \eta DHW)$$

Where:

∧kWh = gross customer annual kWh savings for the measure = Overall heat transfer coefficient prior to adding tank U_{base} wrap ($Btu/Hr-F-ft^2$)

= See table below. If unknown assume 1/8 449

= Overall heat transfer coefficient after addition of tank Uinsul

wrap (Btu/Hr-F-ft2)

= See table below. If unknown assume 1/18 450

= Surface area of storage tank prior to adding tank wrap **A**base

(square feet)

= See table below. If unknown assume 23.18 451

450 Assumes an R-10 tank wrap is added.

⁴⁴⁹ Assumptions are from Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM) for a poorly insulated 40 gallon tank

Page 181 of 507

A_{insul} = Surface area of storage tank after addition of tank wrap

(square feet)

= See table below. If unknown assume 25.31 452

 ΔT = Average temperature difference between tank water and

outside air temperature (°F)

 $= 60^{\circ}F^{453}$

Hours = Number of hours in a year (since savings are assumed to

be constant over year).

= 8760

3412 = Conversion from BTU to kWh

ηDHW = Recovery efficiency of electric hot water heater

 $= 0.98^{454}$

The following table has default savings for various tank capacity and pre and post R-VALUES.

Capacity (gal)	Rbase	Rinsul	Abase (ft2)	Ainsul (ft2)	ΔkWh	ΔkW
30	8	16	19.16	20.94	171	0.019
30	10	18	19.16	20.94	118	0.014
30	12	20	19.16	20.94	86	0.010
30	8	18	19.16	20.94	194	0.022
30	10	20	19.16	20.94	137	0.016
30	12	22	19.16	20.94	101	0.012
40	8	16	23.18	25.31	207	0.024
40	10	18	23.18	25.31	143	0.016
40	12	20	23.18	25.31	105	0.012
40	8	18	23.18	25.31	234	0.027
40	10	20	23.18	25.31	165	0.019
40	12	22	23.18	25.31	123	0.014
50	8	16	24.99	27.06	225	0.026
50	10	18	24.99	27.06	157	0.018
50	12	20	24.99	27.06	115	0.013
50	8	18	24.99	27.06	255	0.029

⁴⁵¹ Assumptions from PA TRM for 40 gallon tank. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.

⁴⁵² Ibid.

⁴⁵³ Assumes 125°F water leaving the hot water tank and average temperature of basement of 65°F.

⁴⁵⁴ NREL, National Residential Efficiency Measures Database, http://www.nrel.gov/ap/retrofits/measures.cfm?gld=6&ctld=40

Page 182 of 507

50	10	20	24.99	27.06	180	0.021
50	12	22	24.99	27.06	134	0.015
80	8	16	31.84	34.14	290	0.033
80	10	18	31.84	34.14	202	0.023
80	12	20	31.84	34.14	149	0.017
80	8	18	31.84	34.14	327	0.037
80	10	20	31.84	34.14	232	0.027
80	12	22	31.84	34.14	173	0.020

If tank specifics are unknown assume 40 gallons as an average tank size⁴⁵⁵, and savings from adding R-10 to a poorly insulated R-8 tank:

$$\Delta$$
kWh = ((23.18/8 - 25.31/18) * 60 * 8760) / (3412 * 0.98)
= 234 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/8760$

Where:

 ΔkWh = kWh savings from tank wrap installation

8760 = Number of hours in a year (since savings are assumed to

be constant over year).

The table above has default savings for various tank capacity and pre and post R-VALUES.

If tank specifics are unknown assume 40 gallons as an average tank size⁴⁵⁶, and savings are from adding R-10 to a poorly insulated R-8 tank:

$$\Delta kW = 234 / 8760$$

= 0.027 kW

⁴⁵⁵ DOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch3.pdf

ch3.pdf

456 DOE, "Residential Heating Products Final Rule Technical Support Document," Table 3.2.13, http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch3.pdf

Page 183 of 507

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure will be the actual cost of installing the tank wrap. If unknown assume \$35 average cost 457.

Measure Life

The measure life is assumed to be 5 years. 458

Operation and Maintenance Impacts

n/a

 $^{^{\}rm 457}$ Based on VEIC online product review. $^{\rm 458}$ Conservative estimate that assumes the tank wrap is installed on an existing unit with 5 years remaining life.

Page 184 of 507

DHW pipe insulation

Unique Measure Code: RS_WT_RTR_PIPEIN_0711

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes adding insulation to un-insulated domestic hot water pipes. The measure assumes the pipe wrap is installed to the first elbow of the hot water carrying pipe.

Note, the algorithm provided to calculate savings may be used to determine an appropriate deemed savings value if the programs can provide appropriate average values for each of the variables.

This is a retrofit measure.

Definition of Baseline Condition

The baseline condition is un-insulated hot water carrying copper pipes.

Definition of Efficient Condition

To efficiency case is installing pipe wrap insulation to the first elbow of the hot water carrying copper pipe.

Annual Energy Savings Algorithm

If electric domestic hot water tank:

 $\Delta kWh = ((1/Rexist - 1/Rnew) * (L * C) * \Delta T * 8,760) / nDHW / 3413$

Where:

Rexist

= Assumed R-value of existing uninsulated piping $= 1.0^{459}$

= R-value of existing pipe plus installed insulation Rnew

= Actual

http://www.oeb.gov.on.ca/OEB/ Documents/EB-2008-0346/Navigant_Appendix_C_substantiation_sheet_20090429.pdf

⁴⁵⁹ Navigant Consulting Inc., April 2009; "Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets", p77, presented to the Ontario **Energy Board:**

Page 185 of 507

Length = Length of piping insulated

= Actual

Circumference = Circumference of piping

= Actual (0.5" pipe = 0.13ft, 0.75" pipe = 0.196ft)

 ΔT = Temperature difference between water in pipe and

ambient air

 $= 65^{\circ}F^{460}$

8,760 = Hours per year

ηDHW = DHW Recovery efficiency (ηDHW)

 $= 0.98^{461}$

3413 = Conversion from Btu to kWh

Illustrative example - do not use as default assumption Insulating 4 feet of 0.75" pipe with R-3.5 wrap:

$$\Delta kWh = ((1/1.0 - 1/4.5) * (4 * 0.196) * 65 * 8,760) / 0.98 / 3,413$$

= 104 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/8,760$

Illustrative example - do not use as default assumption Insulating 4 feet of 0.75" pipe with R-3.5 wrap:

$$\Delta kW = 104 / 8.760$$

= 0.012 kW

Annual Fossil Fuel Savings Algorithm

If fossil fuel DHW unit:

 Δ MMBtu = ((1/Rexist - 1/Rnew) * (L * C) * Δ T * 8,760) / η DHW /1,000,000

⁴⁶⁰ Assumes 130°F water leaving the hot water tank and average temperature of basement of 65°F.

⁴⁶¹ Electric water heaters have recovery efficiency of 98%: http://www.ahrinet.org/ARI/util/showdoc.aspx?doc=576

Page 186 of 507

Where:

ηDHW = Recovery efficiency of gas hot water heater

 $= 0.75^{-462}$

Illustrative example - do not use as default assumption Insulating 4 feet of 0.75" pipe with R-3.5 wrap:

$$\Delta$$
MMBtu = ((1/1.0 - 1/4.5) * (4 * 0.196) * 65 * 8,760)/ 0.75 / 1,000,000

= 0.46 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual cost of material and labor. If this is not available, assume \$3 per foot of insulation 463.

Measure Life

The measure life is assumed to be 15 years 464.

Operation and Maintenance Impacts

n/a

⁴⁶² Review of AHRI Directory suggests range of recovery efficiency ratings for *new* Gas DHW units of 70-87%. Average of *existing* units is estimated at 75%

⁴⁶³ Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

⁴⁶⁴ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 187 of 507

High Efficiency Gas Water Heater

Unique Measure Code: RS_WT_TOS_GASDHW_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure describes the purchase of a high efficiency gas water heater meeting or exceeding ENERGY STAR criteria for the water heater category provided below, in place of a new unit rated at the minimum Federal Standard. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition

The baseline condition is a new conventional gas storage water heater rated at the federal minimum⁴⁶⁵.

For 20 - 55 gallons: EF = 0.675 - (0.0015 * rated volume in

gallons)

For 55 - 100 gallons: EF = 0.8012 - (0.00078 * rated volume in

gallons)

If size is unknown, assume 40 gallon; 0.615 EF.

Definition of Efficient Condition

The efficient condition is a new high efficiency gas water heater meeting or exceeding the minimum efficiency Energy Star qualification criteria provided below 466:

Water Heater Type	Energy Factor
High Efficiency Gas	0.67
Storage	
Gas Condensing	0.80
Whole Home Gas	0.82
Tankless	

⁴⁶⁵ The Baseline Energy Factor is based on the Federal Minimum Standard for water heaters sold on or after April 16 2015. This ruling can be found here:

http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf

⁴⁶⁶ http://www.energystar.gov/index.cfm?c=water_heat.pr_crit_water_heaters

Page 188 of 507

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm n/a

Annual Fossil Fuel Savings Algorithm

$$\Delta$$
MMBtu = (1/ EF_{base} - 1/EF_{efficient}) * (GPD * Household * 365.25 * γWater * (T_{OUT} - T_{in}) * 1.0)/1,000,000

Where:

EF_Baseline = Energy Factor rating for baseline equipment

For <=55 gallons: 0.675 - (0.0015 * tank_size) For > 55 gallons: 0.8012 - (0.00078 * tank size)

= If tank size unknown assume 40 gallons and EF_Baseline

of 0.615

EF_Efficient = Energy Factor Rating for efficient equipment

= Actual. If Tankless whole-house multiply rated efficiency by 0.91⁴⁶⁷. If unknown assume values in look up in table below

Water Heater Type	EF_Efficient	
Condensing Gas Storage	0.80	
Gas Storage	0.67	
Tankless whole-house	0.82 * 0.91 = 0.75	

_

⁴⁶⁷ The disconnect between rated energy factor and in-situ energy consumption is markedly different for tankless units due to significantly higher contributions to overall household hot water usage from short draws. In tankless units the large burner and unit heat exchanger must fire and heat up for each draw. The additional energy losses incurred when the mass of the unit cools to the surrounding space in-between shorter draws was found to be 9% in a study prepared for Lawrence Berkeley National Laboratory by Davis Energy Group, 2006. "Field and Laboratory Testing of Tankless Gas Water Heater Performance" Due to the similarity (storage) between the other categories and the baseline, this derating factor is applied only to the tankless category.

Page 189 of 507

GPD = Gallons Per Day of hot water use per person

= 45.5 gallons hot water per day per household/2.59 people

per household⁴⁶⁸

= 17.6

Household = Average number of people per household

 $= 2.53^{469}$

365.25 = Days per year, on average

γWater = Specific Weight of water

= 8.33 pounds per gallon

T_{out} = Tank temperature

= 125°F

T_{in} = Incoming water temperature from well or municipal

system

 $= 60.9^{470}$

1.0 = Heat Capacity of water (1 Btu/lb*°F)

Illustrative example - do not use as default assumption For example, installing a 40 gallon condensing gas storage water heater, with an energy factor of 0.82 in a single family house:

$$\Delta$$
MMBtu = $(1/0.615 - 1/0.82) * (17.6 * 2.53 * 365.25* 8.33 * (125 - 1/0.82) * (17.6 * 2.53 * 2.53 * 365.25* 8.33 * (125 - 1/0.82) * (17.6 * 2.53 * 2.53 * 2.53 * 2.53 * (125 - 1/0.82) * (17.6 * 2.53 * 2.53 * 2.53 * 2.53 * (125 - 1/0.82) * (17.6 * 2.53 * 2.53 * 2.53 * 2.53 * (125 - 1/0.82) * (17.6 * 2.53 *$

60.9) * 1) / 1,000,000

= 3.53 MMBtu

Annual Water Savings Algorithm

n/a

114

⁴⁶⁸ Email message from Maureen Hodgins, Research Manager for Water Research Foundation, to TAC/SAG, August 26, 2014

⁴⁶⁹ US Energy Information Administration, Residential Energy Consumption Survey 2009; http://www.eia.gov/consumption/residential/data/2009/xls/HC9.10%20Household%20Demographics%20in%20South%20Region.xls

phics%20in%20South%20Region.xls ⁴⁷⁰ Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential Retrofit Programs." April 4, 2014, Appendix E, page 66.

Page 190 of 507

Incremental Cost

The incremental capital cost for this measure is dependent on the type of water heater as listed below471.

Water heater Type	Incremental Cost
Gas Storage	\$400
Condensing gas storage	\$685
Tankless whole-house unit	\$605

Measure Life

The measure life is assumed to be 13 years 472.

Operation and Maintenance Impacts

n/a

 $^{^{471}}$ Source for cost info; DOE, 2010 Residential Heating Products Final Rule Technical Support Document, Table 8.2.14

⁽http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule _ch8.pdf)

472 Based on ACEEE Life-Cycle Cost analysis; http://www.aceee.org/node/3068#lcc

Page 191 of 507

Heat Pump Domestic Water Heater

Unique Measure Code(s): RS_WT_TOS_HPRSHW_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of a Heat Pump domestic water heater in place of a standard electric water heater in conditioned space. This is a time of sale measure.

Definition of Baseline Condition

The baseline condition is assumed to be a new electric water heater meeting federal minimum efficiency standards⁴⁷³:

For <=55 gallons: 0.96 - (0.0003 * rated volume in gallons) For >55 gallons: 2.057 - (0.00113 * rated volume in gallons)

Definition of Efficient Condition

The efficient condition is a heat pump water heater.

Annual Energy Savings Algorithm

Where:

 EF_{BASE}

= Energy Factor (efficiency) of standard electric water heater according to federal standards⁴⁷⁴:

⁴⁷³ Minimum Federal Standard as of 4/1/2015;

http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf

⁴⁷⁴ Minimum Federal Standard as of 1/1/2015;

http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec430-32.pdf

Page 192 of 507

For <=55 gallons: 0.96 - (0.0003 * rated volume in

gallons)

For >55 gallons: 2.057 - (0.00113 * rated volume in

gallons)

= 0.945 for a 50 gallon tank, the most common size for HPWH

*EF*_{EFFICIENT} = Energy Factor (efficiency) of Heat Pump water heater

= Actual. If unknown assume 2.0 475

GPD = Gallons Per Day of hot water use per person

= 45.5 gallons hot water per day per household/2.59

people per household⁴⁷⁶

= 17.6

Household = Average number of people per household

 $= 2.53^{477}$

365.25 = *Days per year*

yWater = Specific weight of water

= 8.33 pounds per gallon

 T_{OUT} = Tank temperature

= 125°F

 T_{IN} = Incoming water temperature from well or municiple

system

⁴⁷⁵ Efficiency based on ENERGY STAR Residential Water Heaters, Final Criteria Analysis: http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/water_heaters/WaterHeaterDraftCriteriaAnalysis.pdf

⁴⁷⁶ Email message from Maureen Hodgins, Research Manager for Water Research Foundation, to TAC/SAG, August 26, 2014. Describes water usage for a house size of 2.59 people.

⁴⁷⁷ US Energy Information Administration, Residential Energy Consumption Survey 2009; http://www.eia.gov/consumption/residential/data/2009/xls/HC9.10%20Household%20Demographics%20in%20South%20Region.xls

Page 193 of 507

 $= 60.9^{478}$

1.0 = Heat Capacity of water (1 Btu/lb*°F)

3412 = Conversion from Btu to kWh

kWh_cooling⁴⁷⁹ = Cooling savings from conversion of heat in home to

water heat

=(((((GPD * Household * 365.25 * yWater * $(T_{OUT} - T_{IN})$ * 1.0) / 3412) - ((1/ EF_{NEW} * GPD * Household * 365.25 * yWater * $(T_{OUT} - T_{IN})$ * 1.0) / 3412)) * LF * 33%) /

COP_{COOL}) * LM

Where:

LF = Location Factor

= 1.0 for HPWH installation in a conditioned

space

= 0.5 for HPWH installation in an unknown

location

= 0.0 for installation in an unconditioned

space

= Portion of removed heat that results in

cooling savings⁴⁸⁰

COP_{COOL} = COP of central air conditioning

⁴⁷⁸ Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential Retrofit Programs." April 4, 2014, Appendix E, page 66.

⁴⁷⁹ This algorithm calculates the heat removed from the air by subtracting the HPWH electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the HP unit and the coincidence of the waste heat with cooling requirements, the efficiency of the central cooling and latent cooling demands.

⁴⁸⁰ REMRate determined percentage (33%) of lighting savings that result in reduced cooling loads for several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC (lighting is used as a proxy for hot water heating since load shapes suggest their seasonal usage patterns are similar).

Page 194 of 507

= Actual, if unknown, assume 3.08 (10.5 SEER / 3.412)

LM = Latent multiplier to account for latent cooling demand

 $= 1.33^{481}$

kWh_heating

= Heating cost from conversion of heat in home to water heat (dependent on heating fuel)

For Natural Gas heating, kWh_heating = 0

For electric heating:

= ((((GPD * Household * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0) / 3412) - ((1/ EF_{NEW} * GPD * Household * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0) / 3412)) * LF * 49%) / COP_{HEAT}

Where:

= Portion of removed heat that results in

increased heating load⁴⁸²

COP_{HEAT} = COP of electric heating system

= actual. If not available use⁴⁸³:

System Type		COP _{HEAT} (COP
		Estimate)

⁴⁸¹ A sensible heat ratio (SHR) of 0.75 corresponds to a latent multiplier of 4/3 or 1.33. SHR of 0.75 for typical split system from page 10 of "Controlling Indoor Humidity Using Variable-Speed Compressors and Blowers" by M. A. Andrade and C. W. Bullard, 1999: www.ideals.illinois.edu/bitstream/handle/2142/11894/TR151.pdf

⁴⁸² REMRate determined percentage (47%) of lighting savings that result in increased heating loads (lighting is used as a proxy for hot water heating since load shapes suggest their seasonal usage patterns are similar).

⁴⁸³ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 195 of 507

System Type	Age of Equipment	HSPF Estimate	COP _{HEAT} (COP Estimate)
Heat Pump	Before 2006	6.8	2.00
	After 2006 - 2014 (default)	7.7	2.26
	2015 on	8.2	2.40
Resistance	N/A	N/A	1.00

Prescriptive savings based on defaults provided above:

ΔkWH electric resistance heat

= 90.7 kWh

= 299.1 kWh

ΔkWH electric resistance heat

= 1420.7 + 90.7 - 299.1 = 1212.3 kWh

ΔkWH heat pump heat

kWh_cooling = 90.7 kWh

Page 196 of 507

kWh_heating = (((17.6 * 2.53 * 365.25 * 8.33 * (125-60.9) * 1.0) / 3412) - ((1/2.0 * 17.6 * 2.53 * 365.25 * 8.33 * (125 - 60.9) * 1.0) / 3412)) * 0.5 * 0.47) / 2.0

= 149.5 kWh

 Δ kWH heat pump heat = 1420.7 + 90.7 - 149.5

= 1361.9 kWh

 Δ kWH fossil fuel heat = (((1/0.945 - 1/2.0) * 17.6 * 2.53 * 365.25 *

8.33 * (125 - 60.9) * 1.0) / 3412) +

kWh_cooling - kWh_heating

 $kWh_cooling = 90.7$

kWh_heating = 0

 Δ kWH fossil fuel heat = 1420.7 + 90.7 - 0

= 1511.4 kWh

Summer Coincident Peak kW Savings Algorithm Δ kW = 0.17 kW ⁴⁸⁴

Annual Fossil Fuel Savings Algorithm

ΔMMBtu

= - ((((GPD * Household * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0) / 3412) - (((1/ EF_{NEW} * GPD * Household * 365.25 * γ Water * (T_{OUT} - T_{IN}) * 1.0) / 3412))) * LF * 47% * 0.003412) / (η Heat * % Natural Gas)

⁴⁸⁴ Based on a chart showing summer weekday average electrical demand on page 10 of FEMP Study "Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters" (http://www1.eere.energy.gov/femp/pdfs/tir_heatpump.pdf). Using data points from the chart, the average delta kW in heat pump mode during the peak hours compared to resistance mode is 0.17kW.

Page 197 of 507

Where:

ΔMMBtu = Heating cost from conversion of heat in home to water

heat for homes with Natural Gas heat. 485

0.003412 = conversion factor (MMBtu per kWh)

η**Heat** = Efficiency of heating system

= Actual. 486 If not available use 72%. 487

% Natural Gas = Factor dependent on heating fuel:

Heating System	%Natural Gas
Electric resistance or	0%
heat pump	
Natural Gas	100%
Unknown heating fuel ⁴⁸⁸	62.5%

Other factors as defined above

Prescriptive savings based on defaults provided above:

ΔMMBtu for fossil fuel heated homes:

$$\Delta MMBtu = - (((17.6 * 2.53 * 365.25 * 8.33 * (125-60.9) * 1.0) / 3412) - ((1/2.0 * 17.6 * 2.53 * 365.25 * 8.33 * (125 - 60.9) * 1.0) / 3412)) * 0.5 * 0.47 * 0.003412) / (0.72 * 1.0)$$

= - 1.41MMBtu

¹⁵ This is the additional energy

⁴⁸⁵ This is the additional energy consumption required to replace the heat removed from the home during the heating season by the heat pump water heater.

⁴⁸⁶ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey:

http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xls).

⁴⁸⁸ Based on KEMA baseline study for Maryland.

Page 198 of 507

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental capital cost for this measure is \$1,000, for a HPWH with an energy factor of 2.0. $^{\rm 489}$

Measure Life

The expected measure life is assumed to be 13 years. 490

Operation and Maintenance Impacts

n/a

 $^{^{\}rm 489}$ DOE, 2010 Residential Heating Products Final Rule Technical Support Document, Table 8.2.14

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_ch8.pdf

ch8.pdf

490 DOE, 2010 Residential Heating Products Final Rule Technical Support Document, Page 8-52

http://www1.eere.energy.gov/buildings/appliance_standards/residential/pdfs/htgp_finalrule_
ch8.pdf

Thermostatic Restrictor Shower Valve

Unique Measure Code: RS_HV_TOS_GSHPS_0415

Effective Date: June 2015

End Date: TBD

Measure Description

The measure is the installation of a thermostatic restrictor shower valve in a single or multi-family household. This is a valve attached to a residential showerhead which restricts hot water flow through the showerhead once the water reaches a set point (generally 95F or lower).

This measure was developed to be applicable to the following program types: RF, NC, DI. If applied to other program types, the measure savings should be verified.

Definition of Baseline Condition

The baseline equipment is the residential showerhead without the restrictor valve installed.

Definition of Efficient Condition

To qualify for this measure the installed equipment must be a thermostatic restrictor shower valve installed on a residential showerhead.

Annual Energy Savings Algorithm

ΔkWh = %ElectricDHW * ((GPM_base_S * L_showerdevice) *

Household * SPCD * 365.25 / SPH) * EPG_electric

Where:

%ElectricDHW

= proportion of water heating supplied by electric resistance heating

3	
DHW fuel	%ElectricDHW
Electric	100%
Natural Gas	0%
Unknown	24% ⁴⁹¹

⁴⁹¹ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey

Page 200 of 507

GPM_base_S = Flow rate of the basecase showerhead, or actual if available

Program	GPM
Direct-install, device only	2.5 ⁴⁹²
New Construction or direct	Rated or actual
install of device and low flow	flow of program-
showerhead	installed
	showerhead

L_showerdevice = Hot water waste time avoide	ed due to thermostatic
--	------------------------

restrictor valve

= 0.89 minutes⁴⁹³

 $= 2.56^{494}$

 $=0.6^{495}$

365.25 = Days per year, on average.

SPH = Showerheads Per Household so that per-

showerhead savings fractions can be determined

 $= 1.6^{496}$

(RECS) 2009 for Mid Atlantic Region. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

⁴⁹² The Energy Policy Act of 1992 (EPAct) established the maximum flow rate for showerheads at 2.5 gallons per minute (gpm).

Average of the following sources: ShowerStart LLC survey; "Identifying, Quantifying and Reducing Behavioral Waste in the Shower: Exploring the Savings Potential of ShowerStart", City of San Diego Water Department survey; "Water Conservation Program: ShowerStart Pilot Project White Paper", and PG&E Work Paper PGECODHW113.

⁴⁹⁴ US Energy Information Administration, Residential Energy Consumption Survey; http://www.eia.doe.gov/emeu/recs/recs2005/hc2005_tables/hc3demographics/pdf/tablehc11 .3.pdf

^{.3.}pdf

495 Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

Page 201 of 507

EPG_electric = Energy per gallon of hot water supplied by electric
$$= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_electric * 3412)$$
$$= (8.33 * 1.0 * (105 - 60.9)) / (0.98 * 3412)$$
$$= 0.11kWh/gal$$
$$8.33 = Specific weight of water (lbs/gallon)$$
$$1.0 = Heat Capacity of water (btu/lb-°)$$
$$ShowerTemp = Assumed temperature of water$$
$$= 105F^{497}$$

SupplyTemp = Assumed temperature of water entering house

 $= 60.9^{498}$

RE_electric = Recovery efficiency of electric water heater

= 98% 499

3412 = Constant to convert Btu to kWh

⁴⁹⁶ Estimate based on review of a number of studies:

a. Pacific Northwest Laboratory; "Energy Savings from Energy-Efficient Showerheads: REMP Case Study Results, Proposed Evaluation Algorithm, and Program Design Implications" http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=80456EF00AAB94DB204E848BAE65F199?purl=/10185385-CEkZMk/native/

b. East Bay Municipal Utility District; "Water Conservation Market Penetration Study" http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf 497 Based on "Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems", Jim Lutz, Lawrence Berkeley National Laboratory, September 2011.

⁴⁹⁸ Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential Retrofit Programs." April 4, 2014, Appendix E, page 66.

⁴⁹⁹ Electric water heaters have recovery efficiency of 98%: http://www.ahridirectory.org/ahridirectory/pages/home.aspx

Page 202 of 507

Illustrative Example - do not use as default assumption

For example, a direct installed valve in a home with electric DHW:

 Δ kWh = 1.0 * (2.5 * 0.89 * 2.56 * 0.6 * 365.25 / 1.6) * 0.11

= 86 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

Hours = Annual electric DHW recovery hours for wasted

showerhead use prevented by device

= ((GPM_base_S * L_showerdevice) * Household * SPCD *

365.25 / SPH) * 0.746⁵⁰⁰ / GPH

GPH = Gallons per hour recovery of electric water heater

calculated for 59.1 temp rise (120-60.9), 98% recovery efficiency, and typical 4.5kW electric

resistance storage tank.

= 30.0

Hours = ((2.5 * 0.89) * 2.56 * 0.6 * 365.25 / 1.6) * 0.746 / 30

= 19.4 hours

CF = Coincidence Factor for electric load reduction

 $= 0.0015^{501}$

 $^{^{500}}$ 74.6% is the proportion of hot 120F water mixed with 60.1F supply water to give 105F shower water.

⁵⁰¹ Calculated as follows: Assume 11% showers take place during peak hours (based on: http://www.aquacraft.com/sites/default/files/pub/DeOreo-%282001%29-Disaggregated-Hot-Water-Use-in-Single-Family-Homes-Using-Flow-Trace-Analysis.pdf). There are 65 days in the summer peak period, so the percentage of total annual use in peak period is 0.11*65/365 = 1.96%. The number of hours of recovery during peak periods is therefore assumed to be 1.96% * 19.4 = 0.38 hours of recovery during peak period, where 19.4 equals the annual electric DHW recovery hours for showerhead use prevented by the device. There are 260 hours in the peak period so the probability you will see savings during the peak period is 0.38/260 = 0.0015
502 Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey

Illustrative example - do not use as default assumption

For example, a direct installed valve in a home with electric DHW:

 $\Delta kW = 86 / 19.4 * 0.0015$

= 0.007 kW

Annual Fossil Fuel Savings Algorithm

ΔMMBtu = %FossiIDHW * ((GPM_base_S * L_showerdevice)* Household * SPCD * 365.25 / SPH) * EPG_gas

Where:

%FossiIDHW = proportion of water heating supplied by Natural Gas heating

DHW fuel	%FossiI_DHW
Electric	0%
Natural Gas	100%
Unknown	76% ⁵⁰²

EPG_gas = Energy per gallon of Hot water supplied by gas

= (8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_gas * 1,000,000)

= 0.00065 MMBTu/gal

RE_gas = Recovery efficiency of gas water heater

= 75% For SF homes⁵⁰³

(RECS) 2009 for Mid Attlantic Region.. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

⁵⁰² Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Attlantic Region.. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

⁵⁰³ DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired

Page 204 of 507

1,000,000 = Converts Btus to MMBtu

Other variables as defined above.

Illustrative example - do not use as default assumption

For example, a direct installed valve in a home with gas DHW:

$$\Delta$$
MMBTu = 1.0 * ((2.5 * 0.89) * 2.56 * 0.6 * 365.25 / 1.6) * 0.00065
= 0.51 MMBtu

Water impact Descriptions and calculations

Where:

748 = Constant to convert from gallons to CCF

Other variables as defined above

Illustrative example - do not use as default assumption For example, a direct installed valve:

Measure Life

The expected measure life is assumed to be 10 years. 504

Deemed Measure Cost

The incremental cost of the measure should be the actual program cost or \$30⁵⁰⁵ if not available.

Operation and Maintenance Impacts

N/A

Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.

⁵⁰⁴ Assumptions based on NY TRM, Pacific Gas and Electric Company Work Paper PGECODHW113, and measure life of low-flow showerhead

⁵⁰⁵ Based on actual cost of the SS-1002CP-SB Ladybug Water-Saving Shower-Head adapter from Evolve showerheads

Water Heater Temperature Setback*

Unique Measure Code: RS_WT_RTR_WHTSB_0415

Effective Date: June 2015

REGIONAL EVALUATION.

MEASUREMENT & VERIFICATION FORUM

End Date: TBD

Measure Description

This measure relates to turning down an existing hot water tank thermostat setting that is at 130 degrees or higher. Savings are provided to account for the resulting reduction in standby losses. This is a retrofit measure.

Definition of Baseline Equipment

The baseline condition is a hot water tank with a thermostat setting that is 130 degrees or higher. Note if there are more than one DHW tanks in the home at or higher than 130 degrees and they are all turned down, then the savings per tank can be multiplied by the number of tanks.

Definition of Efficient Equipment

The efficient condition is a hot water tank with the thermostat reduced to no lower than 120 degrees.

Annual Energy Savings Algorithm

For homes with electric DHW tanks:

$$\Delta kWh^{506}$$
 = (UA * (Tpre - Tpost) * Hours) / (3412 * RE_electric)

Where:

U

= Overall heat transfer coefficient of tank (Btu/Hr-°F-ft²).

= Actual if known. If unknown assume R-12, U = 0.083

Α

= Surface area of storage tank (square feet)

solid Note this algorithm provides savings only from reduction in standby losses. VEIC considered avoided energy from not heating the water to the higher temperature but determined that the potential impact for the three major hot water uses was too small to be characterized; Dishwashers are likely to boost the temperature within the unit (roughly canceling out any savings), faucet and shower use is likely to be at the same temperature so there would need to be more lower temperature hot water being used (cancelling any savings) and clothes washers will only see savings if the water from the tank is taken without any temperature control.

= Actual if known. If unknown use table below based on capacity of tank. If capacity unknown assume 50 gal tank; $A = 24.99 ft^2$

Capacity (gal)	A (ft ²) ⁵⁰⁷
30	19.16
40	23.18
50	24.99
80	31.84

Tpre = Actual hot water setpoint prior to adjustment.

= 135 degrees default

Tpost = Actual new hot water setpoint, which may not be lower

than 120 degrees

= 120 degrees default

= Number of hours in a year (since savings are assumed to Hours

be constant over year).

= 8760

3412 = Conversion from Btu to kWh

RE_electric = Recovery efficiency of electric hot water heater

 $= 0.98^{508}$

The deemed savings assumption, where site specific assumptions are not available would be as follows:

⁵⁰⁷ Assumptions from Pennsylvania TRM. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the

⁵⁰⁸ Electric water heaters have recovery efficiency of 98%: http://www.ahridirectory.org/ahridirectory/pages/home.aspx

Page 207 of 507

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / Hours$

Where:

Hours = 8760

The deemed savings assumption, where site specific assumptions are not available would be as follows:

$$\Delta$$
kW = (81.5/8760)
= 0.0093 kW

Annual Fossil Fuel Savings Algorithm

For homes with gas water heaters:

$$\Delta$$
MMBtu = (U * A * (Tpre - Tpost) * Hours) / (1,000,000 * RE_gas)

Where

1,000,000 = Converts Btus to MMbtu (btu/MMBtu)

RE_gas = Recovery efficiency of gas water heater

 $= 0.75^{509}$

The deemed savings assumption, where site specific assumptions are not available would be as follows:

Annual Water Savings Algorithm

⁵⁰⁹Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.

Page 208 of 507

N/A

Incremental Cost

The incremental cost of the setback is assumed to be \$5 for contractor time.

Deemed Lifetime of Efficient Equipment

The assumed lifetime of the measure is 2 years.

Operation and Maintenance Impacts N/A

Page 209 of 507

Appliance End Use

Clothes Washer

Unique Measure Code(s): RS_LA_TOS_CWASHES_0415, RS_LA_TOS_CWASHT2_0415, RS_LA_TOS_CWASHT3_0415, RS_LA_TOS_CWASHME_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the purchase (time of sale) and installation of a clothes washer exceeding either the ENERGY STAR/CEE Tier 1, ENERGY STAR Most Efficient/CEE Tier 2 or CEE Tier 3 minimum qualifying efficiency standards presented below:

Efficiency Level	Integrated Modified Energy Factor (IMEF)		Integrated Water Factor (IWF)		
Efficiency Level	Front Loading	Top Loading	Front Loading	Top Loading	
ENERGY STAR, CEE Tier 1	>= 2.38	>= 2.06	<= 3.7	<= 4.3	
ENERGY STAR Most Efficient, CEE TIER 2	>= 2.74	>= 2.76	<= 3.2	<= 3.5	
CEE TIER 3	>= 2.92	n/a	<= 3.2	n/a	

The Integrated Modified Energy Factor (IMEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity and the per-cycle standby and off mode energy consumption; the higher the number, the greater the efficiency.

The Integrated Water Factor (IWF) is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Definition of Baseline Condition

The baseline efficiency is determined according to the Integrated Modified Energy Factor (IMEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle and standby/off mode consumption. The Federal baseline

Page 210 of 507

IMEF as of March 2015 is 1.84 for front loading units and 1.29 for top loading units.

Definition of Efficient Condition

The efficient condition is a clothes washer meeting either the ENERGY STAR/CEE Tier 1, ENERGY STAR Most Efficient/CEE Tier 2 or CEE TIER 3 efficiency criteria presented above.

Annual Energy Savings Algorithm

(see '2015 Mid Atlantic CW Analysis.xls' for detailed calculation)

Where

Capacity = Clothes Washer capacity (cubic feet)

= Actual. If capacity is unknown assume average

3.45 cubic feet⁵¹⁰

IMEFbase = Integrated Modified Energy Factor of baseline unit

= Values provided in table below

IMEFeff = Integrated Modified Energy Factor of efficient unit

= Actual. If unknown assume average values

provided below.

Efficiency Level	Integrated Modified Energy Factor (IMEF)			Weighting Percentages ⁵¹¹	
Efficiency Level	Front Loading	Top Loading	Weighted Average	Front Loading	Top Loading
Federal Standard	>= 1.84	>= 1.29	>= 1.66	67%	33%
ENERGY STAR, CEE Tier 1	>= 2.38	>= 2.06	>= 2.26	62%	38%
ENERGY STAR Most Efficient, CEE TIER 2	>= 2.74	>= 2.76	>= 2.74	98%	2%
CEE TIER 3	>= 2.92	n/a	>= 2.92	100%	0%

Ncycles = Number of Cycles per year

Northeast Energy Efficiency Partnerships 91 Hartwell Avenue Lexington, MA 02421 P: 781.860.9177 www.neep.org

⁵¹⁰ Based on the average clothes washer volume of all units that pass the new Federal Standard on the California Energy Commission (CEC) database of Clothes Washer products accessed on 08/28/2014.

⁵¹¹ Weighting percentages are based on available product from the CEC database accessed on 08/28/2014.

Page 211 of 507

 $= 254^{512}$

%CW = Percentage of total energy consumption for

Clothes Washer operation

= Percentage of total energy consumption used for %DHW

water heating

%Dryer = Percentage of total energy consumption for dryer

operation

(dependent on efficiency level - see table below)

	Percentage of Total Energy Consumption ⁵¹³		
	%CW	%DHW	%Dryer
Federal Standard	8%	31%	61%
ENERGY STAR, CEE			
Tier 1	8%	23%	69%
ENERGY STAR Most			
Efficient, CEE TIER 2	14%	10%	76%
CEE TIER 3	14%	10%	77%

%Electric_DHW = Percentage of DHW savings assumed to be electric

DHW fuel	%Electric_DHW
Electric	100%
Fossil Fuel	0%
Unknown	65% ⁵¹⁴

%Electric Dryer = Percentage of dryer savings assumed to be electric

⁵¹² Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program." March 21, 2014,

page 36.
513 The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and consumption data from Life-Cycle Cost and Payback Period Excelbased analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st andard.xlsm. See "2015 E\$ Clothes Washer Analysis.xls" for the calculation.

⁵¹⁴ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

Page 212 of 507

Dryer fuel	%Electric_Dryer
Electric	100%
Fossil Fuel	0%
Unknown	79% ⁵¹⁵

The prescriptive kWH savings based on values provided above where DHW and Dryer fuels are unknown is provided below⁵¹⁶:

	ΔkWH			
Efficiency Level	Front	Тор	Weighted Average	
ENERGY STAR, CEE Tier 1	112.7	84.2	102.2	
ENERGY STAR Most Efficient, CEE TIER 2	145.0	162.2	145.4	
CEE TIER 3	160.9	n/a	160.9	

The unit specific kWh savings when DHW and Dryer fuels are known is provided below:

Efficiency Level	David Albanda a Caraba	ΔkWH			
	Dryer/DHW Gas Combo	Front	Тор	Weighted Average	
	Electric Dryer/Electric DHW	160.0	104.9	140.1	
ENERGY STAR,	Electric Dryer/Gas DHW	59.8	79.7	66.3	
CEE Tier 1	Gas Dryer/Electric DHW	101.7	47.8	82.6	
	Gas Dryer/Gas DHW	1.5	22.5	8.8	
	Electric Dryer/Electric DHW	208.4	210.7	208.5	
ENERGY STAR Most Efficient, CEE TIER 2	Electric Dryer/Gas DHW	74.5	138.3	76.0	
	Gas Dryer/Electric DHW	129.7	99.1	129.1	
	Gas Dryer/Gas DHW	-4.1	26.7	-3.5	
CEE TIER 3	Electric Dryer/Electric DHW	228.1	n/a	228.1	
CEE HER 3	Electric Dryer/Gas DHW	92.4	n/a	92.4	

⁵¹⁵ Default assumption for unknown is based on percentage of homes with electric dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

⁵¹⁶ Note that the baseline savings for all cases (Front, Top and Weighted Average) is based on the weighted average baseline IMEF (as opposed to assuming Front baseline for Front efficient unit). The reasoning is that the support of the program of more efficient units (which are predominately front loading) will result in some participants switching from planned purchase of a top loader to a front loader.

Page 213 of 507

Efficiency	Dryer/DHW Gas Combo	ΔkWH		
Level		Front	Тор	Weighted Average
	Gas Dryer/Electric DHW	134.4	n/a	134.4
	Gas Dryer/Gas DHW	-1.4	n/a	-1.4

Note, utilities may consider whether it is appropriate to claim kWh savings from the reduction in water consumption arising from this measure. The kWh savings would be in relation to the pumping and wastewater treatment. See water savings for characterization.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

Hours = Assumed Run hours of Clothes Washer

 $= 265^{517}$

CF = Summer Peak Coincidence Factor for measure

 $= 0.029^{518}$

The prescriptive kW savings based on values provided above where DHW and Dryer fuels are unknown is provided below:

		ΔkW	
Efficiency Level	Front	Тор	Weighted Average
ENERGY STAR, CEE Tier 1	0.012	0.009	0.011
ENERGY STAR Most Efficient, CEE TIER 2	0.016	0.018	0.016
CEE TIER 3	0.018	n/a	0.018

The unit specific kW savings when DHW and Dryer fuels are known is provided below:

Efficiency		ΔkW		
Level	Dryer/DHW Fuel Combo	Front	Тор	Weighted Average

⁵¹⁷ Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36. 518 Ibid.

Page 214 of 507

Efficiency			ΔkW	
Efficiency Level	Dryer/DHW Fuel Combo	Front	Тор	Weighted Average
	Electric Dryer/Electric DHW	0.018	0.011	0.015
ENERGY STAR,	Electric Dryer/Fuel DHW	0.007	0.009	0.007
CEE Tier 1	Fuel Dryer/Electric DHW	0.011	0.005	0.009
	Fuel Dryer/Fuel DHW	0.000	0.002	0.001
ENERGY STAR	Electric Dryer/Electric DHW	0.023	0.023	0.023
ENERGY STAR Most Efficient,	Electric Dryer/Fuel DHW	0.008	0.015	0.008
CEE TIER 2	Fuel Dryer/Electric DHW	0.014	0.011	0.014
	Fuel Dryer/Fuel DHW	0.000	0.003	0.000
	Electric Dryer/Electric DHW	0.025	n/a	0.025
CEE TIER 3	Electric Dryer/Fuel DHW	0.010	n/a	0.010
	Fuel Dryer/Electric DHW	0.015	n/a	0.015
	Fuel Dryer/Fuel DHW	0.000	n/a	0.000

Annual Fossil Fuel Savings Algorithm

= [(Capacity * 1/MEFbase * Ncycles) * ((%DHWbase * %Natural Gas_DHW * R_eff) + (%Dryerbase * %Gas _Dryer)] -[(Capacity * 1/MEFeff * Ncycles) * ((%DHWeff * %Natural Gas_DHW * R_eff) + (%Dryereff * %Gas_Dryer)] * MMBtu_convert

Where:

= Recovery efficiency factor = 1.26⁵¹⁹ R eff

MMBtu _convert = Convertion factor from kWh to MMBtu

= 0.003413

"Natural Gas_DHW = Percentage of DHW savings assumed to be Natural Gas

> DHW fuel %Natural

⁵¹⁹ To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency

(http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_ Recovery_Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

Page 215 of 507

	Gas_DHW
Electric	0%
Natural Gas	100%
Unknown	$35\%^{520}$

"Gas_Dryer = Percentage of dryer savings assumed to be Natural Gas"

Dryer fuel	%Gas_Dryer
Electric	0%
Natural Gas	100%
Unknown	6% ⁵²¹

Other factors as defined above

The prescriptive MMBtu savings based on values provided above where DHW and Dryer fuels are unknown is provided below:

	ΔMMBtu			
Efficiency Level	Front	Тор	Weighted Average	
ENERGY STAR, CEE Tier 1	0.16	0.05	0.12	
ENERGY STAR Most Efficient, CEE TIER 2	0.22	0.13	0.22	
CEE TIER 3	0.22	n/a	0.22	

The unit specific MMBtu savings when DHW and Dryer fuels are known is provided below:

Efficiency Level	Configuration -	ΔMMBtu		
		Front	Тор	Weighted Average
	Electric Dryer/Electric DHW	0.00	0.00	0.00
ENERGY STAR,	Electric Dryer/Gas DHW	0.43	0.11	0.32
CEE Tier 1	Gas Dryer/Electric DHW	0.20	0.19	0.20
	Gas Dryer/Gas DHW	0.63	0.30	0.51
ENERGY STAR Most Efficient, CEE TIER 2	Electric Dryer/Electric DHW	0.00	0.00	0.00
	Electric Dryer/Gas DHW	0.58	0.31	0.57
	Gas Dryer/Electric DHW	0.27	0.38	0.27

Default assumption for unknown fuel is based on percentage of homes with gas DHW from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

521 Default assumption for unknown is based on percentage of homes with gas dryer from EIA

Default assumption for unknown is based on percentage of homes with gas dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

Page 216 of 507

Efficiency	Configuration	ΔMMBtu		
Level		Front	Тор	Weighted Average
	Gas Dryer/Gas DHW	0.84	0.69	0.84
	Electric Dryer/Electric DHW	0.00	n/a	0.00
CEE TIER 3	Electric Dryer/Gas DHW	0.58	n/a	0.58
	Gas Dryer/Electric DHW	0.32	n/a	0.32
	Gas Dryer/Gas DHW	0.90	n/a	0.90

Annual Water Savings Algorithm

ΔWater (CCF) = (Capacity * (IWFbase - IWFeff)) * Ncycles

Where

IWFbase = Integrated Water Factor of baseline clothes

washer

= Values provided below

IWFeff washer

CEE TIER 3

= Integrated Water Factor of efficient clothes

= Actual. If unknown assume average values provided below.

n/a

3.2

IWF⁵²² Efficiency Level Weighted Front Top Average Loading Loading Federal Standard 4.7 8.4 5.92 **ENERGY STAR, CEE Tier 1** 3.7 4.3 3.93 **ENERGY STAR Most** 3.2 3.5 3.21 Efficient, CEE TIER 2

3.2

The prescriptive water savings for each efficiency level are presented below:

		ΔWater (ccf per year)		
	Efficiency Level	Front Loading	Top Loading	Weighted Average
	ENERGY STAR, CEE Tier 1	2.6	1.9	2.3
ENERG	Y STAR Most Efficient, CEE TIER 2	3.2	2.8	3.2

⁵²² Based on relevant specifications as of March 2015. Weighting percentages are based on available product from the CEC database accessed on 08/28/2014.

Page 217 of 507

	ΔWater (ccf per year)		
Efficiency Level	Front	Тор	Weighted
	Loading	Loading	Average
CEE TIER 3	3.2	6.9	3.2

kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities' must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

$$\Delta kWh_{water}^{523} = 2.07 \text{ kWh * } \Delta Water (CCF)$$

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

	ΔkWhwater			
Efficiency Level	Front	Тор	Weighted Average	
ENERGY STAR, CEE Tier 1	5.4	3.9	4.8	
ENERGY STAR Most Efficient, CEE TIER 2	6.6	5.9	6.6	
CEE TIER 3	6.6	14.4	6.6	

Incremental Cost

The incremental cost for this measure is provided in the table below 524:

	Market
Efficiency Level	Opportunity

_

⁵²³ This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, "Energy Savings Plan, Prepared for DC Water." Washington, D.C., 2010. See DC Water Conservation.xlsx for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region.
⁵²⁴ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool. <u>See '</u>2015 Mid Atlantic Early Replacement Clothes Washer Analysis.xls' for details..

Page 218 of 507

	Incremental Cost
ENERGY STAR, CEE Tier 1	\$48
ENERGY STAR Most Efficient, CEE TIER 2	\$269
CEE TIER 3	\$297

Measure Life

The measure life is assumed to be 14 years 525 .

Operation and Maintenance Impacts

n/a

⁵²⁵ Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

 $[\]frac{\text{http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm}{\text{andard.xlsm}}$

Page 219 of 507

Clothes Washer Early Replacement

Unique Measure Code(s): RS_LA_RTR_CWASHES_0415, RS_LA_ RTR_CWASHT2_0415, RS_LA_ RTR_CWASHT3_0415, RS_LA_ RTR_CWASHME_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the early removal of an existing inefficient clothes washer from service, prior to its natural end of life, and replacement with a new unit exceeding either the ENERGY STAR/CEE Tier 1, ENERGY STAR Most Efficient / CEE Tier 2 or CEE Tier 3 minimum qualifying efficiency standards presented below.

Efficiency Level		d Modified ctor (IMEF)		ed Water r (IWF)
	Front	Тор	Front	Тор
	Loading	Loading	Loading	Loading
ENERGY STAR, CEE Tier 1	>= 2.38	>= 2.06	<= 3.7	<= 4.3
ENERGY STAR Most	>= 2.74	>= 2.76	<= 3.2	<= 3.5
Efficient, CEE TIER 2				
CEE TIER 3	>= 2.92	n/a	<= 3.2	n/a

The Integrated modified energy factor (MEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity and the per-cycle standby and off mode energy consumption; the higher the number, the greater the efficiency.

The Integrated Water Factor (IWF) is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

This is a retrofit measure.

Definition of Baseline Condition

REGIONAL EVALUATION.

The baseline condition is the existing inefficient clothes washer for the remaining assumed useful life of the unit, assumed to be 5 years⁵²⁶, and then for the remainder of the measure life (next 9 years) the baseline becomes a new replacement unit meeting the minimum federal efficiency standard presented above.

The existing unit efficiency is assumed to be 1.0 IMEF for front loaders and 0.84 IMEF for top loaders. This is based on the Federal Standard for clothes washers from 2004 - 2015; 1.26 MEF converted to IMEF using an ENERGY STAR conversion tool copied in to the reference calculation spreadsheet "2015 Mid Atlantic Early Replacement Clothes Washer Analysis.xls". The Integrated Water Factor is assumed to be 8.2 IWF for front loaders and 8.4 for top loaders, based on a similar conversion of the 2004 Federal Standard 7.93WF.

The new baseline unit is consistent with the Time of Sale measure.

The baseline assumptions are provided below:

Efficiency Level	Integrated Mod Factor (I	3	Integrated Water Factor (IWF)		
	Front Loading	Top Loading	Front Loading	Top Loading	
Existing unit	1.0	0.84	8.2	8.4	
Federal Standard	1.84	1.29	4.7	8.4	

Definition of Efficient Condition

The efficient condition is a clothes washer meeting either the exceeding ENERGY STAR/ CEE Tier 1, ENERGY STAR Most Efficient / CEE Tier 2 or CEE Tier 3 standards as of 1/1/2015 as presented in the measure description.

Annual Energy Savings Algorithm

(see '2015 Mid Atlantic Early Replacement Clothes Washer Analysis.xls' for detailed calculation)

Where

__

⁵²⁶ Based on 1/3 of the measure life.

Page 221 of 507

Capacity = Clothes Washer capacity (cubic feet)

= Actual. If capacity is unknown assume average

3.45 cubic feet 527

IMEFbase = Integrated Modified Energy Factor of baseline unit

= Values provided in table below

IMEFeff = Integrated Modified Energy Factor of efficient unit

= Actual. If unknown assume average values

provided below.

provided below.										
Efficiency Level	Integrated	d Modified Ene	Weighting							
		(IMEF)	Percen ⁻	tages ⁵²⁸						
	Front Top Weighted			Front	Тор					
	Loading	Loading	Average	Loading	Loading					
Existing Unit 529	1.0	0.84	n/a ⁵³⁰	n/a	n/a					
Federal Standard	>= 1.84	>= 1.29	>= 1.66	67%	33%					
ENERGY STAR, CEE Tier 1	>= 2.38	>= 2.06	>= 2.26	62%	38%					
ENERGY STAR Most	>= 2.74	>= 2.76	>= 2.74	98%	2%					
Efficient, CEE TIER 2										
CEE TIER 3	>= 2.92	n/a	>= 2.92	100%	0%					

Ncycles = Number of Cycles per year

 $= 254^{531}$

%CW = Percentage of total energy consumption for

Clothes Washer operation

**DHW* = Percentage of total energy consumption used for

water heating

%Dryer = Percentage of total energy consumption for dryer

operation

(dependent on efficiency level - see table below)

Percentage of Total Energy Consumption 532

⁵²⁷ Based on the average clothes washer volume of all units that pass the new Federal Standard on the California Energy Commission (CEC) database of Clothes Washer products accessed on 08/28/2014.

⁵²⁸ Weighting percentages are based on available product from the CEC database.

⁵²⁹ Existing units efficiencies are based upon an MEF of 1.26, the 2004 Federal Standard, converted to IMEF using an ENERGY STAR conversion tool.

For early replacement measures we will always know the configuration of the replaced machine.

⁵³¹ Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36.

Page 222 of 507

	%CW	%DHW	%Dryer
Federal Standard	8%	31%	61%
ENERGY STAR, CEE Tier 1	8%	23%	69%
ENERGY STAR Most Efficient,			
CEE TIER 2	14%	10%	76%
CEE TIER 3	14%	10%	77%

%Electric_DHW

= Percentage of DHW savings assumed to be electric

DHW fuel	%Electric_DHW
Electric	100%
Fossil Fuel	0%

electric

%Electric_Dryer = Percentage of dryer savings assumed to be

Dryer fuel	%Electric_Dryer
Electric	100%
Fossil Fuel	0%

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

Efficiency Level	Dryer/DHW Fuel Combo	Remaining life of existing unit (first 5 years) ΔkWH		Remaining measure life (next 9 years) ΔkWH	Mid Life Adjustment		Equivalent Weighted Average Annual Savings	
		Front	Тор	Weighted Average	Front	Тор	Front	Тор
	Electric Dryer/Electric DHW	488.7	655.6	140.1	29%	21%	292.6	365.6
ENERGY	Electric Dryer/Gas DHW	316.3	397.0	66.3	21%	17%	175.6	210.9
STAR, CEE TIER 1	Gas Dryer/Electric DHW	208.4	305.1	82.6	40%	27%	137.6	180.0
TIER I	Gas Dryer/Gas DHW	36.0	46.5	8.8	25%	19%	20.7	25.3

⁵³² The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and consumption data from Life-Cycle Cost and Payback Period Excelbased analytical tool, available online at:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st andard.xlsm.

Page 223 of 507

ENERGY STAR Most	Electric Dryer/Electric DHW	556.5	723.4	208.5	37%	29%	360.7	433.7
	Electric Dryer/Gas DHW	325.5	406.2	76.0	23%	19%	185.1	220.4
Efficient,	Gas Dryer/Electric DHW	254.6	351.4	129.1	51%	37%	184.0	226.3
CEE TIER 2	Gas Dryer/Gas DHW	23.6	34.2	-3.5	-15%	-10%	8.4	13.0
CEE TIED 2	Electric Dryer/Electric DHW	576.1	743.0	228.1	40%	31%	380.3	453.3
	Electric Dryer/Gas DHW	341.9	422.6	92.4	27%	22%	201.5	236.8
I CEE TIED 2				/=	-,,,,		_00	200.0
CEE TIER 3	Gas Dryer/Electric DHW	259.9	356.7	134.4	52%	38%	189.3	231.6

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

= Assumed Run hours of Clothes Washer Hours

= Summer Peak Coincidence Factor for measure CF

 $= 0.029^{534}$

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

Efficiency Level	Dryer/DHW Fuel Combo	of exist (first 5	ning life ing unit years) w	Remaining measure life (next 9 years) ΔkW	Mid Adjus	Life tment	Equiv Weig Ave Annual	hted
		Front	Тор	Weighted Average	Front	Тор	Front	Тор
	Electric Dryer/Electric DHW	0.053	0.072	0.015	29%	21%	0.033	0.042
ENERGY	Electric Dryer/Fuel DHW	0.035	0.043	0.007	21%	17%	0.020	0.024
STAR, CEE Tier 1	Fuel Dryer/Electric DHW	0.023	0.033	0.009	40%	27%	0.016	0.021
11011	Fuel Dryer/Fuel DHW	0.004	0.005	0.001	25%	19%	0.002	0.003
ENERGY STAR	Electric Dryer/Electric DHW	0.061	0.079	0.023	37%	29%	0.041	0.050

 $^{^{\}rm 533}$ Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36. 534 lbid.

Page 224 of 507

Most Efficient, CEE TIER 2	Electric Dryer/Fuel DHW	0.036	0.044	0.008	23%	19%	0.021	0.025
	Fuel Dryer/Electric DHW	0.028	0.038	0.014	51%	37%	0.021	0.026
	Fuel Dryer/Fuel DHW	0.003	0.004	0.000	-15%	-10%	0.001	0.001
	Electric Dryer/Electric DHW	0.063	0.081	0.025	40%	31%	0.043	0.052
CEE TIED 2	Electric Dryer/Fuel DHW	0.037	0.046	0.010	27%	22%	0.023	0.027
CEE TIER 3	Fuel Dryer/Electric DHW	0.028	0.039	0.015	52%	38%	0.022	0.026
	Fuel Dryer/Fuel DHW	0.003	0.004	0.000	-5%	-4%	0.001	0.002

Annual Fossil Fuel Savings Algorithm

Break out savings calculated in Step 1 of electric energy savings (MEF savings) and extract Natural Gas DHW and Natural Gas dryer savings from total savings:

ΔMMBtu = [(Capacity * 1/IMEFbase * Ncycles) * ((%DHWbase * %Natural Gas_DHW * R_eff) + (%Dryerbase * %Gas_Dryer)] - [(Capacity * 1/IMEFeff * Ncycles) * ((%DHWeff * %Natural Gas_DHW * R_eff) + (%Dryereff * %Gas_Dryer)] * MMBtu_convert

Where:

R_eff = Recovery efficiency factor

 $= 1.26^{535}$

MMBtu_convert = Convertion factor from kWh to MMBtu

= 0.003413

%Natural Gas_DHW = Percentage of DHW savings assumed to be Natural Gas

DHW fuel	%Natural Gas_DHW
Electric	0%
Natural Gas	100%

"Gas_Dryer" = Percentage of dryer savings assumed to be Natural Gas

Dryer fuel	%Gas_Dryer
Electric	0%

To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency

(http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

Page 225 of 507

Other factors as defined above

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

Efficiency Level	Configuration	Remaining life of existing unit (first 5 years) <u>AMMBtu</u>		Remaining measure life (next 9 years) ΔΜΜΒtu	Mid Life Adjustment		Equivalent Weighted Average Annual Savings	
		Front	Тор	Weighted Average	Front	Тор	Front	Тор
	Electric Dryer/Electric DHW	0.00	0.00	0.00	n/a	n/a	0.00	0.00
ENERGY	Electric Dryer/Gas DHW	0.74	1.11	0.32	43%	29%	0.50	0.66
STAR, CEE Tier 1	Gas Dryer/Electric DHW	0.96	1.20	0.20	20%	16%	0.53	0.63
	Gas Dryer/Gas DHW	1.70	2.31	0.51	30%	22%	1.03	1.30
ENERGY STAR	Electric Dryer/Electric DHW	0.00	0.00	0.00	n/a	n/a	0.00	0.00
Most	Electric Dryer/Gas DHW	0.99	1.36	0.57	57%	42%	0.76	0.92
Efficient, CEE TIER 2	Gas Dryer/Electric DHW	1.03	1.27	0.27	26%	21%	0.60	0.71
HER 2	Gas Dryer/Gas DHW	2.02	2.63	0.84	42%	32%	1.36	1.62
	Electric Dryer/Electric DHW	0.00	n/a	0.00	n/a	n/a	0.00	0.00
CEE TIER 3	Electric Dryer/Gas DHW	1.01	1.38	0.58	58%	42%	0.77	0.93
OLL TILK 3	Gas Dryer/Electric DHW	1.08	1.32	0.32	30%	24%	0.65	0.76
	Gas Dryer/Gas DHW	2.09	2.70	0.90	43%	34%	1.42	1.69

Annual Water Savings Algorithm

ΔWater (CCF) = (Capacity * (IWFbase - IWFeff)) * Ncycles

Where

WFbase = Integrated Water Factor of baseline clothes washer

= Values provided below

WFeff = Integrated Water Factor of efficient clothes washer

= Actual. If unknown assume average values provided

below.

Page 226 of 507

Efficiency Level	IWF ⁵³⁶				
	Front Loading	Top Loading	Weighted Average		
Existing ⁵³⁷	8.2	8.4	n/a ⁵³⁸		
Federal Standard	4.7	8.4	5.92		
ENERGY STAR, CEE Tier 1	3.7	4.3	3.9		
ENERGY STAR Most Efficient, CEE TIER 2	3.2	3.5	3.21		
CEE TIER 3	3.2	n/a	3.2		

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below⁵³⁹:

Efficiency Level	Remaining life of existing unit (first 5 years) ΔWater (ccf per year)		Remaining measure life (next 9 years) ∆Wate r (ccf per year)	Mid Life Adjustment		Equivalent Weighted Average Annual Savings	
	Front	Тор	Weighted Average	Front	Тор	Front	Тор
Existing	n/a	n/a	n/a	n/a	n/a	0.00	0.00
Federal Standard	n/a	n/a	n/a	n/a	n/a	0.00	0.00
ENERGY STAR, CEE Tier 1	5.0	5.2	2.3	47%	44%	3.5	3.6
ENERGY STAR Most Efficient, CEE TIER 2	5.8	6.1	3.2	54%	52%	4.3	4.4
CEE TIER 3	5.9	6.1	3.2	54%	52%	4.4	4.5

 $^{^{536}}$ Based on relevant specifications as of March 2015. Weighting percentages are based on available product from the CEC database.

⁵³⁷ Existing units efficiencies are based upon an WF of 7.93 which was the previous new baseline assumption - converted to IWF using an ENERGY STAR conversion tool copied in to the "2015 Mid Atlantic Early Replacement Clothes Washer Analysis.xls" worksheet.

⁵³⁸ For early replacement measures we will always know the configuration of the replaced machine.

STAR and CEE Tiers 2 and 3 the average WF of units in the following evaluation are used; Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36. For baseline and ENERGY STAR Most Efficient the average WF of the post 1/1/2011 units available in each classification is used (based on data pulled from the California Energy Commission Appliance Efficiency Database http://www.appliances.energy.ca.gov/)

Page 227 of 507

kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities' must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

$$\Delta kWh_{water}^{540} = 2.07 \text{ kWh} * \Delta Water (CCF)$$

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

Efficiency Level	Remaining life of existing unit (first 5 years) ΔWater (ccf per year)		Remaining measure life (next 9 years) \(\Delta Water	Mid Life Adjustment		Equivalent Weighted Average Annual Savings	
	Front	Тор	Weighted Average	Front	Тор	Front	Тор
Existing	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Federal Standard	n/a	n/a	n/a	n/a	n/a	n/a	n/a
ENERGY STAR, CEE Tier 1	10.4	10.8	4.8	47%	44%	7.2	7.5
ENERGY STAR Most Efficient, CEE TIER 2	12.1	12.6	6.6	54%	52%	9.0	9.2
CEE TIER 3	12.1	12.6	6.6	54%	52%	9.0	9.2

Incremental Cost

The full measure cost assumption is provided below⁵⁴¹:

	Early
Efficiency Level	Replacement

⁵⁴⁰ This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, "Energy Savings Plan, Prepared for DC Water." Washington, D.C., 2010. See DC Water Conservation.xlsx for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region. ⁵⁴¹ Based on weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and cost data from Life-Cycle Cost and Payback Period Excel-based analytical tool. <u>See '</u>2015 Mid Atlantic Early Replacement Clothes Washer Analysis.xls' for details.

Page 228 of 507

	Full Install Cost
ENERGY STAR, CEE Tier 1	\$879
ENERGY STAR Most Efficient,	\$1100
CEE TIER 2	
CEE TIER 3	\$1128

For early replacement measures, the deferred baseline replacement cost that would have been incurred after 3 years had the existing unit not been replaced is assumed to be \$831.

Measure Life

The measure life is assumed to be 14 years 542 and the existing unit is assumed to have a remaining life of 5 years 543.

Operation and Maintenance Impacts

n/a

⁵⁴² Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_st andard.xlsm
543 Based on 1/3 of the measure life.

Page 229 of 507

Dehumidifier

Unique Measure Code(s): RS_AP_TOS_DEHUMID_0113

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the purchase (time of sale) and installation of a dehumidifier meeting the minimum qualifying efficiency standard established by the current ENERGY STAR (Version 3.0)⁵⁴⁴ in place of a unit that meets the minimum federal standard efficiency.

Definition of Baseline Condition

The baseline for this measure is defined as a new dehumidifier that meets the Federal Standard efficiency standards as defined below:

Capacity (pints/day)	Federal Standard Criteria (L/kWh) ⁵⁴⁵
Up to 35	≥1.35
> 35 to ≤45	≥1.50
> 45 to ≤ 54	≥1.60
> 54 to ≤ 75	≥1.70
> 75 to ≤ 185	≥2.50

Definition of Efficient Condition

To qualify for this measure, the new dehumidifier must meet the ENERGY STAR standards effective 10/1/2012⁵⁴⁶ as defined below:

Capacity (pints/day)	ENERGY STAR Criteria (L/kWh)
<75	≥1.85
75 to ≤185	≥2.80

⁵⁴⁴ Energy Star Version 3.0 became effective 10/1/12

The Federal Standard for Dehumidifiers changed as of October 2012;

https://www.federalregister.gov/articles/2010/12/02/2010-29756/energy-conservation-program-for-consumer-products-test-procedures-for-residential-dishwashers#h-11
546 http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/dehumid/

battp://www.energystar.gov/ia/partners/prod_development/revisions/downloads/dehumid/ ES_Dehumidifiers_Final_V3.0_Eligibility_Criteria.pdf?d70c-99b0

Page 230 of 507

Qualifying units shall be equipped with an adjustable humidistat control or shall require a remote humidistat control to operate.

Annual Energy Savings Algorithm

ΔkWh = (((Capacity * 0.473) / 24) * Hours) * (1 / (L/kWh_Base) - 1 / (L/kWh_Eff))

Where:

= Capacity of the unit (pints/day) Capacity 0.473 = Constant to convert Pints to Liters

24 = Constant to convert Liters/day to Liters/hour

Hours = Run hours per year

 $= 16.32^{547}$

L/kWh = Liters of water per kWh consumed, as provided in

tables above

Annual kWh results for each capacity class are presented below using the average of the capacity range. If the capacity of installed units is collected, the savings should be calculated using the algorithm. If the capacity is unknown, a default average value is provided:

				Annual kWh			
Capacity	Capacity Used	Federal Standard Criteria	ENERGY STAR Criteria	Federal Standard	ENERGY STAR	Savings	
(pints/day) Range		(≥ L/kWh)	(≥ L/kWh)				
≤25	20	1.35	1.85	477	348	129	
> 25 to ≤35	30	1.35	1.85	715	522	193	
> 35 to ≤45	40	1.5	1.85	858	695	162	
> 45 to ≤ 54	50	1.6	1.85	1005	869	136	

⁵⁴⁷ Based on 68 days of 24 hour operation; ENERGY STAR Dehumidifier Calculator http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator .xlsx?f3f7-6a8b&f3f7-6a8b

Page 231 of 507

> 54 to ≤ 75	65	1.7	1.85	1230	1130	100
> 75 to ≤ 185	130	2.5	2.8	1673	1493	179
Average	46	1.51	1.85	983	800	183

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

= Annual operating hours = 1632 hours⁵⁴⁸ Hours

CF = Summer Peak Coincidence Factor for measure

 $= 0.37^{549}$

Capacity (pints/day) Range	ΔkW
≤25	0.029
> 25 to ≤35	0.044
> 35 to ≤ 45	0.037
> 45 to ≤ 54	0.031
> 54 to ≤ 75	0.023
> 75 to ≤ 185	0.041
Average	0.042

Annual Fossil Fuel Savings Algorithm

n/a

⁵⁴⁸ Based on 68 days of 24 hour operation; ENERGY STAR Dehumidifier Calculator http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator .xlsx?f3f7-6a8b&f3f7-6a8b

Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). 1632 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1632/4392 = 37.2%

Page 232 of 507

Annual Water Savings Algorithm

n/a

Incremental Cost

The assumed incremental capital cost for this measure is \$45⁵⁵⁰.

Measure Life

The measure life is assumed to be 12 years. 551

Operation and Maintenance Impacts

n/a

⁵⁵⁰ Based on available data from the Department of Energy's Life Cycle Cost analysis spreadsheet:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_dehumidifi er.xls
5551 ENERGY STAR Dehumidifier Calculator

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator .xlsx?f3f7-6a8b&f3f7-6a8b

Page 233 of 507

ENERGY STAR Air Purifier/Cleaner

Unique Measure Code(s): RS_AP_TOS_AIRPUR_0414

Effective Date: June 2014

Fnd Date: TBD

Measure Description

An air purifier (cleaner) is a portable electric appliance that removes dust and fine particles from indoor air. This measure characterizes the purchase and installation of a unit meeting the efficiency specifications of ENERGY STAR in place of a baseline model.

Definition of Baseline Condition

The baseline equipment is assumed to be a conventional non-ENERGY STAR unit with consumption estimates based upon EPA research on available models, 2011^{552} .

Definition of Efficient Condition

The efficient equipment is defined as an air purifier meeting the efficiency specifications of ENERGY STAR as provided below.

- Must produce a minimum 50 Clean Air Delivery Rate (CADR) for Dust⁵⁵³ to be considered under this specification.
- Minimum Performance Requirement: = 2.0 CADR/Watt (Dust)
- Standby Power Requirement: = 2.0 Watts Qualifying models that perform secondary consumer functions (e.g. clock, remote control) must meet the standby power requirement.
- UL Safety Requirement: Models that emit ozone as a byproduct of air cleaning must meet UL Standard 867 (ozone production must not exceed 50ppb)

http://www.energystar.gov/buildings/sites/default/uploads/files/appliance_calculator.xlsx?72 24-046c=&7224- 046ceiling fan calculator xlsx=&a0f2-2e6f&a0f2-2e6f

5553 Measured according to the latest ANSI/AHAM AC-1 (AC-1) Standard

⁵⁵² ENERGY STAR Appliance Savings Calculator;

Annual Energy Savings Algorithm

 $\Delta kWh = kWh_{Base} - kWh_{ESTAR}$

Where:

kWh_{BASE} = Baseline kWh consumption per year⁵⁵⁴

= see table below

kWh_{ESTAR} = ENERGY STAR kWh consumption per year⁵⁵⁵

= see table below

Clean Air Delivery Rate (CADR)	CADR used in calculation	Baseline Unit Energy Consumption (kWh/year)	ENERGY STAR Unit Energy Consumption (kWh/year)	ΔkWH
CADR 51-100	75	441	148	293
CADR 101-150	125	733	245	488
CADR 151-200	175	1025	342	683
CADR 201-250	225	1317	440	877
CADR Over 250	275	1609	537	1072

Summer Coincident Peak kW Savings Algorithm Δ kW = Δ kWh/Hours * CF

Where:

 Δ kWh = Gross customer annual kWh savings for the

measure

54 Daniel an accounting found in the ENERG

Efficiency 3.0 CADR/Watt, 16 hours a day, 365 days a year and 0.6W standby power.

Based on assumptions found in the ENERGY STAR Appliance Savings Calculator; Efficiency 1.0 CADR/Watt, 16 hours a day, 365 days a year and 1W standby power. bid.

Page 235 of 507

Hours = Average hours of use per year

= 5840 hours⁵⁵⁶

CF = Summer Peak Coincidence Factor for measure

 $= 0.67^{557}$

Clean Air Delivery Rate	ΔkW
CADR 51-100	0.034
CADR 101-150	0.056
CADR 151-200	0.078
CADR 201-250	0.101
CADR Over 250	0.123

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is \$0.558

Measure Life

The measure life is assumed to be 9 years⁵⁵⁹.

Operation and Maintenance Impacts

There are no operation and maintenance cost adjustments for this measure. 560

_

⁵⁵⁶ Consistent with ENERGY STAR Qualified Room Air Cleaner Calculator; 16 hours a day, 365 days a year.

Assumes appliance use is equally likely at any hour of the day or night.

⁵⁵⁸ ENERGY STAR Appliance Savings Calculator; EPA research on available models, 2012

ENERGY STAR Appliance Savings Calculator; Based on Appliance Magazine, Portrait of the U.S. Appliance Industry 1998.

Some types of room air cleaners require filter replacement or periodic cleaning, but this is likely to be true for both efficient and baseline units and so no difference in cost is assumed.

Page 236 of 507

Clothes Dryer

Unique Measure Code(s): RS_AP_TOS_DISHWAS_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of a residential clothes dryer meeting the ENERGY STAR criteria. ENERGY STAR qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions such as air flow and/or heat input rate, improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers. ENERGY STAR provides criteria for both gas and electric clothes dryers.

Definition of Baseline Condition

The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after January 1, 2015.

Definition of Efficient Condition

Clothes dryer must meet the ENERGY STAR criteria, as required by the program.

Annual Energy Savings Algorithm

ΔkWh = (Load/CEFbase - Load/CEFeff) * Ncycles * %Electric

Where:

Load

= The average total weight (lbs) of clothes per drying cycle. If dryer size is unknown, assume standard.

 $\frac{http://www.energystar.gov/ia/products/downloads/ENERGY_STAR_Scoping_Report_Residentia}{I_Clothes_Dryers.pdf}$

⁵⁶¹ ENERGY STAR Market & Industry Scoping Report. Residential Clothes Dryers. Table 8. November 2011.

Page 237 of 507

Dryer Size	Load (lbs.) ⁵⁶²
Standard	8.45
Compact	3

CEFbase

= Combined energy factor (CEF) (lbs/kWh) of the baseline unit is based on existing federal standards energy factor and adjusted to CEF as performed in the ENERGY STAR analysis⁵⁶³. If product class unknown, assume electric, standard.

Product Class	CEFbase (lbs/kWh)
Vented Electric, Standard ($\geq 4.4 \text{ ft}^3$)	3.11
Vented Electric, Compact (120V) (< 4.4 ft ³)	3.01
Vented Electric, Compact (240V) (<4.4 ft ³)	2.73
Ventless Electric, Compact (240V) (<4.4 ft ³)	2.13
Vented Gas	2.84 ⁵⁶⁴

CEFeff

= CEF (lbs/kWh) of the ENERGY STAR unit based on ENERGY STAR requirements. 565 If product class unknown, assume electric, standard.

Product Class	CEFeff (lbs/kWh)
Vented or Ventless Electric, Standard ($\geq 4.4 \text{ ft}^3$)	3.93
Vented or Ventless Electric, Compact (120V) (< 4.4 ft ³)	3.80
Vented Electric, Compact (240V) (< 4.4 ft ³)	3.45
Ventless Electric, Compact (240V) (< 4.4 ft ³)	2.68
Vented Gas	3.48 ⁵⁶⁶

Ncycles = Number of dryer cycles per year

= 311 cycles per year. 567

= The percent of overall savings coming from %Electric

https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers

⁵⁶² Based on ENERGY STAR test procedures.

⁵⁶³ ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis

⁵⁶⁴ Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.

⁵⁶⁵ ENERGY STAR Clothes Dryers Key Product Criteria.

https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers

566 Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms. ⁵⁶⁷ Ecova, 'Dryer Field Study', Northwest Energy Efficiency Alliance (NEEA) 2014.

Page 238 of 507

electricity

Clothes Dryer Fuel Type	%Electric ⁵⁶⁸
Electric	100%
Gas	16%

Product Class	Algorithm	ΔkWh
Vented or Ventless Electric, Standard ($\geq 4.4 \text{ ft}^3$)	= ((8.45/3.11 - 8.45/3.93) * 311 * 100%)	176.3
Vented or Ventless Electric, Compact (120V) (< 4.4 ft ³)	= ((3/3.01 - 3/3.80) * 311 * 100%)	64.4
Vented Electric, Compact (240V) (< 4.4 ft ³)	= ((3/2.73 - 3/3.45) * 311 * 100%)	71.3
Ventless Electric, Compact (240V) (< 4.4 ft ³)	= ((3/2.13 - 3/2.68) * 311 * 100%)	89.9
Vented Gas	= ((8.45/2.84 - 8.45/3.48) * 311 * 16%)	27.2

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = Energy Savings as calculated above

Hours = Annual run hours of clothes dryer.

=290 hours per year. 569

CF = Summer Peak Coincidence Factor for measure

 $= 2.9\%^{570}$

Product Class	Algorithm	ΔkW
Vented or Ventless Electric, Standard ($\geq 4.4 \text{ ft}^3$)	= 176.3/290 * 0.029	0.018
Vented or Ventless Electric, Compact (120V) (< 4.4 ft ³)	= 64.4/290 * 0.029	0.006
Vented Electric, Compact (240V) (< 4.4 ft ³)	= 71.3/290 * 0.029	0.007
Ventless Electric, Compact (240V) (< 4.4 ft ³)	= 89.9/290 * 0.029	0.009
Vented Gas	= 27.2/290 * 0.029	0.003

-

⁵⁶⁸ %Electric accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 16% was determined using a ratio of the electric to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

Assumes average of 56 minutes per cycle based on Ecova, 'Dryer Field Study', Northwest Energy Efficiency Alliance (NEEA) 2014
 Consistent with coincidence factor of Clothes Washers; Metered data from Navigant

Consistent with coincidence factor of Clothes Washers; Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36.

Page 239 of 507

Annual Fossil Fuel Savings Algorithm

Natural gas savings only apply to ENERGY STAR vented gas clothes dryers.

Where:

MMBtu_convert = Conversion factor from kWh to MMBtu

= 0.003413

%Gas = Percent of overall savings coming from gas

Clothes Dryer Fuel Type	%Gas ^{5/1}
Electric	0%
Gas	84%

Product Class	Algorithm	ΔMMBtu
Vented or Ventless Electric, Standard ($\geq 4.4 \text{ ft}^3$)	n/a	0
Vented or Ventless Electric, Compact (120V) (< 4.4 ft ³)	n/a	0
Vented Electric, Compact (240V) (< 4.4 ft ³)	n/a	0
Ventless Electric, Compact (240V) (< 4.4 ft ³)	n/a	0
Vented Gas	=(8.45/2.84 - 8.45/3.48) * 311 * 0.003413 * 0.84	0.49

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for an ENERGY STAR clothes dryer is assumed to be \$152⁵⁷²

^{571 %}Gas accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 84% was determined using a ratio of the gas to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.
572 Based on the difference in installed cost for an efficient dryer (\$716) and standard dryer (\$564). http://www.aceee.org/files/proceedings/2012/data/papers/0193-000286.pdf

Page 240 of 507

Measure Life

The expected measure life is assumed to be 14 years 573.

Operation and Maintenance Impacts

n/a

⁵⁷³ Based on an average estimated range of 12-16 years. ENERGY STAR Market & Industry Scoping Report. Residential Clothes Dryers. November 2011. http://www.energystar.gov/ia/products/downloads/ENERGY_STAR_Scoping_Report_Residential_Clothes_Dryers.pdf

Page 241 of 507

Dishwasher

Unique Measure Code(s): RS_AP_TOS_DISHWAS_0415

Effective Date: June 2015

End Date: TBD

Measure Description

A dishwasher meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard. This measure is only for standard dishwashers, not compact dishwashers. A compact dishwasher is a unit that holds less than eight place settings with six serving pieces.

The ENERGY STAR Dishwasher specification for Dishwashers is in the process of being revised from version 5.2 to version 6.0. The version 6.0 specification will become effective on January 29, 2016. Savings for both specification version 5.2 and 6.0 are contained in this measure characterization.

Definition of Baseline Condition

The baseline for this measure is defined as a new dishwasher that meets the Federal Standard efficiency standards as defined below ⁵⁷⁴:

Dishwasher	Maximum	Maximum
Type	kWh/year	gallons/cycle
Standard	307	5.0

Definition of Efficient Condition

To qualify for this measure, the new dishwasher must meet the ENERGY STAR standards effective $01/20/2012^{575}$ for version 5.2 and $01/29/2016^{576}$ for version 6.0 as defined below:

ENERGY	Dishwasher	Maximum	Maximum
STAR	Туре	kWh/year	gallons/cycle

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/67
 http://www.energystar.gov/sites/default/files/specs//private/ENERGY%20STAR%20Version%20S.2%20Residential%20Dishwasher%20Program%20Requirements.pdf

http://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Residential%20Dishwasher%20Version%206%200%20Final%20Draft%20Specification_Final.pdf

Page 242 of 507

Version			
5.2	Standard	295	4.25
6.0	Standard	270	3.50

Annual Energy Savings Algorithm

$$\Delta kWh^{577}$$
 = ((kWh_{Base} - kWh_{ESTAR}) * (%kWh_op + (%kWh_heat * %Electric DHW)))

Where:

kWh_{BASE} = Baseline *kWh* consumption per year

= 307 kWh

kWh_{ESTAR} = ENERGY STAR kWh annual consumption

ENERGY STAR Version	Maximum kWh/year
5.2	295
6.0	270

%kWh_op = Percentage of dishwasher energy consumption used for unit operation

 $= 1 - 56\%^{578}$

= 44%

%kWh_heat = Percentage of dishwasher energy consumption used for

water heating

= 56%⁵⁷⁹

%Electric_DHW = Percentage of DHW savings assumed to be electric

⁵⁷⁷ The Federal Standard and ENERGY STAR annual consumption values include electric consumption for both the operation of the machine and for heating the water that is used by the machine.

 $^{^{578}}$ ENERGY STAR Dishwasher Calculator, see 'EnergyStarCalculatorConsumerDishwasher.xls'. 579 Ihid

Page 243 of 507

DHW fuel	%Electric_DHW
Electric	100%
Natural Gas	0%
Unknown	65% ⁵⁸⁰

ENERGY STAR Specification	DHW Fuel	Algorithm	ΔkWh
5.2	Electric	=((307 - 295) * (0.44 + (0.56 * 1.0)))	12.0
5.2	Unknown	= ((307 - 295) * (0.44 + (0.56 * 0.65)))	9.6
6.0	Electric	= ((307 - 270) * (0.44 + (0.56 * 1.0)))	37
6.0	Unknown	= ((307 - 270) * (0.44 + (0.56 * 0.65)))	29.7

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

= Annual operating hours⁵⁸¹ Hours

= 210 hours

⁵⁸⁰ Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey

⁽RECS) 2009 for South Region, data for the Mid-Atlantic region.

581 Assuming one and a half hours per cycle and 140 cycles per year therefore 210 operating hours per year; 140 cycles per year is based on a weighted average of dishwasher usage in Mid-Atlantic region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/

ENERGY STAR Specification	DHW Fuel	Algorithm	ΔkW
5.2	Electric	= 12/210 * 0.026	0.0015
5.2	Unknown	= 9.65/210 * 0.026	0.0012
6.0	Electric	= 37/210 * 0.026	0.0046
6.0	Unknown	= 29.75/210 * 0.02	0.0037

Annual Fossil Fuel Savings Algorithm

$$\Delta$$
MMBtu = (kWh_{Base} - kWh_{ESTAR}) * %kWh_heat * %Natural Gas_DHW * R_eff * 0.003413

Where

Gas

%kWh_heat = % of dishwasher energy used for water heating

= 56%

%Natural Gas_DHW = Percentage of DHW savings assumed to be Natural

DHW fuel	%Natural Gas_DHW
Electric	0%
Natural Gas	100%
Unknown	35% ⁵⁸³

_

⁵⁸² Based on 8760 end use data for Missouri, provided to VEIC by Ameren for use in the Illinois TRM. The average DW load during peak hours is divided by the peak load. In the absence of a Mid Atlantic specific loadshape this is deemed a reasonable proxy since loads would likely be similar.

Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for South Region, data for the states of Delaware, Maryland, West Virginia and the District of Columbia. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographical area then that should be used.

Page 245 of 507

R_eff = *Recovery efficiency factor*

= 1.

26⁵⁸⁴

0.003413 = factor to convert from kWh to MMBtu

ENERGY STAR Specification	DHW Fuel	Algorithm	ΔMMBtu
5.2	Gas	= (307 - 295) * 0.56 * 1.0 * 1.26 * 0.003413	0.03
5.2	Unknown	= (307 - 295) * 0.56 * 0.35 * 1.26 * 0.003413	0.01
6.0	Gas	= (307 - 270) * 0.56 * 1.0 * 1.26 * 0.003413	0.09
6.0	Unknown	= (307 - 270) * 0.56 * 0.35 * 1.26 * 0.003413	0.03

Annual Water Savings Algorithm

 ΔCCF = (Water_{Base} - Water_{FFF}) * GalToCCF

Where

 $Water_{Base}$ = water consumption of conventional unit

= 700 gallons⁵⁸⁵

 $Water_{EFF}$ = annual water consumption of efficient unit:

⁵⁸⁴ To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency

(http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf). Therefore a factor of 0.98/0.78 (1.26) is applied.

⁵⁸⁵ Assuming 5 gallons/cycle (maximum allowed) and 140 cycles per year based on a weighted average of dishwasher usage in the Mid-Atlantic Region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/

ENERGY STAR Specification	WaterEFF (gallons)
5.2	595 ⁵⁸⁶
6.0	490 ⁵⁸⁷

GalToCCF = factor to convert from gallons to CCF = 0.001336

ENERGY STAR Specification	Algorithm	ΔCCF
5.2	= (700 - 595) * 0.001336	0.14
6.0	= (700 - 490) * 0.001336	0.28

Incremental Cost

The assumed incremental capital cost for this measure is \$50⁵⁸⁸.

Measure Life

The measure life is assumed to be 10 years⁵⁸⁹.

Operation and Maintenance Impacts

n/a

Assuming 4.25 gallons/cycle (maximum allowed) and 140 cycles per year based on a weighted average of dishwasher usage in the Mid-Atlantic Region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/

Assuming 3.50 gallons/cycle (maximum allowed) and 140 cycles per year based on a weighted average of dishwasher usage in the Mid-Atlantic Region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/

⁵⁸⁸ Estimate based on review of Energy Star stakeholder documents

⁵⁸⁹ ENERGY STAR Dishwasher Calculator, see 'EnergyStarCalculatorConsumerDishwasher.xls'.

Page 247 of 507

Shell Savings End Use

Air sealing*

Unique Measure Code: RS_SL_RTR_AIRSLG_0711

Effective Date: June 2014

End Date: TBD

Measure Description

This measure characterization provides a method of claiming both heating and cooling (where appropriate) savings from the improvement of a residential building's air-barrier, which together with its insulation defines the thermal boundary of the conditioned space.

The measure assumes that a trained auditor, contractor or utility staff member is on location, and will measure and record the existing and post airleakage rate using a blower door in accordance with industry best practices⁵⁹⁰. Where possible, the efficiency of the heating and cooling system used in the home should be recorded, but default estimates are provided if this is not available.

This is a retrofit measure.

Definition of Baseline Condition

The existing air leakage prior to any air sealing work should be determined using a blower door.

Definition of Efficient Condition

Air sealing materials and diagnostic testing should meet all program eligibility qualification criteria. The post air sealing leakage rate should then be determined using a blower door.

Annual Energy Savings Algorithm

Cooling savings from reduction in Air Conditioning Load:

E (

⁵⁹⁰ See BPI Building Analyst and Envelope Professional standards, http://www.bpi.org/standards_approved.aspx

Page 248 of 507

 Δ kWh = [(((CFM50Exist - CFM50New) / N-cool) *60 * CDH *

DUA * 0.018) / 1,000 / nCool] * LM

Where:

CFM50exist = Blower Door result (CFM $_{50}$) prior to air sealing

= actual

CFMnew = Blower Door result (CFM_{50}) after air sealing

= actual

N-cool = conversion from CFM_{50} to $CFM_{Natural}^{591}$

= dependent on location and number of stories: 592

Location	N_cool (by # of stories)			
Location	1	1.5	2	3
Wilmington, DE	38.4	34.0	31.2	27.6
Baltimore, MD	38.4	34.0	31.2	27.6
Washington, DC	40.3	35.7	32.7	29.0

CDH = Cooling Degree Hours⁵⁹³

= dependent on location:

Location	Cooling Degree Hours (75°F set point)
Wilmington, DE	7,514
Baltimore, MD	9,616
Washington, DC	13,178

⁵⁹¹ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and exposure of the home to wind, based on methodology developed by Lawrence Berkeley Laboratory (LBL). Since there is minimal stack effect due to low delta T, the height of the building is not included in determining n-factor for cooling savings.

http://www.homeenergy.org/archive/hem.dis.anl.gov/eehem/94/940111.html#94011122

⁵⁹² N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, *Exegisis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings*; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc".

Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used), each hour of the year. Hourly temperature data obtained from TMY3 data (http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html)

Page 249 of 507

= Discretionary Use Adjustment⁵⁹⁴ DUA

= 0.75

0.018 = The volumetric heat capacity of air (Btu/ft3°F) nCool

= Efficiency in SEER of Air Conditioning equipment

= actual. If not available use⁵⁹⁵:

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

LM

= Latent Multiplier to account for latent cooling demand⁵⁹⁶

Location	LM
Wilmington, DE	4.09
Baltimore, MD	3.63
Washington, DC	3.63

Illustrative example - do not use as default assumption A single story home in Wilmington, DE with a 12 SEER Air Conditioning unit, has pre and post blower door test results of 3,400 and 2,250.

$$\Delta$$
kWh = [(((3,400 - 2,250) / 38.4) *60 * 7,514 * 0.75 * 0.018) / 1,000 / 12] * 4.09

= 62.1 kWh

Heating savings for homes with electric heat (Heat Pump or resistance):

⁵⁹⁴ To account for the fact that people do not always operate their air conditioning system when the outside temperature is greater than 75°F. Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

⁵⁹⁵ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

⁵⁹⁶ Derived by calculating the sensible and total loads in each hour. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc".

Page 250 of 507

ΔkWh = ((((CFM50Exist - CFM50New) / N-heat) * 60 * 24 * HDD * 0.018) / 1,000,000 / nHeat) * 293.1

Where:

N-heat = conversion from CFM₅₀ to CFM_{Natural}

= Based on location and number of stories⁵⁹⁷:

Location	N_heat (by # of stories)			
Location	1	1.5	2	3
Wilmington, DE	24.5	21.7	19.9	17.6
Baltimore, MD	25.1	22.3	20.4	18.1
Washington, DC	25.7	22.7	20.8	18.5

HDD = Heating Degree Days

= dependent on location⁵⁹⁸

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

= Efficiency in COP of Heating equipment nHeat

= actual. If not available use⁵⁹⁹:

System Age of **HSPF** COP

⁵⁹⁷ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, Exegisis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings; Sherman, 1986; page vvi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc".

⁵⁹⁸ The 10 year average annual heating degree day value is calculated for each location, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

⁵⁹⁹ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate.

Page 251 of 507

Туре	Equipment	Estimate	Estimate ⁶⁰⁰
Heat	Before 2006	6.8	2.00
Pump	After 2006	7.7	2.26
Resistance	n/a	n/a	1.00

293.1 = Converts MMBtu to kWh

Illustrative example - do not use as default assumption A two storyhome in Wilmington, DE with a heat pump with COP of 2.5, has pre and post blower door test results of 3,400 and 2,250.

 Δ kWh = [(((3,400 - 2,250) / 24.5) *60 * 24 * 3,275 * 0.018) / 1,000,000 / 2.5] * 293.1

= 467.1 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / FLHcool * CF$

Where:

FLHcool = Full Load Cooling Hours

= Dependent on location as below:

Location	FLHcool
Wilmington, DE	524 ⁶⁰¹
Baltimore, MD	542 ⁶⁰²
Washington, DC	681

 CF_{SSP}

= Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday)

 $= 0.69^{603}$

 600 To convert HSPF to COP, divide the HSPF rating by 3.413.

⁶⁰³ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) Based on average of 5 utilities in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

Page 252 of 507

 CF_{PIM}

= PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather = 0.66 604

Illustrative example - do not use as default assumption A single storyhome in Wilmington, DE with a 12 SEER Air Conditioning unit, has pre and post blower door test results of 3,400 and 2,250.

> $\Delta kW = 62.1 / 524 * 0.69$ = 0.08 kW

Annual Fossil Fuel Savings Algorithm

For homes with Fossil Fuel Heating:

 Δ MMBTU = (((CFM50Exist - CFM50New) / N-heat) *60 * 24 *

HDD * 0.018) / 1,000,000 / nHeat

Where:

N-heat = conversion from CFM_{50} to $CFM_{Natural}$

= Based on location and number of stories⁶⁰⁵:

Location	N_heat (by # of stories)			
Location	1	1.5	2	3
Wilmington, DE	24.5	21.7	19.9	17.6
Baltimore, MD	25.1	22.3	20.4	18.1
Washington, DC	25.7	22.7	20.8	18.5

⁶⁰⁴ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

⁶⁰⁵ N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, *Exegisis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings*; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult "Infiltration Factor Calculations Methodology.doc".

Page 253 of 507

HDD = Heating Degree Days = dependent on location⁶⁰⁶

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

nHeat

- = Efficiency of Heating equipment (equipment
- efficiency * distribution efficiency) = actual⁶⁰⁷. If not available use 84% for equipment efficiency and 78% for distribution efficiency to give 66%⁶⁰⁸.

Illustrative example - do not use as default assumption A single story home in Wilmington, DE with a 70% heating system efficiency, has pre and post blower door test results of 3,400 and 2,250.

> = (((3,400 - 2,250) / 24.5) *60 * 24 * 3,275 * 0.018) /ΔMMBtu 1,000,000 / 0.7

> > = 5.7 MMBtu

Annual Water Savings Algorithm n/a

⁶⁰⁶ The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://www.engr.udayton.edu/weather/). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

⁶⁰⁷ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

⁶⁰⁸ The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%. The distribution efficiency default is based on assumption that 50% of duct work is inside the envelope, with some leaks and no insulation. VEIC did not have any more specific data to provide any additional defaults.

Page 254 of 507

Incremental Cost

The incremental cost for this measure should be the actual installation and labor cost to perform the air sealing work.

Measure Life

The measure life is assumed to be 15 yrs⁶⁰⁹.

Operation and Maintenance Impacts

n/a

 $^{^{609}}$ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 255 of 507

Attic/ceiling/roof insulation*

Unique Measure Code: RS_SL_RTR_ATTICI_0711

Effective Date: June 2014

End Date: TBD

Measure Description

This measure characterization is for the installation of new insulation in the attic/roof/ceiling of a residential building. The measure assumes that an auditor, contractor or utility staff member is on location, and will measure and record the existing and new insulation depth and type (to calculate R-values), the surface area of insulation added, and where possible the efficiency of the heating and cooling system used in the home.

This is a retrofit measure.

Definition of Baseline Condition

The existing insulation R-value should include the total attic floor / roof assembly. An R-value of 5 should be assumed for the roof assembly plus the R-value of any existing insulation 610. Therefore if there is no insulation currently present, the R-value of 5 should be used.

Definition of Efficient Condition

The new insulation should meet any qualification criteria required for participation in the program. The new insulation R-value should include the total attic floor /roof assembly and include the effective R-value of any existing insulation that is left in situ.

Annual Energy Savings Algorithm

Savings from reduction in Air Conditioning Load:

 Δ kWh = ((1/Rexist - 1/Rnew) * CDH * DUA * Area) / 1,000 / η Cool * Adjcool

-

⁶¹⁰ The R-5 assumption for roof assembly is based on J.Neymark & Associates and National Renewable Energy Laboratory, June 2009; "BESTEST-EX Interim Test Procedure" p27. The attic floor and roof should be modeled as a system including solar gains and attic ventilation, and R-5 is the standard assumption for the thermal resistance of the whole attic/roof system.

Where:

Rexist = R-value of roof assembly plus any existing insulation

= actual (minimum of R-5)

Rnew = R-value of roof assembly plus new insulation

= actual

CDH = Cooling Degree Hours⁶¹¹

= dependent on location:

Location	Cooling Degree Hours (75°F set point)
Wilmington, DE	7,514
Baltimore, MD	9,616
Washington, DC	13,178

DUA = Discretionary Use Adjustment⁶¹²

= 0.75

Area = square footage of area covered by new insulation

= actual

ηCool = Efficiency in SEER of Air Conditioning equipment

= actual. If not available use 613 :

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

 $Adj_{cool} = 0.8^{614}$

Illustrative example - do not use as default assumption Insulating 1200 square feet of attic from R-5 to R-30 in a home with a 12 SEER central Air Conditioning unit in Baltimore, MD.

Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used), each hour of the year. Hourly temperature data obtained from TMY3 data (http://rredc.nrel.gov/solar/)

⁶¹² To account for the fact that people do not always operate their air conditioning system when the outside temperature is greater than 75°F. Based on Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

⁶¹³ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

⁶¹⁴ From Illinois TRM, 9 as demonstrated in two years of metering evaluation by Opinion Dynamics

Page 257 of 507

$$\Delta kWh = ((1/5 - 1/30) * 9,616 * 0.75 * 1,200) / 1,000 / 12 * 0.8$$

= 96 kWh

Savings for homes with electric heat (Heat Pump or resistance):

ΔkWh = (((1/Rexist - 1/Rnew) * HDD * 24 * Area) / 1,000,000 / ηHeat) * 293.1 * Adjheat

HDD = Heating Degree Days

= dependent on location⁶¹⁵

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

1,000,000 nHeat = Converts Btu to MMBtu

= Efficiency in COP of Heating equipment

= actual. If not available use⁶¹⁶:

System	Age of	HSPF	COP
Туре	Equipment	Estimate	Estimate
Heat	Before 2006	6.8	2.00
Pump	After 2006	7.7	2.26
Resistance	n/a	n/a	1.00

293.1 = Converts MMBtu to kWh

Adjheat = 0.6^{617}

Illustrative example - do not use as default assumption

_

Dynamics

⁶¹⁵ The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

 ⁶¹⁶ These default system efficiencies are based on the applicable minimum Federal Standards.
 In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.
 617 From Illinois TRM, 9 as demonstrated in two years of metering evaluation by Opinion

Page 258 of 507

Insulating 1200 square feet of attic from R-5 to R-30 in a home with a 2.5COP Heat Pump in Baltimore, MD.

$$\Delta$$
kWh = (((1/5 - 1/30) * 3457 * 24 * 1,200) / 1,000,000 / 2.5) * 293.1 * 0.6 = 1,167 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / FLHcool * CF$

Where:

FLHcool = Full Load Cooling Hours

= Dependent on location as below:

Location	FLHcool
Wilmington, DE	524 ⁶¹⁸
Baltimore, MD	542 ⁶¹⁹
Washington, DC	681

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{620}$

CF_{PIM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{621}$

Illustrative example - do not use as default assumption Insulating 1200 square feet of attic from R-5 to R-30 in a home with a 12 SEER central Air Conditioning unit in Baltimore, MD.

⁶¹⁸ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) 619 Based on average of 5 utilities in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

⁶²⁰ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

⁶²¹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

Page 259 of 507

 $\Delta kW = 96 / 542 * 0.69$

= 0.12 kW

Annual Fossil Fuel Savings Algorithm

ΔMMBTU = ((1/Rexist - 1/Rnew) * HDD * 24 * Area) / 1,000,000 / nHeat * Adjheat

Where:

HDD = Heating Degree Days

= dependent on location⁶²²

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

ηHeat = Efficiency of Heating equipment (equipment

efficiency * distribution efficiency) = actual⁶²³. If not available use 84% for equipment efficiency and 78% for distribution efficiency to give

66%⁶²⁴

 $= 0.60^{625}$ Adjheat

⁶²² The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

⁶²³ Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

⁶²⁴ The equipment efficiency default is based on data provided by GAMA during the Federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%. The distribution efficiency default is based on assumption that 50% of duct work is inside the envelope, with some leaks and no insulation. VEIC did not have any more specific data to provide any additional defaults.

Page 260 of 507

Illustrative example - do not use as default assumption Insulating 1200 square feet of attic from R-5 to R-30 in a home with a 75% efficiency heating system in Baltimore, MD.

= 13 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual installation and labor cost to perform the insulation work.

Measure Life

The measure life is assumed to be 25 years⁶²⁶.

Operation and Maintenance Impacts

n/a

⁶²⁵ From Illinois TRM, 9 as demonstrated in two years of metering evaluation by Opinion **Dynamics**

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

Page 261 of 507

Efficient Windows - Energy Star Time of sale

Unique Measure Code(s): RS_SL_TOS_WINDOW_0510

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes the purchase of Energy Star Windows (u-0.32; SHGC-0.40 minimum requirement for North Central region) at natural time of replacement or new construction outside of the Energy Star Homes program. This does not relate to a window retrofit program. Measure characterization assumes electric heat- either resistance or heat pump.

Definition of Baseline Condition

The baseline condition is a standard double pane window with vinyl sash, (u- 0.49 SHGC-0.58).

Definition of Efficient Condition

The efficient condition is an ENERGY STAR window (u-0.32; SHGC-0.40 minimum requirement for North Central region).

Annual Energy Savings Algorithm 627

Heating kWh Savings (Electric Resistance) = 356 kWh per 100 square feet

window area

Heating kWh Savings (Heat Pump COP 2.0) = 194 kWh per 100 square feet

window area

Cooling kWh Savings (SEER 10) = 205 kWh per 100 square feet

window area

Summer Coincident Peak kW Savings Algorithm

 Δ kWcooling = Δ kWREM * CF

⁶²⁷ Based on REMRate modeling of New Jersey baseline existing home moved to Baltimore climate with electric furnace or air source heat pump HSPF 2.0, SEER 10 AC. Ducts installed in un-conditioned basement. Duct leakage set at RESNET/HERS qualitative default.

Page 262 of 507

Where:

 $\Delta kWREM$ = Delta kW calculated in REMRate model

= 0.12 kW per 100 square feet window area

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{628}$

CF_{PJM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{629}$

 ΔkW_{SSP} cooling = 0.12 * 0.69

= 0.083 kW per 100 square feet of windows

 ΔkW_{PJM} cooling = 0.12 * 0.66

= 0.079 kW per 100 square feet of windows

Annual Fossil Fuel Savings Algorithm

n/a for homes with electric heat.

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$150 per 100 square feet of windows. 630

Measure Life

The measure life is assumed to be 25 years. 631

Operation and Maintenance Impacts

n/a

=

⁶²⁸ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

⁶²⁹ Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

⁶³⁰ Alliance to Save Energy Efficiency Windows Collaborative Report, December 2007.

⁶³¹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 263 of 507

Crawl Space Insulation and Encapsulation**

Unique Measure Code(s): TBD

Effective Date: TBD

End Date: TBD

Measure Description

This measure relates to the insulation and/or encapsulation to a crawl space under a single family home. This measure also allows for the possibility that the crawl space will be encapsulated. This encapsulation in effect changes the crawlspace from an unconditioned space to a conditioned space, thus eliminating losses from any duct work that may run through the space.

Definition of Baseline Condition

The baseline depends on site specific conditions. However, it is most likely to be an unencapsulated, uninsulated crawlspace.

Definition of Efficient Condition

The efficient condition is a crawlspace that is insulated and/or encapsulated.

Annual Energy Savings Algorithm 632

 ΔkWh = $kWh_{cooling} + kWh_{heating} + kWh_{ducts}$

Where:

 $kWh_{cooling}$ = reduction in cooling requirement. Only applicable to

homes with central cooling

= ((1 / R_OId_AG - 1/(R_OId_AG + R_Added_AG)) * L_Basement_Wall * H_Basement_Wall_AG * (1-Framing Factor) * CDH * DUA) / (1000 * nCool) *

Adj_{Basementcool}

Where:

 $R_OId_AG = R_Value of foundation wall above grade$

= Actual, if unknown assume 1.0⁶³³

⁶³² When possible, energy savings should be determined through a custom analysis such as building simulation. If that option is not feasible, savings may be estimated using the algorithms in this section

^{633 1448} ORNL Builders Foundation Handbook, crawl space data from Table 5-5: Initial Effective R-values for Uninsulated Foundation System and Adjacent Soil, 1991, http://www.ornl.gov/sci/roofs+walls/foundation/ORNL_CON-295.pdf

Page 264 of 507

R Added AG = R-Value of additional insulation

L_Basement_Wall = Length of basement wall around the insulated

perimeter

H_Basement_Wall_AG = Height of basement wall above grade Framing_Factor = Adjustment to account for area of framing if

cavity insulation

= 0% if spray foam or rigid foam

=25% if studs and cavity insulation⁶³⁴

= converts days to hours 24 CDH = Cooling Degree Hours 635

= dependent on location:

Location	Cooling Degree Hours (75°F set point)	
Wilmington, DE	7,514	
Baltimore, MD	9,616	
Washington, DC	13,178	

fact that people do not always operate AC when

conditions call for it.

 $=0.75^{636}$

= Efficiency in SEER of Cooling Equipment. = Actual. If unknown use⁶³⁷: ηCool

Age of Equipment	SEER Estimate
Before 2006	10
After 2006	13

⁶³⁴ ASHRAE, 2001, "Characterization of Framing Factors for New Low-Rise Residential Building Envelopes (904-RP), "Table 7.1

⁶³⁵ Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used), each hour of the year. Hourly temperature data obtained from TMY3 data (http://rredc.nrel.gov/solar/)

⁶³⁶ This factor's source is: Energy Center of Wisconsin, May 2008 metering study; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", p31.

⁶³⁷ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

Page 265 of 507

Adj_{Basementcool} = Adjustment to take into account prescriptive

algorithms overclaiming savings

 $=80\%^{638}$

kWh_{heating} = Reduction in annual heating requirement, if

electric heat (resistance or heat pump)

= (kWh_{AG} + kWh_{BG}) * Adj_{Basement}

Where:

kWh_{AG} = Savings from insulation on walls or crawlspaces

above grade

=((1/R_Old_AG - 1/(R_Old_AG + R_Added)) * L_Basement_Wall * H_Basement_Wall_AG * (1-Framing_Factor) * HDD * 24) / (3412 * ηHeat)

 kWh_{BG} = Savings from insulation on walls or crawlspaces

below grade

= ((1/R_OId_BG - 1/(R_OId_BG + R_Added)) * L_Basement_Wall * H_Basement_Wall_BG * (1-Framing_Factor) * HDD * 24) / (3412 * ηHeat)

Where:

HDD = Heating Degree Days

= Dependent on location:⁶³⁹

Location	Heating Degree Days (60°F set point)
Wilmington, DE	3,275
Baltimore, MD	3,457
Washington, DC	2,957

3412 = Converts kWh to Btu

ηHeat = Efficiency of Heating system, in COP. If not

available, use⁶⁴⁰:

⁶³⁸ As determined by Illinois Technical Resource Manual

The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

⁶⁴⁰ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate

Page 266 of 507

MID-ATLANTIC TECHNICAL REFERENCE MANUAL VERSION 6.0/May 2016

System	Age of	HSPF	СОР
Туре	Equipment	Estimate	Estimate
Heat	Before 2006	6.8	2.00
Pump	After 2006	7.7	2.26
Resistance	n/a	n/a	1.00

= R-Value of Wall below Grade R_OId_BG

= Dependent on depth of foundation⁶⁴¹

Depth below grade (ft)	0	1	2	3	4	5	6	7	8
Earth R-value	2.44	4.5	6.3	8.4	10.44	12.66	14.49	17	20
Average Earth R- value	2.44	3.16	3.79	4.40	4.97	5.53	6.07	6.60	7.13
Total Below Grade R- value (earth + R-1.0 foundation) default	3.44	4.47	5.41	6.41	7.42	8.46	9.46	10.53	11.69

H_Basement_Wall_BG = Height of basement wall below grade = Adjustment to account for prescriptive Adj_{Basementheat}

algorithms overclaiming savings

 $=60\%^{642}$

kWh_{ducts} = electric savings from loss of duct leaks, if more

than 50% of ducts are in a conditioned area

= kWh_{duct_cool} + kWh_{duct_heat}

And:

= Hours_Cool * Btu/Hour * (1 / SEER) * Duct_Factor / kWh_{duct_cool}

= Hours_Heat * Btu/Hour * (1/HSPF) * Duct_Factor / kWh_{duct_heat}

1,000

Where:

Hours_Cool = Full load cooling hours

 $^{^{641}}$ Adapted from Table 1, page 24.4, of the 1977 ASHRAE Fundamentals Handbook 642 As determined by the Illinois Technical Resource Manual.

Page 267 of 507

Dependent on location as below:

Location	Run Hours
Wilmington, DE	524 ⁶⁴³
Baltimore, MD	542 ⁶⁴⁴
Washington, DC	681

Btu/Hour = Size of equipment in Btu/hour (note 1 ton =

12,000Btu/hour) = Actual installed

SEER = Seasonal Efficiency of conditioning equipment

= actual installed

Duct_Factor =Factor to account for elimination of duct losses

from encapsulation

=0.05

Hours_Heat = Full Load Heating Hours

= Dependent on location as below:

Location	FLHheat
Wilmington, DE	935 ⁶⁴⁵
Baltimore, MD	866 ⁶⁴⁶
Washington, DC	822

HSPF = Heating Seasonal Performance Factor f heating

equipment

= Actual

Illustrative examples - do not use as default assumption

A single family home in Wilmington is getting its crawlspace insulated with R-13 spray foam and encapsulated. The crawlspace currently has an R-value of 2.25, and a significant portion of the home's ductwork runs through the crawlspae. The house has a 20x25 footprint, and the crawl space walls are 7

4

⁶⁴³ Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) ⁶⁴⁴ Based on average of 5 utilities in Maryland from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Residential HVAC Program." April 4, 2014, table 30, page 48.

gs_calc/ASHP_Sav_Calc.xls)

[,] table 30, page 48.

Page 268 of 507

feet tall, 3 of which are above grade. The HVAC unit is a heat pump with 13 SEER and 2.26 COP.

 $\begin{array}{lll} \Delta kWh & = kWh_{cooling} + kWh_{heating} + kWh_{ducts} \\ & = ((1/2.25 - 1/\ (2.25 + 13))\ ^*\ (20^*2 + 25^*2)\ ^*\ 3\ ^*\ (1-0)\ ^*\ 7514\ ^* \\ & 0.75)\ /\ (1,000\ ^*\ 13)\ ^*\ 0.8 \\ & = 35\ kWh \\ & = ([((1/2.25 - 1/(2.25 + 13))\ ^*\ (20^*2 + 25^*2)\ ^*\ 3\ ^*\ (1-0)\ ^*\ 3275\ ^* \\ & 24\)\ /\ (3412\ ^*\ 2.26)\]\ +\ [\ ((1/(6.42 + 2.25) - 1/(6.42 + 2.25) + 13))\ ^*\ (20^*2 + 25^*2)\ ^*\ 4\ ^*\ (1-0)\ ^*\ 3275\ ^*\ 24)\ /\ (3412\ ^*\ 2.26)\])\ ^*\ 0.6 \\ & = 722\ kWh \\ & = 524\ ^*\ 36,000\ ^*\ (1/13)\ ^*\ 0.05\ /\ 1000\ +\ 935\ ^*\ 36,000\ ^*\ (1/8)\ ^*\ 0.05\ /\ 1,000 \end{array}$

= 283 kWh = 35 + 722 + 283= 1,040 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = kWh_{cooling} / Hours_Cool * CF$

Where:

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.69^{647}$

CF_{PIM} = PJM Summer Peak Coincidence Factor for Central A/C

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.66^{648}$

Illustrative examples - do not use as default assumption

For the house described above:

 Δ kW = 35 / 524 * 0.69 = 0.046 kW

Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps" research, the Maryland Peak Definition coincidence factor is 0.69.

Based on BG&E "Development of Residential Load Profiler for Central Air Conditioners and

Heat Pumps" research, the PJM Peak Definition coincidence factor is 0.66.

Page 269 of 507

Annual Fossil Fuel Savings Algorithm

If Natural Gas heating:

 Δ therms = (therms_{AG} + therms_{BG}) * Adj_{Basement} + therms_{duct}

Where:

= Savings from insulation on walls or crawlspaces therms_{AG}

above grade

=((1/R_Old_AG - 1/(R_Old_AG + R_Added)) * L_Basement_Wall * H_Basement_Wall_AG * (1-Framing_Factor) * HDD * 24) / (100,067 * nHeat)

= Savings from insulation on walls or crawlspaces therms_{BG}

below grade

= ((1/R_Old_BG - 1/(R_Old_BG + R_Added)) * L_Basement_Wall * H_Basement_Wall_BG * (1-Framing_Factor) * HDD * 24) / (100,067 * nHeat) Hours Heat * Btu/Hour * AFUE * Duct Factor /

therms

100,000

Where:

Hours heat = Equivalent Full Load Heating Hours

Location	EFLH
Wilmington, DE	848 ⁶⁴⁹
Baltimore, MD	620 ⁶⁵⁰
Washington, DC	<i>528</i> ⁶⁵¹

nHeat

= Efficiency of Heating equipment (equipment

efficiency * distribution efficiency) = actual⁶⁵². If not available use 84% for equipment efficiency and 78% for distribution efficiency to give

66%⁶⁵³.

⁶⁴⁹ Based on simulation model as described in ODC Delaware Technical Resource Manual, April 30, 2012; http://www.dnrec.delaware.gov/energy/information/otherinfo/Documents/EM-and-V-guidance-documents/DELAWARE_TRM_August%202012.pdf

Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; "Evaluation of the High efficiency heating and cooling program, technical report", June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

⁶⁵¹Full load heating hours derived by adjusting FLH_{heat} for Baltimore, MD based on Washington, DC HDD base 60°F: 620 *2957/3457 = 528 hours.

⁶⁵² Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can

Other factors as defined above

Illustrative examples - do not use as default assumption

For the house described above, but with a central furnace:

∆therms | = (therms_{AG} + therms_{BG}) * Adj_{Basement} + therms_{duct} = ((1/2.25 - 1/(2.25+13)) * (20*2+25*2) * 3 * (1-0) *therms_{AG} 3275 * 24) / (100,067 * 0.66) = 122 therms = ((1/(2.25+6.42)-1/(2.25+6.42+13)) * (20*2+25*2) * 4therms_{BG} * (1-0) * 3275 * 24) / (100,067 * 0.66) = 30 therms = 848 * 100,000 * .84 * 0.05 / 100,000 therms_{duct} = 36 therms = (122 + 30) *0.6 + 36∆therms = 127

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost of this measure is to be calculated on a site specific basis

Measure Life

The expected measure life is assumed to be 25 years. 654

be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute:

(http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

653 The equipment efficiency default is based on data provided by GAMA during the federal

The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%. The distribution efficiency default is based on assumption that 50% of duct work is inside the envelope, with some leaks and no insulation. VEIC did not have any more specific data to provide any additional defaults.

⁶⁵⁴ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007.

Page 271 of 507

Operation and Maintenance Impacts n/a

Page 272 of 507

Pool Pump End Use

Pool pump-two speed

Unique Measure Code: RS_PP_TOS_PPTWO_0711

Effective Date: June 2014

Fnd Date: TBD

Measure Description

This measure describes the purchase of a two speed swimming pool pump capable of running at 50% speed and being run twice as many hours to move the same amount of water through the filter. The measure could be installed in either an existing or new swimming pool. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition

The baseline condition is a standard efficiency, 1.36 kW electric pump operating 5.18 hours per day.

Definition of Efficient Condition

The efficient condition is an identically sized two speed pump operating at 50% speed (50% flow) for 10.36 hours per day.

Annual Energy Savings Algorithm

$$\Delta kWh = kWh_{Base} - kWh_{Two Speed}$$
 655

Where:

kWh_{Base}

= typical consumption of a single speed motor in a cool

climate (assumes 100 day pool season)

 $= 707 \, kWh$

 $kWh_{Two\ Speed}$ = typical consumption for an efficient two speed pump

motor

 $= 177 \, kWh$

 $\Delta kWh = 707 - 177$

= 530 kWh

⁶⁵⁵ Based on INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (kW_{Base} - kW_{Two Speed}) * CF^{656}$$

Where:

 kW_{Base} = Connected load of baseline motor

 $= 1.3 \, kW$

 $kW_{Two Speed}$ = Connected load of two speed motor

 $= 0.171 \, kW$

CF_{SSP} = Summer System Peak Coincidence Factor for pool pumps

(hour ending 5pm on hottest summer weekday)

 $=0.20^{657}$

CF_{PJM} = *PJM Summer Peak Coincidence Factor for pool pumps*

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.27^{658}$

 $\Delta kW_{SSP} = (1.3-0.171) * 0.20$

= 0.23 kW

 $\Delta kW_{SSP} = (1.3-0.171) * 0.27$

= 0.31 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$175 for a two speed pool pump motor⁶⁵⁹.

⁶⁵⁶ All factors are based on data from INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report

Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE Design and Engineering, Table 16
 Ihid

Page 274 of 507

Measure Life

The measure life is assumed to be 10 yrs⁶⁶⁰.

Operation and Maintenance Impacts n/a

 659 Based on review of Lockheed Martin pump retail price data, July 2009. 660 VEIC estimate.

Page 275 of 507

Pool pump-variable speed*

Unique Measure Code: RS_PP_TOS_PPVAR_0711

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes the purchase of a variable speed swimming pool pump capable of running at 40% speed and being run two and a half times as many hours to move the same amount of water through the filter. The measure could be installed in either an existing or new swimming pool. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition

The baseline condition is a standard efficiency, 1.36 kW electric pump operating 5.18 hours per day.

Definition of Efficient Condition

The efficient condition is an identically sized variable speed pump operating at 40% speed (50% flow) for 13 hours per day.

Annual Energy Savings Algorithm

$$\Delta kWh = kWh_{Base} - kWh_{Variable Speed}$$
 661

Where:

kWh_{Base}

= typical consumption of a single speed motor in a cool

climate (assumes 100 day pool season)

= 707 kWh

kWh_{Variable} Speed

= typical consumption for an efficient variable

speed pump motor

= 113 kWh

 $\Delta kWh = 707 - 113$

= 594 kWh

 $^{^{661}}$ Based on INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (kW_{Base} - kW_{Two Speed}) * CF^{662}$$

Where:

 kW_{Base} = Connected load of baseline motor

 $= 1.3 \, kW$

 $kW_{Two Speed}$ = Connected load of variable speed motor

 $= 0.087 \, kW$

CF_{SSP} = Summer System Peak Coincidence Factor for pool pumps

(hour ending 5pm on hottest summer weekday)

 $= 0.20^{663}$

CF_{PJM} = *PJM Summer Peak Coincidence Factor for pool pumps*

(June to August weekdays between 2 pm and 6 pm) valued

at peak weather

 $= 0.27^{664}$

 $\Delta kW_{SSP} = (1.3-0.087) * 0.20$

= 0.24 kW

 $\Delta kW_{SSP} = (1.3-0.087) * 0.27$

= 0.34 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$750 for a variable speed pool pump motor⁶⁶⁵.

⁶⁶² All factors are based on data from INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report

⁶⁶³ Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE Design and Engineering, Table 16 ⁶⁶⁴ Ibid.

⁶⁶⁵ Based on review of Lockheed Martin pump retail price data, July 2009.

Page 277 of 507

Measure Life

The measure life is assumed to be 10 yrs⁶⁶⁶.

Operation and Maintenance Impacts n/a

666 VEIC estimate.

Page 278 of 507

Plug Load End Use

Advanced Power Strip*

Unique Measure Code: RS_PL_TOS_APS_0711

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes savings associated with the purchase and use of a Current-Sensing Master/Controlled Advanced Power Strip (APS). These multiplug power strips have the ability to automatically disconnect specific connected loads depending upon the power draw of a control load, also plugged into the strip. Power is disconnected from the switched (controlled) outlets when the control load power draw is reduced below a certain adjustable threshold, thus turning off the appliances plugged into the switched outlets. By disconnecting, the standby load of the controlled devices, the overall load of a centralized group of equipment (i.e. entertainment centers and home office) can be reduced.

This measure characterization provides a single prescriptive savings assumption based on office and entertainment savings from a 2011 NYSERDA Advanced Power Strip Research Report and weightings and in service rates based on EmPower evaluations.

Definition of Baseline Condition

The assumed baseline is a standard power strip that does not control any of the connected loads.

Definition of Efficient Condition

The efficient case is the use of a Current-Sensing Master/Controlled Advanced Power Strip.

Annual Energy Savings Algorithm

 $\Delta kWh = (kWh_{office} * Weighting_{Office} + kWh_{Ent} * Weighting_{Ent}) * ISR$

Where:

Page 279 of 507

kWhoffice = Estimated energy savings from using an APS in a

home office

 $= 31.0 \text{ kWh}^{667}$

WeightingOffice = Relative penetration of computers

 $=41\%^{668}$

 kWh_{Ent} = Estimated energy savings from using an APS in a

home entertainment system

 $= 75.1 \text{ kWh}^{669}$

Weighting_{Ent} = Relative penetration of televisions

 $= 59\%^{670}$

ISR = In service rate

 $= 89\%^{671}$

ΔkWh = (31 * 41% + 75.1 * 59%) * 83.2%

= 47.4 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / Hours * CF$

⁶⁶⁷ NYSERDA 2011, Advanced Power Strip Research Report, http://www.nyserda.ny.gov/-/media/Files/EERP/Residential/Energy-Efficient-and-ENERGY-STAR-Products/Power-Management-Research-Report.pdf. Note that estimates are not based on pre/post metering but on analysis based on frequency and consumption of likely products in active, standby and off modes. This measure should be reviewed frequently to ensure that assumptions continue to be appropriate.

⁶⁶⁸ EmPower 2012 Residential Retrofit evaluation

⁶⁶⁹ NYSERDA 2011, Advanced Power Strip Research Report

⁶⁷⁰ EmPower 2012 Residential Retrofit evaluation

⁶⁷¹ EmPower EY6 QHEC Survey data.

Page 280 of 507

Where:

Hours = Annual hours when controlled standby loads are turned

off

 $=6,351^{672}$

CF = Coincidence Factor

 $= 0.8^{673}$

 $\Delta kW = (47.4/6,351) * 0.8$

= 0.0060 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$35⁶⁷⁴.

Measure Life

The measure life is assumed to be 4 years⁶⁷⁵.

Operation and Maintenance Impacts

n/a

⁶⁷² EmPower 2012 Residential Retrofit evaluation

⁶⁷³ Ibid

⁶⁷⁴ NYSERDA 2011, Advanced Power Strip Research Report

David Rogers, Power Smart Engineering, October 2008: "Smart Strip electrical savings and usability", p22. Assumes that the unit can only take one surge and then needs to be replaced.

Page 281 of 507

Retail Products Program

ENERGY STAR +50% Soundbar**

Unique Measure Code(s): TBD

Effective Date: TBD

End Date: TBD

Measure Description

This measure relates to the upstream promotion of residential soundbar meeting the ENERGY STAR criteria through the Energy Star Retail Products Program. This measure assumes a more stringent requirement than ENERGY STAR Version 3.0.676

Definition of Baseline Condition

The baseline condition is assumed to be a standard soundbar.

Definition of Efficient Condition

The efficient condition is assumed to be an ENERGY STAR +50% soundbar. The more stringent requirement was developed by decreasing the power requirements and increasing the efficiency requirements by 50%.

Annual Energy Savings Algorithm⁶⁷⁷

 ΔkWh = kWh_{base} - kWh_{eff}

Where:

kWh_{base} = Baseline unit energy consumption

= Assumed to be 69 kWh/year⁶⁷⁸

kWh_{eff} = Efficient unit energy consumption

= Assumed to be 25 kWh/year⁶⁷⁹

⁶⁷⁶http://www.energystar.gov/sites/default/files/Final%20Version%203.0%20AV%20Program%20Requirements%20%28Rev%20Dec-2014%29.pdf

Energy Savings from this measure are derived from Energy Star estimates. See 'RPP Product Analysis 9-23-15.xlsx'

⁶⁷⁸ The baseline unit energy consumption is based on information provided from a Fraunhofer Center for Sustainable Energy System study, titled Energy Consumption of Consumer Electronics in US Households, 2013, available at: http://www.ce.org/CorporateSite/media/Government-Media/Green/Energy-Consumption-of-CE-in-U-S-Homes-in-2010.pdf.

⁶⁷⁹ Due to the high market penetration of ENERGY STAR certified soundbars, a weighted average of the unit energy consumption of both non-ENERGY STAR and ENERGY STAR models was calculated in order to accurately provide savings estimates for the market in 2016.

Page 282 of 507

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0.0005^{680}$

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm

Incremental Cost

The incremental cost for this measure is \$0⁶⁸¹.

Measure Life

The expected measure life is assumed to be 7 years. 682

Operation and Maintenance Impacts n/a

Wattage difference between base and efficient sound bars when in sleep mode
 Incremental cost comes from Energy Star characterization. See'RPP Product Analysis 9-23-

⁶⁸² ENERGY STAR assumes a 7 year useful life.

Page 283 of 507

MID-ATLANTIC TECHNICAL REFERENCE MANUAL VERSION 6.0/May 2016

Freezer**

Unique Measure Code(s): TBD

Effective Date: TBD

End Date: TBD

Measure Description

This measure relates to the upstream promotion of residential freezers meeting the ENERGY STAR criteria through the Energy Star Retail Products Program. In the measure, a freezer meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard (NAECA). Energy usage specifications are defined in the table below (note, AV is the freezer Adjusted Volume and is calculated as 1.73*Total Volume):⁶⁸³

Product Category	Federal Baseline Maximum Energy Usage in kWh/year ⁶⁸⁴	ENERGY STAR Maximum Energy Usage in kWh/year ⁶⁸⁵
Upright Freezers	8.62*AV+228.3	7.76*AV+205.5
Chest Freezers	7.29*AV+107.8	6.56*AV+97.0

Definition of Baseline Condition

The baseline equipment is assumed to be a model that meets the federal minimum standard for energy efficiency. The standard varies depending on the type of the freezer (chest or upright freezer) and is defined in the table above.

Definition of Efficient Condition

The efficient equipment is defined as a freezer meeting the efficiency specifications of ENERGY STAR, as calculated above.

Annual Energy Savings Algorithm

$$\Delta kWh$$
 = kWh_{Base} - kWh_{ESTAR}

Where:

⁶⁸³ http://www.energystar.gov/ia/products/appliances/refrig/NAECA_calculation.xls?c827-f746
684 https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43

 $http://www.energystar.gov/ia/partners/product_specs/program_reqs/Refrigerators_and_Freezers_Program_Requirements_V5.0.pdf$

Page 284 of 507

kWh_{BASE} = Baseline *kWh* consumption per year

= As calculated in the table below

 kWh_{ESTAR} = ENERGY STAR kWh consumption per year

=As calculated in the table below

Product Category ⁶⁸⁶	Adj. Volume Use	kWh _{BASE}	kWh _{ESTAR}	kWh Savings	Weighting for unknown configuration
Upright Freezer	24.4	439	395	43.78	36.74%
Chest Freezer	18.0	239	215	23.97	63.26%
Weighted Average		313	281	31.25	100%

If product category is unknown assume weighted average values⁶⁸⁷.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = (\Delta kWh/8760) * TAF * LSAF$

Where:

TAF = Temperature Adjustment Factor

 $= 1.23^{-688}$

LSAF = Load Shape Adjustment Factor

= 1 15 689

_

 ⁶⁸⁶ Savings values come from Energy Star Calculations. See 'RPP Product Analysis 9-23-15.xlsx'
 ⁶⁸⁷ The weighted average unit energy savings is calculated using the market share of upright and chest freezers. The assumed market share, as presented in the table above, comes from 2011 NIA-Frz-2008 Shipments data.

Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space. Although this evaluation is based upon refrigerators only it is considered a reasonable estimate of the impact of cycling on freezers and gave exactly the same result as an alternative methodology based on Freezer eShape data.

Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 p. 48, (extrapolated by taking the ratio of existing summer to existing annual profile for hours ending 15 through 18, and multiplying by new annual profile).

Page 285 of 507

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

Incremental Cost

The incremental cost for this measure is 12.14 for an upright freezer and 6.62 for a chest freezer.

Measure Life

The measure life is assumed to be 11 years⁶⁹¹.

Operation and Maintenance Impacts n/a

⁶⁹⁰ Based on the Freezer TSD Life-Cycle Cost and Payback Analysis found in Table 8.2.7 Standard-Size Freezers: Average Consumer Cost in 2014, available at: http://www.regulations.gov/contentStreamer?documentId=EERE-2008-BT-STD-0012-0128&disposition=attachment&contentType=pdf

⁶⁹¹ ENERGY STAR assumes 11 years based on Appliance Magazine U.S. Appliance Industry: Market Value, Life Expectancy & Replacement Picture for 2005-2012, 2011.

Page 286 of 507

Clothes Dryer**

Unique Measure Code(s): TBD

Effective Date: TBD

End Date: TBD

Measure Description

This measure relates to the upstream promotion of residential clothes dryer meeting the ENERGY STAR criteria through the Energy Star Retail Products Program. ENERGY STAR qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions such as air flow and/or heat input rate, improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers. ENERGY STAR provides criteria for both gas and electric clothes dryers.

Definition of Baseline Condition

The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after June 1, 2015.

Definition of Efficient Condition

Clothes dryer must meet the ENERGY STAR criteria, as required by the program.

Annual Energy Savings Algorithm

 ΔkWh^{693} = kWh_{Base} - kWh_{ESTAR}

92 ENEDGY STAD Mark

⁶⁹² ENERGY STAR Market & Industry Scoping Report. Residential Clothes Dryers. Table 8. November 2011.

http://www.energystar.gov/ia/products/downloads/ENERGY_STAR_Scoping_Report_Residentia l_Clothes_Dryers.pdf

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/36). The goal of the translation is to account for the use of the amended DOE test procedure 10 CFR 430, Subpart B, Appendix D2 which assesses energy efficiency as a result of clothes dryer automatic cycle termination controls. The DOE 2015 standard CEF values are based on the DOE Appendix D1 test. ENERGY STAR is requiring an updated DOE test, published in Appendix D2. On average, clothes dryers use more energy when tested under Appendix D2, and so the translation adjusts the D1 Federal standard to refelec the estimated average energy efficiency

Page 287 of 507

Where:

kWh_{BASE} = Baseline kWh consumption per year

= As presented in the table below

kWh_{ESTAR} = ENERGY STAR kWh consumption per year

=As presented in the table below

Product Category ⁶⁹⁴	kWh _{BASE}	kWh _{ESTAR}	kWh Savings
Vented Gas Dryer	42.10	34.36	7.74
Ventless or Vented Electric Dryer	768.92	608.49	160.44

Summer Coincident Peak kW Savings Algorithm

= ΔkWh/Hours * CF ΔkW

Where:

ΔkWh = Energy Savings as calculated above

= Annual run hours of clothes dryer. Hours

=290 hours per year. 695

CF = Summer Peak Coincidence Factor for measure

 $= 2.9\%^{696}$

preforemance of minimally-compliant 2015 models under D2. The translation values (-16.6% for the electric standard and -13.9% for the gas dryers) are based on DOE testing published in their NOPR test proceduce in January 2013. Performance requirements for ENERGY STAR certified clothes dryers can be found in the ENERGY STAR specifications (V 1.0) (available at: http://www.energystar.gov/sites/default/files/specs//ENERGY%20STAR%20Final%20Version%20 1%200%20Clothes%20Dryers%20Program%20Requirements.pdf). Calculations assume 283 cycles per year and an 8.45 lb load for standard sized dryers (≥ 4.4 cu-ft capacity).

⁶⁹⁴ Savings values come from Energy Star Calculations. See 'RPP Product Analysis 9-23-15.xlsx' ⁶⁹⁵ Assumes average of 56 minutes per cycle based on Ecova, 'Dryer Field Study', Northwest Energy Efficiency Alliance (NEEA) 2014

Page 288 of 507

Annual Fossil Fuel Savings Algorithm

Natural gas savings only apply to ENERGY STAR vented gas clothes dryers.

ΔMMBtu= MMBtu_{Base} - MMBtu_{STAR}

Where:

 $MMBtu_{BASF}$ = Baseline MMBtu consumption per year

= As presented in the table below

MMBtu_{ESTAR} = *ENERGY STAR MMBtu consumption per year*

=As presented in the table below

Product Category ⁶⁹⁷	MMBtu _{BASE}	MMBtu _{ESTAR}	MMBtu Savings
Vented Gas Dryer	2.72	2.22	0.50

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for an ENERGY STAR clothes dryer is assumed to be \$270.16 for a vented gas dryer and \$224.91 for a ventless or vented electric, standard clothes dryer. 698

Measure Life

The expected measure life is assumed to be 12 years⁶⁹⁹.

⁶⁹⁶ Consistent with coincidence factor of Clothes Washers; Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36.

Savings values come from Energy Star Calculations. See 'RPP Product Analysis 9-23-15.xlsx' Based on the Dryer TSD Life-Cycle Cost and Payback Analysis "2011-03-

¹⁸_TSD_Chapter_8_Life-Cycle_Cost_and_Payback_Period_Analysis.pdf" Table 8.2.12 Vented Dryer, Gas and Table 8.2.9 Vented Dryer, Electric, Standard: Consumer Produces Costs, Installation Costs, and Total Installed Costs in 2014, available at:

http://www.regulations.gov/contentStreamer?documentId=EERE-2007-BT-STD-0010-0053&attachmentNumber=9&disposition=attachment&contentType=pdf

⁶⁹⁹ Based on Appliances Magazine (Appliance Magazine. US Appliance Industry: Market Value, Life Expectancy & Replacement Picture). Please note that this report provides slightly different average life expectancies for gas and electric. To minimize confusion, ENERGY STAR uses 12 years for both product types.

Page 289 of 507

Operation and Maintenance Impacts n/a

Page 290 of 507

ENERGY STAR Air Cleaner**

Unique Measure Code(s): TBD

Effective Date: TBD

End Date: TBD

Measure Description

An air cleaner is a portable electric appliance that removes dust and fine particles from indoor air. This measure characterizes the purchase and installation of a unit meeting the efficiency specifications of ENERGY STAR in place of a baseline model.

Definition of Baseline Condition

The baseline equipment is assumed to be a standard non-ENERGY STAR unit.

Definition of Efficient Condition

The efficient equipment is defined as an air cleaner meeting the efficiency specifications of ENERGY STAR as provided below 700.

- Clean Air Delivery Rate (CADR)/Watt Requirement: Must be equal to or greater than 2.0 CADR/Watt (Dust).
- UL Safety Requirements for Ozone Emitting Models: Measured ozone shall not exceed 50 parts per billion.
- Standby Power Requirements: Measured standby power shall not exceed 2 Watts.

Annual Energy Savings Algorithm

 ΔkWh^{701} = kWh_{Base} - kWh_{ESTAR}

Where:

kWh_{BASE} = Baseline kWh consumption per year

= see table below

kWh_{ESTAR} = ENERGY STAR kWh consumption per year

⁷⁰⁰http://www.energystar.gov/sites/default/files/specs//private/Room_Air_Cleaners_Final_V1
.2_Specification.pdf

Baseline and ENERGY STAR energy consumptions are calculated by taking a weighted average of five product category sub types: 51-100 CADR, 101-150 CADR, 151-200 CADR, 201-250 CADR, and >250 CADR. Wattages for all five product sub types are derived from AHAM data. Duty cycle assumes 16 hours per day, 365 days per year based on filter replacement instructions.

Page 291 of 507

= see table below

kWh _{BASE}	BASE KWh _{ESTAR} K ¹ Sav	
530.98	317.10	213.88

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

ΔkWh = Gross customer annual kWh savings for the measure

Hours = Average hours of use per year

= 5840 hours⁷⁰²

CF = Summer Peak Coincidence Factor for measure

 $= 0.67^{703}$

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is \$56.704

Measure Life

The measure life is assumed to be 9 years 705.

Operation and Maintenance Impacts

There are no operation and maintenance cost adjustments for this measure. 706

 $^{^{702}}$ Consistent with ENERGY STAR Qualified Room Air Cleaner Calculator; 16 hours a day, 365 days a year.

Assumes appliance use is equally likely at any hour of the day or night.

⁷⁰⁴ EPA assumption

⁷⁰⁵ ENERGY STAR assumption based on Lawrence Berkeley National Laboratory 2008 Status Report: Savings Estimates for the ENERGY STAR Voluntary Labeling Program, available at: http://enduse.lbl.gov/lnfo/LBNL-56380(2008).pdf

⁷⁰⁶ Some types of room air cleaners require filter replacement or periodic cleaning, but this is likely to be true for both efficient and baseline units and so no difference in cost is assumed.

Page 292 of 507

Room Air Conditioners (Upstream)**

Unique Measure Code(s): TBD

Effective Date: TBD

End Date: TBD

Measure Description

This measure relates to the purchase (time of sale) and installation of a room air conditioning unit that meets the ENERGY STAR minimum qualifying efficiency specifications presented below:

	et Type and Class (Btu/hour)	Federal Standard with louvered sides (EER)	Federal Standard without louvered sides (EER)	ENERGY STAR with louvered sides (EER)	ENERGY STAR without louvered sides (EER)
	< 6,000	11.0	10.0	12.1	11.0
Without	6,000 to 7,999	11.0	10.0	12.1	11.0
Reverse	8,000 to 13,999	10.9	9.6	12.0	10.6
Cycle	14,000 to 19,999	10.7	9.5	12.0	10.5
Cycle	20,000 to 24,999	9.4	9.3	10.3	10.2
	>=25,000	9.0	9.4	9.9	10.3
With	<14,000	n/a	9.3	n/a	10.2
Reverse	>=14,000	n/a	8.7	n/a	9.6
Cycle	<20,000	9.8	n/a	10.8	n/a
Cycle	>=20,000	9.3	n/a	10.2	n/a
Ca	sement only	9.	5	10	0.5
Casement-Slider		10	.4	11	1.4

Definition of Baseline Condition

The baseline condition is a window AC unit that meets the minimum federal efficiency standards as of June 1, 2014 presented above. ⁷⁰⁷

Definition of Efficient Condition

The baseline condition is a window AC unit that meets the ENERGY STAR v4.0 as of October 26, 2015 presented above. 708

707 http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/41

Page 293 of 507

Annual Energy Savings Algorithm

 ΔkWh^{709} = kWh_{Base} - kWh_{ESTAR}

Where:

kWh_{BASE} = Baseline kWh consumption per year

= see table below for calculated values

kWh_{ESTAR} = ENERGY STAR kWh consumption per year

= see table below for calculated values

Location	Full-Load Cooling Hours	Savings (kWh/year)
Wlimington, DE	1,015	74.72
Baltimore, MD	1,050	77.30
Washington, DC	1,320	97.18

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = Btu/hour * (1/EERbase - 1/EERee))/1000 * CF$

Where:

CF = Summer Peak Coincidence Factor for measure

CF_{SSP} = Summer System Peak Coincidence Factor for Central A/C

(hour ending 5pm on hottest summer weekday)

 $= 0.31^{710}$

708

http://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%204.0%20Room%20Air%20Conditioners%20Program%20Requirements.pdf

⁷⁰⁹ Baseline energy consumption is based on the federal standard for room air conditioners, available at:

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/41. The unit energy savings are calculated by taking a market share weighted average of the unit energy consumption of all product subtypes listed in the ENERGY STAR specification. See 'RPP Product Analysis 9-23-15.xlsx'

⁷¹⁰ Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

Page 294 of 507

CF_{PIM}

= PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather

 $= 0.3^{711}$

Using deemed values above:

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$114.45 for an ENERGY STAR unit. 712

Measure Life

_

⁷¹¹ Consistent with coincidence factors found in:

RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008

⁽http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res%20RAC.pdf).

⁷¹² Based on Room Air Conditioner TSD Life-Cycle Cost and Payback Analysis "2011-04-18_TSD_Chapter_8_Life-Cycle_Cost_and_Payback_Period_Analysis.pdf", available at: http://www.regulations.gov/#!documentDetail;D=EERE-2007-BT-STD-0010-0053. To calculated an average incremental cost, a weighted average was created based on the market share of each product subtype.

Page 295 of 507

The measure life is assumed to be 9 years. 713

Operation and Maintenance Impacts n/a

_

⁷¹³ Based on Appliances Magazine - Market Research - The U.S. Appliance Industry: Market Value, Life Expectancy & Replacement Picture 2013 (Dec. 2013).

Page 296 of 507

COMMERCIAL & INDUSTRIAL MARKET SECTOR

Lighting End Use

General Purpose CFL Screw base, Retail - Commercial*

Unique Measure Code(s): CI_LT_TOS_CFLSCR_0615

Effective Date: June 2015

End Date: TBD

Measure Description

This measure characterizes the installation of a general purpose compact fluorescent light bulb (CFL) in place of an incandescent bulb. The measure provides assumptions based on a Time of Sale implementation strategy. Direct Install assumptions are presented with the residential characterization. This characterization is for a general purpose medium screw based CFL bulb (A-lamps/twists/spirals), and not a specialty bulb (e.g., reflector (PAR) lamp, globes <= 40 watts, candelabras <= 40 watts, 3-ways, etc.).

Definition of Baseline Condition

The baseline is the installation of a halogen incandescent light bulb meeting the standards described in the Energy Independence and Security Act of 2007. 714

Definition of Efficient Condition

The efficient condition is the installation of a compact fluorescent light bulb.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) /1000) * HOURS * ISR * WHFe

Where:

WattsBASE = Based on lumens of CFL bulb⁷¹⁵:

⁷¹⁴ For text of Energy and Independence and Security Act, see http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf

Page 297 of 507

For non-decorative bulbs:

Minimum Lumens	Maximum Lumens	Watts _{Base}	
4000	6000	300	
3001	3999	200	
2601	3000	150	
1490	2600	72	
1050	1489	53	
750	1049	43	
310	749	29	
250	309	25	

For decorative bulbs and non-G40 globes greater than 40 watts:

	Minimum Lumens	Maximum Lumens	WattsBASE
Decorative	500	699	43
	500	574	43
Non-G40 globe	575	649	53
Non-040 globe	650	1099	72
	1100	1300	150

WattsEE HOURS = Actual wattage of CFL purchased / installed

= Average hours of use per year

= If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating hours information. 716

⁷¹⁵ Base wattage is based upon the post first phase of EISA wattage and wattage bins consistent with ENERGY STAR, v1.1;

http://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V1%201_Specific ation.pdf.

⁷¹⁶ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Page 298 of 507

ISR = In Service Rate or percentage of units rebated that are

installed and operational

 $= 1.00^{717}$

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat"

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

Illustrative examples - do not use as default assumption

For example, a 19W, 1,200 lumen CFL is purchased and installed in a conditoned office building with gas heat in BGE service territory:

$$\Delta kWh = ((53 - 19) / 1000) * 2,969 * 1.00 * 1.10$$

= 111 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) * ISR * WHFd * CF$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat"

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Illustrative examples - do not use as default assumption

⁷¹⁷ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

Page 299 of 507

For example, a 19W, 1,200 lumen CFL is purchased and installed in a conditioned office building with gas heat in BGE service territory and estimating PJM summer peak coincidence:

$$\Delta$$
kW = ((53 - 19) / 1000) * 1.00 * 1.32 * 0.69
= 0.03 kW

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

$$\Delta$$
MMBTU = (- Δ kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75
= (- Δ kWh / WHFe) * 0.00073

Where:

0.7 = Aspect ratio ⁷¹⁸
0.003413 = Constant to convert kWh to MMBTU
0.23 = Fraction of lighting heat that contributes to space heating ⁷¹⁹
0.75 = Assumed heating system efficiency ⁷²⁰

Illustrative examples - do not use as default assumption

For example, assuming a 19W CFL is purchased and installed in a conditioned office building with gas heat in BGE service territory:

$$\Delta$$
MMBTU = (-111 / 1.10) * 0.00073
= -0.07 MMBtu

Annual Water Savings Algorithm n/a

HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

Page 300 of 507

Incremental Cost

For the Retail (Time of Sale) measure, the incremental capital cost is \$1.80.⁷²¹

Measure Life

The measure life by building type is presented in the table below. 722

Building Type	Measure Life (Years)
Grocery	1.4
Health	2.6
Office	3.4
Other	2.2
Retail	2.0
School	3.9
Warehouse/Industrial	2.4
Unknown	2.6

Operation and Maintenance Impacts

For convenience, the levelized baseline replacement cost over the lifetime of the CFL is presented below (see MidAtlantic Lighting Adjustments and O&M_042015.xls). The key assumptions used in this calculation are documented below:

Attribute	Halogen Incandescent
Replacement Lamp Cost	\$1.40 ⁷²³
Replacement Labor Cost	\$1.54 ⁷²⁴
Component Life (Hours)	1,000 ⁷²⁵

721 Based on incremental costs for 60W equivalent (dominant bulb) from "2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014.

Measure life calculated by building type as "10,000/HOURS" where 10,000 is the median lifetime of General Purpose Replacement, CFL-type ENERGY STAR Certified Light Bulbs ("ENERGY STAR Certified Light Bulbs," Accessed on April 13, 2015,

http://www.energystar.gov/productfinder/product/certified-light-bulbs/results>

Page 2010-2012 WA017 Ex Ante Measure Cost Study Draft Report", Itron, February 28, 2014.

724 Itron, Inc. 2014. A Study of Non-Energy Impacts for the State of Maryland REVIEW DRAFT.

Page 301 of 507

The calculated net present value of the baseline replacement costs for CFL type and installation year are presented below ⁷²⁶:

Building Type	NPV of Baseline Replacement Costs	
Grocery	\$26.18	
Health	\$25.35	
Office	\$24.82	
Other	\$25.76	
Retail	\$25.76	
School	\$24.69	
Warehouse/Industrial	\$25.63	
Unknown	\$25.35	

⁷²⁵ The manufacturers are simply using a regular incandescent lamp with halogen fill gas rather than Halogen Infrared to meet the standard (as provided by G. Arnold, Optimal Energy and confirmed by N. Horowitz at NRDC), so the lifetime of these EISA qualified bulbs is assumed to be 1,000 hours.

Note, these values have been adjusted by the appropriate In Service Rate (1.00). See 'MidAtlantic Lighting Adjustments and O&M_042015.xls' for more information. The discount rate used for these calculations is 5.0%.

Page 302 of 507

Four-Foot Fluorescent T8 Replacement Lamps*

Unique Measure Code(s): CI_LT_TOS_HPT8_0516 and

CI_LT_RTR_HPT8_0516 Effective Date: May 2016

End Date: TBD

Measure Description

This measure promotes the installation of high performance fluorescent T8 4-ft replacement lamps that have higher lumens per watt and longer life than standard 4-ft T8 systems. This results in lamp/ballast systems that produce equal or greater lumens than standard T8 systems, while using fewer watts. The Consortium for Energy Efficiency (CEE) maintains specifications and a list for qualifying high performance 4-ft T8 replacement lamps. The list is updated frequently and is available at:

In November 2014, federal minimum standards for ballasts increased to meet CEE performance levels for HPT8 systems. In response, in January 2015, CEE published an updated Commercial Lighting Systems Initiative that discontinued the qualified ballast list and transitioned the T8 lamp specification to solely a replacement lamp strategy. This new strategy is not technology dependent; both conventional fluorescent lamps and LED linear fluorescent replacement lamps (TLEDs) are qualified under the new requirements. CEE no longer maintains a list of ballasts that meet the previous HPT8 ballast specifications because all ballasts manufactured after November 2014 meet those requirements; however, an archived list of qualifying ballasts can be viewed at the aforementioned website.

Definition of Baseline Condition

The baseline condition is assumed to be the existing lighting fixture in retrofit applications. ⁷²⁸ For time of sale applications, the baseline condition

⁷²⁷ Consortium for Energy Efficiency. January 2015. CEE Commercial Lighting Initiative Specification for T8 Replacement Lamps.

http://library.cee1.org/sites/default/files/library/12035/CEE_T8_Replacement_Lamp_Spec_Jan2015_Updated03242015.pdf

⁷²⁸ For retrofits replacing T12s prior to July 1, 2017, two baselines are needed to account for the change in baseline technology over the measure lifetime due to federal standards as discussed elsewhere in this measure.

Page 303 of 507

will vary depending upon the specific characteristics of the fixtures installed (e.g. number of lamps), federal minimum standards (e.g., based on correlated color temperature), and applicable building energy codes. For illustrative purposes, the following examples are provided but they are *not to be used as default assumptions*:

Illustrative examples - do not use as default assumption

Time of Sale: A 3-lamp standard performance 4-ft F32 800-series, 18,000 hour T8 fixture with normal output electronic ballast compliant with 2014 federal standards with a fixture input wattage of 89W. 729

T12 Retrofit implemented June 30, 2017 and earlier: A 3-lamp 4-ft F34 T12 fixture with magnetic ballast with an input wattage of 122W.

T12 Retrofit implemented July 1, 2017 and later: Due to the federal standards change described in the Measure Life section below, an existing 3-lamp 4-ft F34 T12 fixture with magnetic ballast would be treated like a standard performance 4-ft F32 800-series T8 fixture with normal output electronic ballast compliant with 2014 federal standards with a fixture input wattage of 89W, which is about a 65% reduction in baseline wattage.

Definition of Efficient Condition

The efficient conditions for the time of sale and retrofit applications are a qualifying high performance T8 fixture and lamp/ballast combination, respectively. For illustrative purposes the following high efficiency conditions for the corresponding baselines are described:

Illustrative examples - do not use as default assumption

Time of Sale: A 3-lamp CEE Qualified Replacement Lamp T8 fixture with electronic, normal output type ballast compliant with 2014 federal appliance standards with a fixture input wattage of 72W.

Any Retrofit: Relamp and reballast with 3 CEE Qualified T8 Replacement Lamps and electronic, normal output type ballast compliant with 2014 federal standards with a fixture input wattage of 72W.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1000) * HOURS * ISR * WHFe

 $^{^{729}}$ Code of Federal Regulations, Energy Conservation Program for Consumer Products, title 10, sec. 430.32(m) and (n) (2014).

Page 304 of 507

Where:

WattsBASE = Connected load of baseline fixture (for "Time of Sale"

measures)

Or = Connected load of existing fixture (for "Retrofit"

measures)

WattsEE = Connected load of efficient fixture

HOURS = Average hours of use per year, no change in control type.

= If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating

hours information. 730

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 ⁷³¹

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned, assume WHFe =

WHFd = 1.0.

Illustrative examples - do not use as default assumption

For example, assuming installation in a conditoned (cooled and heated) large office building with gas heat in BGE service territory, the per fixture savings are:

Time of Sale:

 $\Delta kWh = ((89 - 72) / 1000) * 2,969 * 1.00 * 1.10$

= 56 kWh per fixture for 15 years.

T12 Retrofit implemented June 30, 2017 and earlier:

7

⁷³⁰ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁷³¹ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

Page 305 of 507

$$\Delta$$
kWh = ((122 - 72) / 1000) * 2,969 * 1.00 * 1.10
= 163 kWh per fixture for 5.2 years⁷³²

T12 Retrofit implemented July 1, 2017 and later:
$$\Delta kWh = ((89 - 72) / 1000) * 2,969 * 1.00 * 1.10$$

= 56 kWh per fixture for 15 years.

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = ((WattsBASE - WattsEE) / 1000) * ISR * WHFd * CF$$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Illustrative examples - do not use as default assumption

For example, assuming installation in a conditoned (cooled and heated) large office building with gas heat in BGE service territory and estimating PJM summer peak demand:

 Δ kW = ((89 - 72) / 1000) * 1.00 * 1.32 * 0.69

= 0.015 kW per fixture for 15 years

_

⁷³² As discussed in the Measure Life section below, this adjusted measure life represents a simplification calculated as the lifetime measure savings accounting for the shift in baseline after June 2017 divided by the first year savings relative to the T12 baseline.

Page 306 of 507

T12 Retrofit (June 30, 2017 and earlier):
$$\Delta kW = ((122 - 72) / 1000) * 1.00 * 1.32 * 0.69$$

$$= 0.046 kW per fixture for 5.2 years$$
T12 Retrofit (July 1, 2017 and later):
$$\Delta kW = ((89 - 72) / 1000) * 1.00 * 1.32 * 0.69$$

$$= 0.015 kW per fixture for 15 years$$

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

$$\Delta MMBTU = (-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$$

$$= -\Delta kWh * 0.00065$$
Where:
$$0.7 = Aspect\ ratio\ ^{733}$$

$$0.003413 = Constant\ to\ convert\ kWh\ to\ MMBTU$$

$$0.23 = Fraction\ of\ lighting\ heat\ that\ contributes\ to\ space\ heating\ ^{734}$$

$$0.75 = Assumed\ heating\ system\ efficiency\ ^{735}$$

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs will vary by specific equipment installed. The incremental costs for the example measures are assumed to be \$25 for time of sale and \$60 for retrofit. 736

 ⁷³³ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
 ⁷³⁴ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 ⁷³⁵ Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁷³⁶ Efficiency Vermont Technical Reference Manual 2014-85b, May 2014.

Page 307 of 507

Measure Life

The measure life is assumed to be 15 years for "Time of Sale" measures. The measures replacing existing, federal standards compliant T12 lamps, see the adjusted effective useful life in the table below. Otherwise, 15 years should be used provided that the existing equipment will be available for the assumed measure life (i.e., there will be no "baseline shift").

Measure Life for Retrofit Measures with T12 Baseline 738

	July 1, 2016 to June	July 1, 2017 and beyond
Year	30, 2017	2017
Measure		No T12 baseline replaced
Life	5.2	by Standard 800-series T8

T12 Baseline Phase-out, Adjusted Measure Life

On June 26, 2009, the U.S. Department of Energy issued a final rule establishing new energy conservation standards for general service fluorescent lamps. These standards cover the most common types of linear fluorescent lamps including all 4-foot T12 and T8 lamps. Beginning July 14, 2012, the manufacture of T12 linear fluorescent lamps and the lowest efficiency 700-series T8 lamps was largely banned, leaving 800-series standard T8 lamps as the default. Some manufacturers have continued to produce an exempted type of T12 lamp with greater than 87 CRI. T39 While it was once thought that the shortage and high cost of the rare earth metals necessary to meet the CRI exemption would make the exempted T12 lamps cost-prohibitive for ongoing replacements and drive more users to upgrade to T8 systems, costs for the exempted T12s have since dropped to levels comparable to 800-series T8s. Therefore, the measure lives in the table above are only intended to apply to existing T12 lamp/ballast systems that are not exempt from the current federal standards (e.g., those lamps with CRI less than 87).

If a customer relamped an existing fixture with T12s the day the standard took effect, an assumption can be made that they would likely need to upgrade to, at a minimum, 800-series T8s in less than 6 years' time. This assumes the T12s installed have a typical rated life of 20,000 hours and are operated for 3,500 hours annually. Certainly, it is not realistic that everyone would wait until the

⁷³⁹ 42 U.S.C. §6291(30)(B) (2014)

⁷³⁷ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf.

⁷³⁸ Derivation of the adjusted measure life is presented in Mid-Atlantic_TRM_V6_T12_Meas_Life_Adjustment_4.18.2016.xlsx.

Page 308 of 507

final moment to relamp with T12s. Therefore the more likely scenario would be a gradual shift in the baseline to 800-series T8s over the 6 year timeframe. To simplify this assumption, it is recommended that the assumed measure life be gradually reduced between 2012 and 2017. Note: Adjusted measures lives take into account the savings that would result over the duration of the unadjusted measure life relative to new baseline 800-series T8 fixtures once T12s are no longer available.

T12 Baseline Replaced by Standard T8.

As illustrated in previous examples, this means that after June 30, 2017, an existing 3-lamp 4-ft F34 T12 fixture with magnetic ballast (122 W) would be treated like a standard performance 4-ft F32 800-series T8 fixture with normal output electronic ballast compliant with 2014 federal standards with a fixture input wattage of 89W. The T12 fixture may remain in a standard fixture wattage tables used by program implementers, but the assumed fixture wattage for the T12 fixture would need to be reduced from 122W to 89W. The fixture description should also be changed accordingly to indicate the adjusted wattage.

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of replacement lamps and ballasts between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. Actual operation and maintenance costs will vary by specific equipment installed/replaced. For the selected examples presented in the "Definition of Baseline Condition" and "Definition of Efficient Condition" sections: 740

Illustrative examples - do not use as default assumption

Retrofit⁷⁴¹

Baseline Linear		Efficient Linear	
Fluorescent (Standard		Fluorescent (High	
800-series T8)		Performance T8)	
Lamp Ballast		Lamp	Ballast
(each)		(each)	

⁷⁴⁰ Unless otherwise noted, all table values adapted from Efficiency Vermont Technical Reference Manual 2013-82.5, August 2013.

⁷⁴¹ While the retrofit example assumes a baseline T12 system for calculating the first year annual savings, the baseline component values for the retrofit scenario reflect a standard T8 system because it is assumed that standard T12 components will no longer be sold in 2017 (when T12 lamps installed in 2012 are expected to fail assuming 3,500 annual operating hours and 20,000 lamp life) when relamping/reballasting is necessary due to federal standards.

Page 309 of 507

Replacement	\$5.17	\$35	\$7.67	\$47.50
Cost				
Component Life ⁷⁴² (years)	5.71 ⁷⁴³	20 ⁷⁴⁴	8.57 ⁷⁴⁵	20 ⁷⁴⁶

Time of Sale

	Baseline Linear Fluorescent (Standard 800-series T8)		Efficient Linear Fluorescent (High Performance T8)	
	Lamp (each)	Ballast	Lamp (each)	Ballast
Replacement Cost	\$5.17	\$47.50	\$7.67	\$47.50
Component Life ⁷⁴⁷ (years)	5.71 ⁷⁴⁸	20 ⁷⁴⁹	8.57 ⁷⁵⁰	20 ⁷⁵¹

The calculated net present value of the net replacement costs by market are presented below 752 :

	NPV of Net		
	Replacement Costs		
Application	2016		
Retrofit	\$52.08		
Time of Sale	\$5.65		

Assumes baseline lamp with rated life of 20,000 hours operated for 3,500 hours annually.

Assumes baseline ballast with rated life of 70,000 hours operated for 3,500 hours annually.

Assumes efficient lamp with rated life of 30,000 hours operated for 3,500 hours annually.

Assumes efficient ballast with rated life of 70,000 hours operated for 3,500 hours annually.

Based on lamp life divided by/ assumed annual operating hours.

Assumes baseline lamp with rated life of 20,000 hours operated for 3,500 hours annually.

Assumes baseline ballast with rated life of 70,000 hours operated for 3,500 hours annually.

⁷⁵⁰ Assumes efficient lamp with rated life of 30,000 hours operated for 3,500 hours annually.

⁷⁵¹ Assumes efficient ballast with rated life of 70,000 hours operated for 3,500 hours annually. ⁷⁵² Note, these values have been adjusted by the appropriate In Service Rate (1.0) and assume a 5% discount rate. Additionally, the retrofit example assumes the ballast must be replaced at the time the existing T12 lamps fail. See "MidAtlantic Lighting Adjustments and O&M_042015.xls" for calculations.

Page 310 of 507

T5 Lighting

Unique Measure Code(s): CI_LT_TOS_T5_0614 and CI_LT_RTR_T5_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes the installation of high-bay T5 lamp/ballast systems.

Definition of Baseline Condition

The baseline condition is a metal-halide fixture.

Definition of Efficient Condition

The efficient condition is a four Lamp T5 High Output fixture.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1000) * HOURS * ISR * WHFe

Where:

WattsBASE = Actual Connected load of baseline fixture
WattsEE = Actual Connected load of T5 fixture
HOURS = Average hours of use per year

= If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating

hours information. 753

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 ⁷⁵⁴

_

⁷⁵³ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁷⁵⁴ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

Page 311 of 507

WHFe

= Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

Illustrative examples - do not use as default assumption

For example, a 240W T5 fixture installed in place of a 455W metal-halide in a conditioned warehouse with gas heat in BGE service territory in 2014:

$$\Delta$$
kWh = ((455 - 240) / 1000) * 4,116 * 1.00 * 1.02
= 902.6 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) /1000) * ISR * WHFd * CF$

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned, assume WHFe =

WHFd = 1.0.

CF

= Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Illustrative examples - do not use as default assumption

For example, a 240W T5 fixture installed in place of a 455W metal-halide in a warehouse and estimating PJM summer peak coincidence:

$$\Delta kW = ((455 - 240) / 1000) * 1.00 * 1.24 * 0.72$$

= 0.19 kW

Page 312 of 507

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

= $(-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$ ΔMMBTU $= -\Delta kWh * 0.00065$

Where:

= Aspect ratio 755 0.7

0. / 0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁷⁵⁶

= Assumed heating system efficiency 757 0.75

Illustrative examples - do not use as default assumption

For example, a 240W T5 fixture installed in place of a 455W metal-halide in a conditioned warehouse with gas heat in 2014:

ΔMMBTU = -902.6 * 0.00065

= -0.59 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$300.758

⁷⁵⁵ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones.

756 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

⁷⁵⁷ Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁷⁵⁸ Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

Page 313 of 507

Measure Life

The measure life is assumed to be 15 years. 759

Operation and Maintenance Impacts

n/a

 $^{^{759}}$ 'Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 314 of 507

LED Exit Sign

Unique Measure Code(s): CI_LT_RTR_LEDEXI_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the installation of an exit sign illuminated with light emitting diodes (LED). This measure should be limited to retrofit installations.

Definition of Baseline Condition

The baseline condition is an exit sign with a non-LED light-source.

Definition of Efficient Condition

The efficient condition is an exit sign illuminated with light emitting diodes (LED).

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1000) * HOURS * ISR * WHFe

Where:

WattsBASE = Actual Connected load of existing exit sign. If connected

load of existing exit sign is unknown, assume 16 W. 760

WattsEE = Actual Connected load of LED exit sign

HOURS = Average hours of use per year

= 8,760⁷⁶¹

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 ⁷⁶²

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

 $^{^{760}}$ Assumes a fluorescent illuminated exit sign. Wattage consistent with ENERGY STAR assumptions. See

http://www.energystar.gov/ia/business/small_business/led_exitsigns_techsheet.pdf.

⁷⁶¹ Assumes operation 24 hours per day, 365 days per year.

⁷⁶² EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

Page 315 of 507

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

Illustrative examples - do not use as default assumption

For example a 5W LED lamp in place of a 16W CFL in a conditioned office building with gas heat in BGE service territory in 2014:

$$\Delta$$
kWh = ((16 - 5) / 1000) * 8,760 * 1.00 * 1.10
= 106.0 kWh

Summer Coincident Peak kW Savings Algorithm

ΔkW = (WattsBASE - WattsEE) / 1000 * ISR * WHFd * CF

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned, assume WHFe =

WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

 $= 1.0^{763}$

Illustrative examples - do not use as default assumption

For example, a 5W LED lamp in place of a 16W CFL installed in a conditioned office building with gas heat in BGE service territory in 2014 and estimating PJM summer peak coincidence:

$$\Delta kW = ((16 - 5) / 1000) * 1.00 * 1.32 * 1.0$$

= 0.015 kW

⁷⁶³ Efficiency Vermont Technical Reference Manual 2009-55, December 2008.

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

 Δ MMBTU = $(-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$ = $-\Delta kWh * 0.00065$

Where:

0.7 = Aspect ratio 764

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁷⁶⁵

0.75 = Assumed heating system efficiency 766

Illustrative examples - do not use as default assumption

For example, a 5W LED lamp in place of a 16W CFL installed in a conditioned office building with gas heat in BGE service territory in 2014:

 Δ MMBTU = -106 * 0.00065

= -0.069 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$35.767

HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones.
 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁷⁶⁷ Represents the full installed cost of an LED exit sign. LED exit signs can typically be purchased for ~\$25 (see http://www.exitlightco.com/Exit_Signs and "http://www.simplyexitsigns.com"). Assuming replacing exit sign requires 15 minutes of a common building laborer's time in Washington D.C. (RSMeans Electrical Cost Data 2008), the total installed cost would be approximately \$35.

Page 317 of 507

Measure Life

The measure life is assumed to be 7 years. 768

Operation and Maintenance Impacts

	Baseline	
	CFL	
Replacement Cost	\$12 ⁷⁶⁹	
Component Life (years)	1.14 ⁷⁷⁰	

The calculated net present value of the baseline replacement costs are presented below⁷⁷¹:

	NPV of Baseline		
	Replacement Costs		
Baseline	2014		
CFL	\$62.59		

_

⁷⁶⁸ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf. Measure life in source study is reduced by ~50% assuming existing equipment is at one half of its useful life. Represents the full installed cost of a replacement fluorescent lamp. Replacement lamps can typically be purchased for ~\$5 (based on a review of online retailers performed 3/14/2013 including "http://www.exitlightco.com/" and "http://www.1000bulbs.com/"). Assuming lamp replacement requires 15 minutes of a common building laborer's time in Washington D.C. (RSMeans Electrical Cost Data 2008), the total installed cost would be approximately \$12.

sign operating hours of 8,760, estimated lamp life is 1.14 years.

771 Note, these values have been adjusted by the appropriate In Service Rate.

Page 318 of 507

Solid State Lighting (LED) Recessed Downlight Luminaire

Unique Measure Code: CI_LT_TOS_SSLDWN_0615

Effective Date: June 2015

End Date: TBD

Measure Description

This measure describes savings from the purchase and installation of a Solid State Lighting (LED) Recessed Downlight luminaire in place of an incandescent downlight lamp (i.e. time of sale). The SSL downlight should meet the ENERGY STAR Luminaires Version 2.0 specification⁷⁷². The characterization of this measure should not be applied to other types of LEDs.

Note, this measure assumes the baseline is a Bulged Reflector (BR) lamp. This lamp type is generally the cheapest and holds by far the largest market share for this fixture type. They currently are *not* subject to EISA regulations and so this characterization does not include the baseline shift provided in other lighting measures.

Definition of Baseline Condition

The baseline is the purchase and installation of a standard BR30-type incandescent downlight light bulb.

Definition of Efficient Condition

The efficient condition is the purchase and installation of an ENERGY STAR Solid State Lighting (LED) Recessed Downlight luminaire.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1,000) * ISR * HOURS * WHFe

Where:

WattsBASE

= Connected load of baseline lamp

⁷⁷² ENERGY STAR specification can be viewed here: https://www.energystar.gov/sites/default/files/asset/document/Luminaires%20V2%200%20Fin al.pdf

Page 319 of 507

= Actual if retrofit, if LED lumens is known - find the equivalent baseline wattage from the table below 773, if unknown assume 65W⁷⁷⁴

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	400	449	40
Reflector with medium screw bases w/	450	499	45
diameter <=2.25"	500	649	50
	650	1199	65
	640	739	40
	740	849	45
	850	1179	50
R, PAR, ER, BR, BPAR or similar bulb	1180	1419	65
shapes with medium screw bases w/	1420	1789	75
diameter >2.5" (*see exceptions below)	1790	2049	90
	2050	2579	100
	2580	3429	120
	3430	4270	150
	540	629	40
	630	719	45
	720	999	50
R, PAR, ER, BR, BPAR or similar bulb	1000	1199	65
shapes with medium screw bases w/ diameter > 2.26" and ≤ 2.5" (*see	1200	1519	75
exceptions below)	1520	1729	90
,	1730	2189	100
	2190	2899	120
	2900	3850	150
*ER30, BR30, BR40, or ER40	400	449	40
	450	499	45
	500	649-1179 ⁷⁷⁵	50
*BR30, BR40, or ER40	650	1419	65
*R20	400	449	40

http://www.energystar.gov/index.cfm?c=cfls.pr_cfls_lumens
Baseline wattage based on common 65 Watt BR30 incandescent bulb (e.g. http://www.destinationlighting.com/storeitem.jhtml?iid=16926)

775 The upper bounds for these categories depends on the lower bound of the next higher

wattage, which varies by bulb type.

Page 320 of 507

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	450	719	45
*All reflector lamps	200	299	20
below lumen ranges specified above	300	399-639 ⁷⁷⁶	30

WattsFF = Connected load of efficient lamp

= Actual. If unknown assume 9.2W 777

ISR = In Service Rate or percentage of units rebated that

get installed.

 $= 1.0^{778}$

HOURS = Average hours of use per year

> = If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific

annual operating hours information. 779

WHFe = Waste Heat Factor for Energy to account for

cooling and heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC

equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd =

1.0.

Summer Coincident Peak kW Savings Algorithm

= ((WattsBase - WattsEE) /1000) * ISR * WHFd * CF ΔkW

Where:

⁷⁷⁶ As above.

⁷⁷⁷ Energy Efficient wattage based on 12 Watt LR6 Downlight from LLF Inc. (http://site4.marketsmartinteractive.com/products.htm) Adjusted by ratio of Im/w in ENERGY STAR V2.0 compared to ENERGY STAR V1.2 specification.

⁷⁷⁸ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 -May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

⁷⁷⁹ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Page 321 of 507

WHFd	= Waste Heat	Factor for	Demand to	account for	cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

 Δ MMBTU = $(-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$

 $= (-\Delta kWh / WFHe) * 0.00073$

Where:

0.7 = Aspect ratio 780

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁷⁸¹

0.75 = Assumed heating system efficiency 782

Annual Water Savings Algorithm

n/a

Incremental Cost

If the implementation strategy allows the collection of actual costs, or an appropriate average, then that should be used. If not, the incremental cost for this measure is assumed to be $$36^{783}$.

7

HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁷⁸³ Based on VEIC product review, April 2015. Baseline bulbs available in \$3-\$5 range, and SSL bulbs available in \$20-\$60 range. Incremental cost of \$36 therefore assumed (\$4 for the baseline bulb and \$40 for the SSL). Note, this product is likely to fall rapidly in cost, so this

Page 322 of 507

Measure Life

The measure life is assumed to be 14.2 years for downlights featuring inseparable components and 7.1 years for downlights with replaceable parts ⁷⁸⁴.

Operation and Maintenance Impacts

The levelized baseline replacement cost over the lifetime of the SSL is calculated (see 'MidAtlantic Lighting Adjustments and O&M_041816.xls'). The key assumptions used in this calculation are documented below:

	BR-type
	Incandescent
Replacement Lamp Cost	\$4.00
Replacement Labor Cost	\$2.56 ⁷⁸⁵
Component Life (years)	0.57 ⁷⁸⁶

The calculated net present value of the baseline replacement costs is \$116 for downlights featuring inseparable components and \$67 for downlights with replaceable parts. 787

should be reviewed frequently. Product review, November 2012 and March 2014 suggests incremental cost estimate is still appropriate and wide range of costs available.

⁷⁸⁷ Analysis assumes a discount rate of 5%.

The ENERGY STAR specification for solid state recessed downlights requires luminaires to maintain >=70% initial light output for 25,000 hours in an indoor application for separable luminaires and 50,000 for inseparable luminaires. Measure life is therefore assumed to be 14.2 years for downlights featuring inseparable components (calculated as 50,000 hours divided by an approximate 3,500 annual operating hours) and 7.1 years for downlights with replaceable parts (25,000/3,500).

 $^{^{785}}$ Itron, Inc. 2014. A Study of Non-Energy Impacts for the State of Maryland REVIEW DRAFT. 786 Assumes rated life of BR incandescent bulb of 2,000 hours, based on product review. Lamp life is therefore 2,000/3,500 = 0.57 years.

Page 323 of 507

Delamping

Unique Measure Code(s): CI_LT_ERT_DELAMP_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the permanent removal of a lamp and the associated electrical sockets (or "tombstones") from a fixture.

Definition of Baseline Condition

The baseline conditions will vary dependent upon the characteristics of the existing fixture. For illustrative purposes, a baseline three lamp 4ft T8 Fixture with input wattage of 89W is assumed.

Definition of Efficient Condition

The efficient condition will vary depending on the existing fixture and the number of lamps removed. For illustrative purposes, a two lamp 4ft T8 Fixture on a three lamp ballast (67W) is assumed.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1000) * HOURS * WHFe

Where:

WattsBASE WattsEE Actual Connected load of baseline fixtureActual Connected load of delamped fixture

HOURS = Average hours of use per year

= If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating

hours information. 788

WHFe

= Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

⁷⁸⁸ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Page 324 of 507

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) * WHFd * CF$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat"

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Illustrative examples - do not use as default assumption

For example, one lamp of a three lamp 4ft T8 Fixture (89W) is removed (leaving 67W) in a conditioned office building with gas heat in BGE service territory in 2014 and estimating PJM summer peak coincidence:

$$\Delta$$
kW = ((89 - 67) / 1000) * 1.32 * 0.69
= 0.020 kW

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

$$\Delta$$
MMBTU = $(-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$
= $-\Delta kWh * 0.00065$

Where:

Page 325 of 507

0.7 = Aspect ratio 789

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁷⁹⁰

0.75 = Assumed heating system efficiency ⁷⁹¹

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$10.8 per fixture. 792

Measure Life

The measure life is assumed to be 15 years. 793

Operation and Maintenance Impacts

Delamping reduces the number of periodic lamp replacements required, saving \$1.25/year.

_

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

⁷⁸⁹ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones.

⁷⁹⁰ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for

Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

791 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁷⁹² Assumes delamping a single fixture requires 15 minutes of a common building laborer's time in Washington D.C.; Adapted from RSMeans Electrical Cost Data 2008.

⁷⁹³ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

Page 326 of 507

Occupancy Sensor - Wall-, Fixture-, or Remote-Mounted

Unique Measure Code(s): CI_LT_TOS_OSWALL_0614,

CI_LT_TOS_OSFIX/REM_0614 Effective Date: June 2014

End Date: TBD

Measure Description

This measure defines the savings associated with installing a wall-, fixture, or remote-mounted occupancy sensor that switches lights off after a brief delay when it does not detect occupancy.

Definition of Baseline Condition

The baseline condition is lighting that is controlled with a manual switch.

Definition of Efficient Condition

The efficient condition is lighting that is controlled with an occupancy sensor.

Annual Energy Savings Algorithm

ΔkWh = kWconnected * HOURS * SVGe * ISR * WHFe

Where:

kWconnected= Assumed kW lighting load connected to control.

HOURS = Average hours of use per year

= If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating

hours information. 794

⁷⁹⁴ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Page 327 of 507

SVGe = Percentage of annual lighting energy saved by lighting

control; determined on a site-specific basis or using

default below.

 $= 0.28^{795}$

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 ⁷⁹⁶

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&L Lighting - Known HVAC Types" in Append

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm

ΔkW = kWconnected * SVGd * ISR * WHFd * CF

Where:

svGd = Percentage of lighting demand saved by lighting control;

determined on a site-specific basis or using default below.

 $= 0.14^{-797}$

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

⁷⁹⁵ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

⁷⁹⁶ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

⁷⁹⁷ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

Illustrative examples - do not use as default assumption

For example, a 400W connected load being controlled in a conditioned office building with gas heat in BGE service territory in 2014 and estimating PJM summer peak coincidence:

$$\Delta$$
kW = 0.4 * 0.14 * 1.00 * 1.32 * 0.69
= 0.051 kW

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

$$\Delta$$
MMBTU = $(-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$
= $-\Delta kWh * 0.00065$

Where:

= Aspect ratio 798 0.7 0.003413 = Constant to convert kWh to MMBTU 0.23= Fraction of lighting heat that contributes to space heating ⁷⁹⁹ = Assumed heating system efficiency 800 0.75

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$115 per control for wall occupancy sensors, \$200 per control for fixture-mounted and remotemounted occupancy sensors. 801

⁷⁹⁸ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones. ⁷⁹⁹ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions). 800 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

Page 329 of 507

Measure Life

The measure life is assumed to be 10 years. 802

Operation and Maintenance Impacts

n/a

 $^{^{801}}$ Northeast Energy Efficiency Partnerships Incremental Cost Study Report, Navigant, 2011. Sensors costs assume the simple average of cost for those sensors using only passive infrared

technology and those using both passive infrared and ultrasonic technology.

802 Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

Page 330 of 507

Daylight Dimming Control

Unique Measure Code(s): CI_LT_TOS_DDIM_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure defines the savings associated with installing a daylighting dimming control system to reduce electric lighting levels during periods of high natural light. Systems typical include daylight sensors, control electronics, and, if necessary, dimmable ballasts.

Definition of Baseline Condition

The baseline condition is lighting that is controlled with a manual switch.

Definition of Efficient Condition

The efficient condition is lighting that is controlled with a daylight dimming system capable of continuous dimming to reduce electric lighting to the lowest possible levels during periods of adequate natural light.

Annual Energy Savings Algorithm

 $\Delta kWh = kWconnected x HOURS x SVG x ISR x WHFe$

Where:

kWconnected= Assumed kW lighting load connected to control.

HOURS = Average hours of use per year

= If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating

hours information.⁸⁰³

⁸⁰³ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Page 331 of 507

SVG = Percentage of annual lighting energy saved by lighting

control; determined on a site-specific basis or using

default below.

 $= 0.28^{804}$

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 805

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

 Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix

D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm⁸⁰⁶

 $\Delta kW = kW$ connected x SVG x ISR x WHFd x CF

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Illustrative examples - do not use as default assumption

8

Williams, A., B. Atkinson, K. Garesi, E. Page, and F. Rubinstein. 2012. "Lighting Controls in Commercial Buildings." The Journal of the Illuminating Engineering Society of North America 8 (3): 161-180.

<sup>(3): 161-180.

805</sup> EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014

⁸⁰⁶ As a conservative assumption, the peak demand savings algorithm assumes the same annual savings factor (SVG) as the energy savings equation. It is probable that higher than average availability of daylight coincides with summer peak periods. This factor is a candidate for future study as increased accuracy will likely lead to increased peak demand savings estimates.

For example, a 400W connected load being controlled in a conditioned office building with gas heat in BGE service territory in 2014 and estimating PJM summer peak coincidence:

$$\Delta$$
kW = 0.4 * 0.28 * 1.00 * 1.32 * 0.69
= 0.10 kW

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

$$\Delta$$
MMBTU = $(-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$
= $-\Delta kWh * 0.00065$

Where:

0.7 = Aspect ratio 807 0.003413 = Constant to convert kWh to MMBTU 0.23 = Fraction of lighting heat that contributes to space heating 808 0.75 = Assumed heating system efficiency 809

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$100 per ballast controlled for both fixture-mounted and remote-mounted daylight sensors. 810

HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones.
 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁸¹⁰ Northeast Energy Efficiency Partnerships Incremental Cost Study Report, Navigant, 2011. Assumes the simple average of cost of all photosensors types. Source does not differentiate costs between fixture and remote-mounted sensors.

Page 333 of 507

Measure Life

The measure life is assumed to be 10 years. 811

Operation and Maintenance Impacts

n/a

⁸¹¹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf

Page 334 of 507

Advanced Lighting Design - Commercial

Unique Measure Code(s): CI_LT_TOS_ADVLTNG_0615

Effective Date: June 2015

End Date: TBD

Measure Description

Advanced lighting design refers to the implementation of various lighting design principles aimed at creating a quality and appropriate lighting experience while reducing unnecessary light usage. This is often done by a professional in a new construction situation. Advanced lighting design uses techniques like maximizing task lighting and efficient fixtures to create a system of optimal energy efficiency and functionality to ultimately reduce the wattage required per square foot while maintaining acceptable lumen levels.

This measure characterization is intended for use in new construction or in existing buildings where significant lighting renovations are taking place and energy code requirements must be met.

Definition of Baseline Condition

The baseline condition assumes compliance with lighting power density requirements as mandated by jurisdiction: Maryland Building Performance Standards (2015 International Energy Conservation Code); Title 16, Chapter 76 of the Delaware Code (2012 International Energy Conservation Code); and District of Columbia Construction Codes Supplement of 2013 (2012 International Energy Conservation Code). Because lighting power density requirements differ by jurisdiction, this measure entry presents two different baseline conditions to be used in each of the three relevant jurisdictions. For completeness, the lighting power density requirements for both the Building Area Method and the Space-by-Space Method are presented. 812

Definition of Efficient Condition

Energy code lighting power density requirements can generally be satisfied by using one of two methods. The Building Area Method simply applies a blanket LPD requirement to the entire building based on the building type. Broadly speaking, as long as the total connected lighting wattage divided by the total floor space does not exceed the LPD requirement, the code is satisfied. The second method, the Space-by-Space Method, provides LPD requirements by space type based on the function of the particular space (e.g., "Hospital - Operating Room", "Library - Reading Room"). LPD requirements must be satisfied for each individual space in the building. This method usually allows a higher total connected wattage as compared to the Building Area Method.

Page 335 of 507

The efficient condition assumes lighting systems that achieve lighting power densities below the maximum lighting power densities required by the relevant jurisdictional energy codes as described above. Actual lighting power densities should be determined on a site-specific basis.

Annual Energy Savings Algorithm⁸¹³

ΔkWh = ((LPDBASE - LPDEE) / 1000) * AREA * HOURS * WHFe

Where:

LPDBASE = Baseline lighting power density for building or space type

 (W/ft^2) . See tables below for values by jurisdiction and

method.

LPDEE = Efficient lighting power density (W/ft^2)

= Actual calculated

AREA = Building or space area (ft^2) HOURS = Average hours of use per year

> = If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating

hours information. 814

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

⁸¹³ If the Space-by-Space Method is used, the total energy savings will be the sum of the energy savings for each individual space type.

⁸¹⁴ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Page 336 of 507

Building Area Method Baseline <u>LPD Requirements</u> by Jurisdiction 815

	Lighting Power Density (W/ft²)	
Building Area Type	Washington, D.C. and Delaware	Maryland
Automotive Facility	0.90	0.80
Convention Center	1.20	1.01
Court House	1.20	1.01
Dining: Bar Lounge/Leisure	1.30	1.01
Dining: Cafeteria/Fast Food	1.40	0.90
Dining: Family	1.60	0.95
Dormitory	1.00	0.57
Exercise Center	1.00	0.84
Fire Station	0.80	0.67
Gymnasium	1.10	0.94
Healthcare-Clinic	1.00	0.90
Hospital	1.20	1.05
Hotel	1.00	0.87
Library	1.30	1.19
Manufacturing Facility	1.30	1.17
Motel	1.00	0.87
Motion Picture Theatre	1.20	0.76
Multi-Family	0.70	0.51
Museum	1.10	1.02
Office	0.90	0.82
Parking Garage	0.30	0.21
Penitentiary	1.00	0.81
Performing Arts Theatre	1.60	1.39

_

⁸¹⁵ IECC 2015, Table C405.4.2(1); IECC 2012, Table C405.5.2(1). Note that the Delaware energy code may also be satisfied by meeting the requirements of ASHRAE 90.1-2010, Table 9.5.1. As the IECC 2012 requirements are less stringent they are presented here.

	Lighting Power Density (W/ft ²)	
Building Area Type	Washington, D.C. and Delaware	Maryland
Police Station	1.00	0.87
Post Office	1.10	0.87
Religious Building	1.30	1.00
Retail	1.40	1.26
School/University	1.20	0.87
Sports Arena	1.10	0.91
Town Hall	1.10	0.89
Transportation	1.00	0.70
Warehouse	0.60	0.66
Workshop	1.40	1.19

Space-by-Space Method Baseline LPD Requirements for Washington, D.C. and Delaware $^{\rm 816}$

and belaware		
Common Space-By-Space Types	Lighting Power Density (W/ft²)	
Atrium - First 40 feet in height	0.03 per ft. ht.	
Atrium - Above 40 feet in height	0.02 per ft. ht.	
Audience/seating area - Permanent		
For auditorium	0.9	
For performing arts theater	2.6	
For motion picture theater	1.2	
Classroom/lecture/training	1.3	
Conference/meeting/multipurpose	1.2	
Corridor/transition	0.7	

⁸¹⁶ IECC 2012, Table C405.5.2(2). Note that the Delaware energy code may also be satisfied by meeting the requirements of ASHRAE 90.1-2010, Table 9.5.1. As the IECC 2012 requirements are less stringent they are presented here.

Page 338 of 507

Dining Area		
Bar/lounge/leisure dining	1.4	
Family dining area	1.4	
Dressing/fitting room performing arts theater	1.1	
Electrical/mechanical	1.1	
Food preparation	1.2	
Laboratory for classrooms	1.3	
Laboratory for medical/industrial/research	1.8	
Lobby	1.1	
Lobby for performing arts theater	3.3	
Lobby for motion picture theater	1.0	
Locker room	0.8	
Lounge recreation	0.8	
Office - enclosed	1.1	
Office - open plan	1.0	
Restroom	1.0	
Sales area	1.6	
Stairway	0.7	
Storage	0.8	
Workshop	1.6	
Courthouse/police station/penitentiary		
Courtroom	1.9	
Confinement cells	1.1	
Judge chambers	1.3	
Penitentiary audience seating	0.5	
Penitentiary classroom	1.3	
Penitentiary dining	1.1	
Building Specific Space-By-Space Types	Lighting Power Density (W/ft²)	

Page 339 of 507

Bank/office - banking activity area 1.5 Dormitory living quarters 1.1 Gymnasium/fitness center 0.9 Fitness area 0.9 Gymnasium audience/seating 0.4 Playing area 1.4 Healthcare clinic/hospital 1.0 Corridor/transition 1.0 Exam/treatment 1.7 Emergency 2.7 Public and staff lounge 0.8 Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel 1.1 Dining area 1.3 Guest rooms 1.1 Highway lodging dining 1.2 Highway lodging guest rooms 1.1	Automobile - service/repair	0.7
Gymnasium/fitness center Fitness area 0.9 Gymnasium audience/seating 0.4 Playing area 1.4 Healthcare clinic/hospital Corridor/transition 1.0 Exam/treatment 1.7 Emergency 2.7 Public and staff lounge 0.8 Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Bank/office - banking activity area	1.5
Fitness area 0.9 Gymnasium audience/seating 0.4 Playing area 1.4 Healthcare clinic/hospital 1.0 Corridor/transition 1.0 Exam/treatment 1.7 Emergency 2.7 Public and staff lounge 0.8 Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Dormitory living quarters	1.1
Gymnasium audience/seating Playing area 1.4 Healthcare clinic/hospital Corridor/transition Exam/treatment 1.7 Emergency 2.7 Public and staff lounge Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation Laundry - washing Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 4.4 1.4 1.4 1.5 1.6 1.7 1.7 2.7 2.7 2.7 2.7 2.7 2.7	Gymnasium/fitness center	
Playing area 1.4	Fitness area	0.9
Healthcare clinic/hospital Corridor/transition 1.0 Exam/treatment 1.7 Emergency 2.7 Public and staff lounge 0.8 Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Gymnasium audience/seating	0.4
Corridor/transition 1.0 Exam/treatment 1.7 Emergency 2.7 Public and staff lounge 0.8 Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Playing area	1.4
Exam/treatment 1.7 Emergency 2.7 Public and staff lounge 0.8 Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Healthcare clinic/hospital	
Emergency 2.7 Public and staff lounge 0.8 Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Corridor/transition	1.0
Public and staff lounge 0.8 Medical supplies 1.4 Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Exam/treatment	1.7
Medical supplies Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation Laundry - washing Dining area Guest rooms Hotel lobby Highway lodging dining 1.4 1.4 1.4 1.6 1.7 1.8 1.9 1.9 1.9 1.1 1.4 1.0 1.0 1.0 1.1 1.1 1.1	Emergency	2.7
Nursery 0.9 Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Public and staff lounge	0.8
Nurse station 1.0 Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Medical supplies	1.4
Physical therapy 0.9 Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Nursery	0.9
Patient Room 0.7 Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Nurse station	1.0
Pharmacy 1.2 Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Physical therapy	0.9
Radiology/imaging 1.3 Operating room 2.2 Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Patient Room	0.7
Operating room Recovery Lounge/recreation Laundry - washing Dining area Dining area Guest rooms Hotel lobby Highway lodging dining 2.2 1.2 1.2 1.3 2.1 1.4 1.5 1.6 1.7 1.7 1.8 1.9 1.9 1.9 1.1	Pharmacy	1.2
Recovery 1.2 Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Radiology/imaging	1.3
Lounge/recreation 0.8 Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Operating room	2.2
Laundry - washing 0.6 Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Recovery	1.2
Hotel Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Lounge/recreation	0.8
Dining area 1.3 Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Laundry - washing	0.6
Guest rooms 1.1 Hotel lobby 2.1 Highway lodging dining 1.2	Hotel	
Hotel lobby 2.1 Highway lodging dining 1.2	Dining area	1.3
Highway lodging dining 1.2	Guest rooms	1.1
	Hotel lobby	2.1
Highway lodging guest rooms 1.1	Highway lodging dining	1.2
	Highway lodging guest rooms	1.1

Page 340 of 507

Library	
Stacks	1.7
Card file and cataloging	1.1
Reading area	1.2
Manufacturing	
Corridor/transition	0.4
Detailed manufacturing	1.3
Equipment room	1.0
Extra high bay (>50-foot floor- ceiling height)	1.1
High bay (25-50-foot floor-ceiling height)	1.2
Low bay (<25-foot floor-ceiling height)	1.2
Museum	
General exhibition	1.0
Restoration	1.7
Parking garage - garage areas	0.2
Convention center	
Exhibit space	1.5
Audience/seating area	0.9
Fire stations	
Engine room	0.8
Sleeping quarters	0.3
Post office - sorting area	0.9
Religious building	
Fellowship hall	0.6
Audience seating	2.4
Worship pulpit/choir	2.4
Retail	
Dressing/fitting area	0.9
Mall concourse	1.6

Page 341 of 507

Sales area	1.6	
Sports arena		
Audience seating	0.4	
Court sports area - Class 4	0.7	
Court sports area - Class 3	1.2	
Court sports area - Class 2	1.9	
Court sports area - Class 1	3.0	
Ring sports arena	2.7	
Transportation		
Airport/train/bus baggage area	1.0	
Airport concourse	0.6	
Terminal - ticket counter	1.5	
Warehouse		
Fine material storage	1.4	
Medium/bulky material	0.6	

Space-by-Space Method Baseline LPD Requirements for Maryland 817

Common Space-By-Space Types	Lighting Power Density (W/ft²)	
Atrium		
Less than 40 feet in height	0.03 per foot in total height	
Greater than 40 feet in height	0.40 + 0.02 per foot in total height	
Audience seating area		
In an auditorium	0.63	
In a convention center	0.82	
In a gymnasium	0.65	
In a motion picture theater	1.14	
In a penitentiary	0.28	

⁸¹⁷ IECC 2015, Table C405.4.2(2).

Page 342 of 507

In a performing arts theater	2.43	
In a religious building	1.53	
In a sports arena	0.43	
Otherwise	0.43	
Banking activity area	1.01	
Breakroom (See Lounge/Breakroom)		
Classroom/lecture hall/training room		
In a penitentiary	1.34	
Otherwise	1.24	
Conference/meeting/multipurpose room	1.23	
Copy/print room	0.72	
Corridor		
In a facility for the visually impaired (and not used primarily by staff)	0.92	
In a hospital	0.79	
In a manufacturing facility	0.41	
Otherwise	0.66	
Courtroom	1.72	
Computer room	1.71	
Dining area		
In a penitentiary	0.96	
In a facility for the visually impaired (and not used primarily by staff)	1.9	
In bar/lounge or leisure dining	1.07	
In cafeteria or fast food dining	0.65	
In family dining	0.89	
Otherwise	0.65	
Electrical/mechanical room	0.95	
Emergency vehicle garage	0.56	
Food preparation area	1.21	
Guest room	0.47	
<u> </u>		

Page 343 of 507

Laboratory	
In or as a classroom	1.43
Otherwise	1.81
Laundry/washing area	0.6
Loading dock, interior	0.47
Lobby	
In a facility for the visually impaired (and not used primarily by the staff)	1.8
For an elevator	0.64
In a hotel	1.06
In a motion picture theater	0.59
In a performing arts theater	2.0
Otherwise	0.9
Locker room	0.75
Lounge/breakroom	
In a healthcare facility	0.92
Otherwise	0.73
Office	
Enclosed	1.11
Open plan	0.98
Parking area, interior	0.19
Pharmacy area	1.68
Restroom	
In a facility for the visually impaired (and not used primarily by the staff)	1.21
Otherwise	0.98
Sales area	1.59
Seating area, general	0.54
Stairway (See space containing stairway)	
Stairwell	0.69
Storage room	0.63

Page 344 of 507

Vehicular maintenance area	0.67		
Workshop	1.59		
Building Type Specific Space Types	Lighting Power Density (W/ft²)		
Facility for the visually impaired			
In a chapel (and not used primarily by the staff)	2.21		
In a recreation room (and not used primarily by the staff)	2.41		
Automotive (See Vehicular Maintenance Area above)			
Convention Center - exhibit space	1.45		
Dormitory - living quarters	0.38		
Fire Station - sleeping quarters	0.22		
Gymnasium/fitness center			
In an exercise area	0.72		
In a playing area	1.2		
Healthcare facility			
In an exam/treatment room	1.66		
In an imaging room	1.51		
In a medical supply room	0.74		
In a nursery	0.88		
In a nurse's station	0.71		
In an operating room	2.48		
In a patient room	0.62		
In a physical therapy room	0.91		
In a recovery room	1.15		
Library			
In a reading area	1.06		
In the stacks	1.71		
Manufacturing facility			
In a detailed manufacturing facility	1.29		

Page 345 of 507

1.05
1 22
1.23
1.19
1.05
1.02
0.61
0.94
0.64
1.53
0.71
1.1
3.68
2.4
1.8
1.2
0.53
0.36
0.8
0.58

Illustrative examples - do not use as default assumption

For example, assuming a 15,000 ft² conditioned office building with gas heat in in DE using the Building Area Method with an LPDEE of 0.75:

$$\Delta$$
kWh = ((0.9 - 0.75) / 1000) * 15,000 * 2,969 * 1.10
= 7,348 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = ((LPDBASE - LPDEE) / 1000) * AREA * WHFd * CF$$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Illustrative examples - do not use as default assumption

For example, assuming a 15,000 ft² conditoned office building with gas heat in DE using the Building Area Method with an LPDEE of 0.75 and estimating PJM summer peak coincidence:

$$\Delta$$
kWh = ((0.9 - 0.75) / 1000) * 15,000 * 1.32 * 0.69
= 2.05 kW

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

Page 347 of 507

Δ MMBTU	= (-ΔkWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75
	= (-ΔkWh / WHFe) * 0.00073

Where:

0.7 = Aspect ratio ⁸¹⁸ 0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating 819

0.75 = Assumed heating system efficiency 820

Illustrative examples - do not use as default assumption

For example, assuming a 15,000 ft² conditioned office building with gas heat in DE using the Building Area Method with an LPDEE of 0.75:

$$\Delta$$
kWh = (-7,348 / 1.10) * 0.00073
= -4.88 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs will vary greatly from project to project depending on the advanced lighting design principles and lighting technologies used. Incremental costs should be estimated on a case-by-case basis.

Measure Life

The measure life is assumed to be 15 years. 821

_

 ⁸¹⁸ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
 819 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 820 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁸²¹ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007.

http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf. Assumes
Advanced Lighting Design lifetime will be consistent with that of the "Fluorescent Fixture" measure from the reference document. This measure life assumes that the most common implementation of this measure will be for new construction or major renovation scenarios

Page 348 of 507

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of the efficient and baseline replacement components, there may be significant operation and maintenance impacts associated with this measure. Actual operation and maintenance costs should be estimated on a case-by-case basis.

where new fixtures are installed. In such cases, adopting the fixture lifetime for the LPD reduction measure seems most appropriate.

Page 349 of 507

LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Luminaires and Retrofit Kits

Unique Measure Code(s): CI_LT_TOS_LEDODPO_0615 and

CI_LT_RTR_LEDODPO_0615 Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of an LED outdoor pole/arm- or wall-mounted luminaire or retrofit kit for parking lot, street, or general area illumination in place of a high-intensity discharge light source. Eligible applications include time of sale or new construction and retrofit applications.

Definition of Baseline Condition

The baseline condition is defined as an outdoor pole/arm- or wall-mounted luminaire with a high intensity discharge light-source. Typical baseline technologies include metal halide (MH) and high pressure sodium (HPS) lamps.

Definition of Efficient Condition

The efficient condition is defined as an LED outdoor pole/arm- or wall-mounted luminaire or retrofit kit. Eligible fixtures and retrofit kits must be listed on the DesignLights Consortium Qualified Products List⁸²².

Annual Energy Savings Algorithm

 $\Delta kWh = ((WattsBASE - WattsEE) / 1000) * HOURS$

Where:

WattsBASE = Actual Connected load of baseline fixture

= If the actual baseline fixture wattage is unknown, use the default values presented in the "Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Baseline and

Efficient Wattage" table below.

WattsEE = Actual Connected load of the LED fixture

⁸²² DesignLights Consortium Qualified Products List

http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php

Page 350 of 507

= If the actual LED fixture wattage is unknown, use the default values presented in the "Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Baseline and Efficient Wattage" table below based on the appropriate baseline description.

Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Baseline and Efficient Wattage 823

Measure Category	Baseline Description	WattsBASE	Efficient Description	WattsEE
LED Outdoor Area Fixture replacing up to 175W HID	175W or less base HID	171	DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires	99
LED Outdoor Area Fixture replacing 176-250W HID	176W up to 250W base HID	288	DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires	172
LED Outdoor Area Fixture replacing 251-400W HID	251W up to 400W base HID	452	DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires	293

3.5 1. 1. (0.1.

Efficiency Program Administrators, 2011, and 2012 Statewide Customized Offering Procedures Manual for Business - Appendix B Table of Standard Fixture Wattages and Sample Lighting Table, Southern California Edison et al., 2012. As the total wattage assumptions for like fixtures typically do not vary by more than a few watts between sources, the values from the Arkansas document have been adopted here. Efficient fixture wattage estimated assuming mean delivered lumen equivalence between the baseline and efficient case. Baseline initial lamp lumen output was reduced by estimates of lamp lumen depreciation and optical efficiency. Efficient wattage and lumen information was collected from appropriate product categories listed in the DesignLights Consortium Qualified Products List - Updated 11/21/2012. Analysis presented in the "Mid Atlantic C&I LED Lighting Analysis.xlsx" supporting workbook.

Baseline and efficient fixtures have been grouped into wattage categories based on typical applications. The typical baseline equipment in each group was weighted based on personal communication with Kyle Hemmi, CLEAResult on Sept. 18. 2012. Weighting reflects implementation program data from Texas, Nevada, Rocky Mountain, and Southwest Regions. When adequate program data is collected from the implementation of this measure in the Mid-Atlantic region, these weightings should be updated accordingly. Baseline fixture wattage assumptions developed from multiple TRMs including: Arkansas TRM Version 2.0, Volume 2: Deemed Savings, Frontier Associates, LLC, 2012; Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2012 Program Year - Plan Version, Massachusetts Electric and Gas Energy

Page 351 of 507

Measure Category	Baseline Description	WattsBASE Efficient Description		WattsEE
LED Outdoor Area Fixture replacing 401-1000W HID	401W up to 1000W base HID	1075	DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires	663

HOURS

= Average hours of use per year

= If annual operating hours are unknown, assume 3,338 824. Otherwise, use site specific annual operating hours information. 825

Illustrative examples - do not use as default assumption

For example, a 250W metal halide fixture is replaced with an LED fixture:

$$\Delta$$
kWh = ((288 - 172) / 1000) * 3,338
= 387 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = ((WattsBASE - WattsEE) / 1000) * CF$$

Where:

CF = Summer Peak Coincidence Factor for measure = 0 826

Illustrative examples - do not use as default assumption

For example, a 250W metal halide fixture is replaced with an LED fixture:

$$\Delta kW = ((288 - 172) / 1000) * 0$$

_

⁸²⁴ Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey.

⁸²⁵ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁸²⁶It is assumed that efficient outdoor area lighting, when functioning properly, will never result in coincident peak demand savings.

Page 352 of 507

= 0 kW

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

Incremental Cost⁸²⁷

Measure Category	Installed Cost	Incremental Cost			
LED Outdoor Pole/Arm Area and Roadway Luminaires					
Fixture replacing up to 175W HID	\$460	\$195			
Fixture replacing 176-250W HID	\$620	\$310			
Fixture replacing 251+ HID	\$850	\$520			
LED Wall-Mounted Area Luminaires					
All Fixtures	\$250	\$120			

Measure Life

The measure life is assumed to be 18 years. 828

Operation and Maintenance Impacts⁸²⁹

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. Estimated O&M savings and the component cost and lifetime assumptions are presented in the table below.

⁸²⁷ Efficiency Maine Technical Reference User Manual No. 2010-1, 2010.

Products List - Updated 4/3/2015 https://www.designlights.org/resources/file/NEEPDLCQPL is 50,000 hours for both luminaires and retrofit kits. Assuming average annual operating hours of 3,338 (Efficiency Vermont TRM User Manual No. 2014-85b; based on 5 years of metering on 235 outdoor circuits in New Jersey), the estimated measure life is 15 years.

⁸²⁹ Component information for the <175W HID and 176-250W HID categories adopted from Efficiency Vermont TRM User Manual No. 2012-77a. The remaining categories are based on a review of pricing for available products from http://1000bulbs.com. Accessed on 11/22/2012. NPV O&M Savings calculated assuming a 5% discount rate; detailed calculation presented in the "Mid Atlantic C&I LED Lighting Analysis.xlsx" workbook.

Page 353 of 507

Measure Category	Baseline Description	Lamp Life (Hours)	Lamp Cost	Lamp Rep. Labor/Disp osal Cost	Ballast Life (Hours)	Ballast Cost	Ballast Rep. Labor/Dis posal Cost	NPV O&M Savings
LED Outdoor Area Fixture replacing up to 175W HID	175W or less base HID	10000	\$31.00	\$2.92	40000	\$95.85	\$27.50	\$180.37
LED Outdoor Area Fixture replacing 176- 250W HID	176W up to 250W base HID	10000	\$21.00	\$2.92	40000	\$87.75	\$27.50	\$147.44
LED Outdoor Area Fixture replacing 251- 400W HID	251W up to 400W base HID	10000	\$11.00	\$2.92	40000	\$60.46	\$27.50	\$114.52
LED Outdoor Area Fixture replacing 401- 1000W HID	401W up to 1000W base HID	10000	\$23.00	\$2.92	40000	\$100.09	\$27.50	\$154.03

Page 354 of 507

LED High-Bay Luminaires and Retrofit Kits

Unique Measure Code(s): CI_LT_TOS_LEDHB_0615 and

CI_LT_RTR_LEDHB_0615 Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of an LED high-bay luminaire or retrofit kit for general area illumination in place of a high-intensity discharge or fluorescent light source. Eligible applications include time of sale or new construction luminaires and retrofit kits installed at a minimum height of 20 feet. Because of the improved optical control afforded by LED luminaires and retrofit kits, LED lighting systems can typically reduce total lumen output while maintaining required illuminance on work surfaces. Therefore, illuminance calculations should be performed in the process of selecting LED luminaires.

Definition of Baseline Condition

The baseline condition is defined as a high-bay luminaire with a high intensity discharge or fluorescent light-source. Typical baseline technologies include pulse-start metal halide (PSMH) and fluorescent T5 high-output fixtures. For time of sale applications, the baseline condition will vary depending upon the specific characteristics of the fixtures installed (e.g. light source technology, number of lamps). For retrofit applications, the baseline is the existing fixture.

Definition of Efficient Condition

The efficient condition is defined as an LED high-bay luminaire. Eligible fixtures must be listed on the DesignLights Consortium Qualified Products List⁸³⁰.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1000) * HOURS * ISR * WHFe

Where:

WattsBASE = Actual Connected load of baseline fixture
WattsEE = Actual Connected load of the LED fixture

HOURS = Average hours of use per year

⁸³⁰ DesignLights Consortium Qualified Products List http://www.designlights.org/QPL

ISR

MID-ATLANTIC TECHNICAL REFERENCE MANUAL VERSION 6.0/May 2016

Page 355 of 507

= If annual operating hours are unknown, see table "C&l Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating

hours information.831

= In Service Rate or percentage of units rebated that get

installed = 1.00 832

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

Illustrative examples - do not use as default assumption

For example, a 250W pulse start metal halide fixture delivering 16,000 mean system lumens is replaced with an LED fixture drawing 178W in a warehouse with gas heat in BGE service territory: 833

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) * ISR * WHFd * CF$

Where:

8:

⁸³¹ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.
832 Because of the comparatively high cost of LED equipment, it is likely that the ISR will be

Because of the comparatively high cost of LED equipment, it is likely that the ISR will be near 1.0. Additionally, it may be inappropriate to assume the "Equipment" category ISR from the Empower Maryland DRAFT 2010 Interim Evaluation Report, Chapter 2: Commercial and Industrial Prescriptive, Navigant Consulting, 2010.

Wattage of illustrative LED luminaire developed by averaging the wattage for all DesignLights Consortium qualified high-bay products from the DesignLights Consortium Qualified Products List http://www.designlights.org/QPL> delivering between 90% and 100% of the baseline mean system lumens.

Page 356 of 507

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Illustrative examples - do not use as default assumption

For example, a 250W metal halide fixture delivering 16,000 mean system lumens is replaced with an LED fixture drawing 178W in a warehouse with gas heat in BGE service territory and estimating PJM summer peak coincidence:

$$\Delta kW = ((288 - 178) / 1000) * 1.00 * 1.24 * 0.72$$

= 0.10 kW

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

$$\Delta$$
MMBTU = $(-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$
= $-\Delta kWh * 0.00065$

Where:

0.7 = Aspect ratio 834

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁸³⁵

0.75 = Assumed heating system efficiency ⁸³⁶

HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

Page 357 of 507

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment.

Illustrative examples - do not use as default assumption

For the illustrative example, the incremental cost is approximately \$200.837

Measure Life

The measure life is assumed to be 12 years for both luminaires and retrofit kits. 838

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. Estimated O&M savings should be calculated on a site-specific basis depending on the actual baseline and efficient equipment.

⁸³⁷ Efficiency Vermont Technical Reference User Manual No. 2013-82.5, August 2013.

Rate of the median rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 4/3/2015 https://www.designlights.org/resources/file/NEEPDLCQPL is 50,000 hours for both luminaires and retrofit kits. Assuming average annual operating hours of 4,116 for a typical warehouse lighting application, the estimated measure life is 12 years.

Page 358 of 507

LED 1x4, 2x2, and 2x4 Luminaires and Retrofit Kits

Unique Measure Code(s): CI_LT_TOS_LED1x4_0615, CI_LT_TOS_LED2x2_0615, CI_LT_TOS_LED2x4_0615

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of an LED 1x4, 2x2, or 2x4 luminaire or retrofit kits for general area illumination in place of a fluorescent light source. These luminaires and retrofit kits are typically recessed, suspended, or surface-mounted and intended to provide ambient lighting in settings such as office spaces, schools, retail stores, and other commercial environments. Eligible applications include time of sale or new construction and retrofits applications. Because of the improved optical control afforded by LED luminaires and retrofit kits, LED lighting systems can typically reduce total lumen output while maintaining required illuminance on work surfaces. Therefore, illuminance calculations should be performed in the process of selecting LED luminaires and retrofit kits.

Definition of Baseline Condition

The baseline condition is defined as a 1x4, 2x2, or 2x4 fixture with a fluorescent light-source. Typical baseline technologies include fluorescent T8 fixtures. For time of sale applications, the baseline condition will vary depending upon the specific characteristics of the fixtures installed (e.g. number of lamps).

Definition of Efficient Condition

The efficient condition is defined as an LED high-bay luminaire. Eligible fixtures must be listed on the DesignLights Consortium Qualified Products List⁸³⁹.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1000) * HOURS * ISR * WHFe

Where:

WattsBASE = Actual Connected load of baseline fixture

⁸³⁹ DesignLights Consortium Qualified Products List http://www.designlights.org/QPL

Page 359 of 507

WattsEE = Actual Connected load of the LED fixture

HOURS = Average hours of use per year

= If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. 840 Otherwise, use site specific annual

operating hours information.⁸⁴¹

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 842

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

Illustrative examples - do not use as default assumption

For example, a 1x4 fixture with 4ft F32 T8 2-Lamp and electronic ballast delivering 4,600 mean system lumens is replaced with an LED luminaire drawing 43W in a conditioned office building with gas heat in BGE service territory: 843

- 32.7 KW

The lighting hours of use tables in Appendix D are primarily based on fluorescent lamp operating hours. It is assumed that, for general ambient lighting applications, LED operating hours will be similar to fluorescent operating hour; however, LED operating hours are a potential candidate for future study.
841 Site-specific annual operating hours should be collected following best-practice data

ste-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

potential measurement and verification adjustment.

842 Because of the comparatively high cost of LED equipment, it is likely that the ISR will be near 1.0. Additionally, it may be inappropriate to assume the "Equipment" category ISR from the Empower Maryland DRAFT 2010 Interim Evaluation Report, Chapter 2: Commercial and Industrial Prescriptive, Navigant Consulting, 2010.

Wattage of illustrative LED luminaire developed by averaging the wattage for all DesignLights Consortium qualified high-bay products from the DesignLights Consortium Qualified Products List http://www.designlights.org/QPL> delivering between 80% and 100% of the baseline mean system lumens.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) * ISR * WHFd * CF$

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat"

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by

Building Type" in Appendix D.

Illustrative examples - do not use as default assumption

For example, a 1x4 fixture with 4ft F32 T8 2-Lamp and electronic ballast delivering 4,600 mean system lumens is replaced with an LED luminaire drawing 43W in a conditioned office building with gas heat in BGE service territory and estimating PJM summer peak coincidence:

$$\Delta$$
kW = ((53 - 43) / 1000) * 1.00 * 1.32 * 0.69
= 0.01 kW

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

$$\Delta$$
MMBTU = $(-\Delta kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75$
= $-\Delta kWh * 0.00065$

Where:

0.7 = Aspect ratio 844

⁸⁴⁴ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

Page 361 of 507

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating 845

0.75 = Assumed heating system efficiency 846

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment.

Illustrative examples - do not use as default assumption

For examples, the incremental costs are approximately \$100 for 1x4 (4,600 mean system lumens), \$75 for 2x2 (4,100 mean system lumens), and \$125 for 2x4 (6,900 mean system lumens) luminaires.⁸⁴⁷

Measure Life

The measure life is assumed to be 14 years. 848

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. Estimated O&M savings should be calculated on a site-specific basis depending on the actual baseline and efficient equipment.

 ⁸⁴⁵ Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 ⁸⁴⁶ Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁸⁴⁷ Efficiency Vermont Technical Reference User Manual No. 2013-82.5, August 2013.
⁸⁴⁸ The median rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 4/3/2015 https://www.designlights.org/resources/file/NEEPDLCQPL is 50,000 hours for both luminaires and retrofit kits. Assuming average annual operating hours of 3,500 for a typical commercial lighting application, the estimated measure life is 14 years.

Page 362 of 507

LED Parking Garage/Canopy Luminaires and Retrofit Kits

Unique Measure Code(s): CI_LT_TOS_LEDODPG_0615 and

CI_LT_RTR_LEDODPG_0615 Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of an LED parking garage or fuel pump canopy luminaire or retrofit kit in place of a high-intensity discharge light source. Eligible applications include time of sale or new construction and retrofit applications.

Definition of Baseline Condition

The baseline condition is defined as a parking garage or canopy luminaire with a high intensity discharge light-source. Typical baseline technologies include metal halide (MH) and high pressure sodium (HPS) lamps.

Definition of Efficient Condition

The efficient condition is defined as an LED parking garage or canopy luminaire or retrofit kit. Eligible luminaires and retrofit kits must be listed on the DesignLights Consortium Qualified Products List⁸⁴⁹.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1000) * HOURS * ISR

Where:

WattsBASE = Actual Connected load of baseline fixture

= If the actual baseline fixture wattage is unknown, use the default values presented in the "Parking Garage or Canopy Fixture Baseline and Efficient Wattage" table

below.

WattsEE = Actual Connected load of the LED fixture

= If the actual LED fixture wattage is unknown, use the default values presented in the "Parking Garage or Canopy

⁸⁴⁹ DesignLights Consortium Qualified Products List

http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php

Page 363 of 507

Fixture Baseline and Efficient Wattage" table below based on the based on the appropriate baseline description.

Parking Garage or Canopy Fixture Baseline and Efficient Wattage 850

Measure Category	Baseline Description	WattsBASE	Efficient Description	WattsEE
LED Parking Garage/Canopy Fixture replacing up to 175W HID	175W or less base HID	171	DLC Qualified LED Parking Garage and Canopy Luminaires	94
LED Parking Garage/Canopy Fixture replacing 176-250W HID	176W up to 250W base HID	288	DLC Qualified LED Parking Garage and Canopy Luminaires	162
LED Parking Garage/Canopy Fixture replacing 251 and above HID	251W and above base HID	452	DLC Qualified LED Parking Garage and Canopy Luminaires	248

HOURS

- = Average hours of use per year
- = If annual operating hours are unknown, assume 3,338 for canopy applications and 8,760 for parking garage

Efficiency Program Administrators, 2011, and 2012 Statewide Customized Offering Procedures Manual for Business - Appendix B Table of Standard Fixture Wattages and Sample Lighting Table, Southern California Edison et al., 2012. As the total wattage assumptions for like fixture typically do not vary by more than a few watts between sources, the values from the Arkansas document have been adopted here. Efficient fixture wattage estimated assuming mean delivered lumen equivalence between the baseline and efficient case. Baseline initial lamp lumen output was reduced by estimates of lamp lumen depreciation and optical efficiency. Efficient wattage and lumen information was collected from appropriate product categories listed in the DesignLights Consortium Qualified Products List - Updated 11/21/2012. Analysis presented in the "Mid Atlantic C&I LED Lighting Analysis.xlsx" supporting workbook.

Baseline and efficient fixtures have been grouped into wattage categories based on typical applications. The typical baseline equipment in each group were weightings based on personal communication with Kyle Hemmi, CLEAResult on Sept. 18. 2012. Weighting reflects implementation program data from Texas, Nevada, Rocky Mountain, and Southwest Regions. When adequate program data is collected from the implementation of this measure in the Mid-Atlantic region, these weightings should be updated accordingly. Baseline fixture wattage assumptions developed from multiple TRMs including: Arkansas TRM Version 2.0, Volume 2: Deemed Savings, Frontier Associates, LLC, 2012; Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2012 Program Year - Plan Version, Massachusetts Electric and Gas Energy

Page 364 of 507

applications⁸⁵¹. Otherwise, use site specific annual operating hours information.⁸⁵²

operating nours information. TSR = In Service Rate or percentage

= In Service Rate or percentage of units rebated that get installed = 1.00 853

= 1.00

Illustrative examples - do not use as default assumption

For example, a 250W parking garage standard metal halide fixture is replaced with an LED fixture:

$$\Delta$$
kWh = ((288 - 162) / 1000) * 8,760 * 1.00
= 1104 kWh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) * ISR * CF$

Where:

CF = Summer Peak Coincidence Factor for measure

= 0 for canopy applications and 1.0 for parking garage applications ⁸⁵⁴

Illustrative examples - do not use as default assumption

For example, a 250W parking garage standard metal halide fixture is replaced with an LED fixture:

2

⁸⁵¹ Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey. Parking garages typically require artificial illumination 24 hours per day.

⁸⁵² Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Because of the comparatively high cost of LED equipment, it is likely that the ISR will be near 1.0. Additionally, it may be inappropriate to assume the "Equipment" category ISR from the Empower Maryland DRAFT 2010 Interim Evaluation Report, Chapter 2: Commercial and Industrial Prescriptive, Navigant Consulting, 2010.

lt is assumed that efficient canopy lighting, when functioning properly, will never result in coincident peak demand savings. Parking garages typically require artificial illumination 24 hours per day and will therefore exhibit 100% peak coincidence.

$$\Delta$$
kW = ((288 - 162) / 1000) * 1.00 * 1.00
= 0.13 kW

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

Incremental Cost⁸⁵⁵

Measure Category	Installed Cost	Incremental Cost
Average of All Categories	\$585	\$343

Measure Life

The measure life is assumed to be 21 years for canopy applications and 8 years for parking garage applications. 856

Operation and Maintenance Impacts⁸⁵⁷

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. Estimated O&M savings and the component cost and lifetime assumptions are presented in the table below.

⁸⁵⁵ Efficiency Maine Technical Reference User Manual No.2010-1, 2010.

⁸⁵⁶ The average rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 3/13/2015

http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php is 79,863 for parking garage luminaires (62,500 for retrofit kits) and 69,844 for canopy luminaires (80,000 for retrofit kits). For the purposes of this characterization, it is assumed the typical equipment will operate for 70,000 hours. Assuming average annual operating hours of 3,338 for canopy applications (Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey), the estimated measure life is 21 years. Assuming average annual operating hours of 8,760 for parking garage applications, the estimated measure life is 8 years.

⁸⁵⁷ Component information for the <175W HID and 176-250W HID categories adopted from Efficiency Vermont TRM User Manual No. 2012-77a. The remaining category is based on a review of pricing for available products from http://1000bulbs.com. Accessed on 11/22/2012. NPV O&M Savings calculated assuming a 5% discount rate; detailed calculation presented in the "Mid Atlantic C&I LED Lighting Analysis.xlsx" workbook.

Page 366 of 507

Measure Category	Baseline Description	Lamp Life (Hours)	Lamp Cost	Lamp Rep. Labor/Disp osal Cost	Ballast Life (Hours)	Ballast Cost	Ballast Rep. Labor/Dis posal Cost	NPV O&M Savings (Canopy/Pa rking Garage)
LED Parking Garage/Canopy Fixture replacing up to 175W HID	175W or less base HID	10000	\$31.00	\$2.92	40000	\$95.85	\$27.50	\$194.46 / \$156.09
LED Parking Garage/Canopy Fixture replacing 176- 250W HID	176W up to 250W base HID	10000	\$21.00	\$2.92	40000	\$87.75	\$27.50	\$142.93 / \$133.33
LED Parking Garage/Canopy Fixture replacing 251 and above HID	251W and above base HID	10000	\$11.00	\$2.92	40000	\$60.46	\$27.50	\$94.81 / \$94.78

Page 367 of 507

ENERGY STAR Integrated Screw Based SSL (LED) Lamp - Commercial*

Unique Measure Code: CI_LT_TOS_SSLDWN_0516

Effective Date: May 2016

End Date: TBD

Measure Description

This measure describes savings from the purchase and installation of an ENERGY STAR Integrated Screw Based SSL (LED) Lamp in place of an incandescent lamp. Note: In December 2015, ENERGY STAR published V2.0 of the Product Specification for Lamps (Light Bulbs). Products that certify to both specifications are available until January 2, 2017, when only V2.0 products can carry the ENERGY STAR mark. Product brand owners may have products certified to V2.0 as early as December 31, 2015. Therefore, where applicable, this measure includes parameters for both the ENERGY STAR Product Specification for Lamps (Light Bulbs) V1.1 (i.e., the current version of the specification) and V2.0. Beginning January 2, 2017, the savings assumptions for the V1.1 specification will no longer be effective.

Definition of Baseline Condition

For time of sale replacement, the baseline wattage is assumed to be an incandescent or EISA complaint (where applicable) bulb installed in a screw-base socket. 858 Note that the baseline will be EISA compliant for all categories to which EISA applies. If the in situ lamp wattage is known and lower than the EISA mandated maximum wattage (where applicable), the baseline wattage should be assumed equal to the in situ lamp wattage.

Definition of Efficient Condition

The high efficiency wattage is assumed to be an ENERGY STAR qualified Integrated Screw Based SSL (LED) Lamp. As noted in the measure description, eligible products may be certified to either V1.1 or V2.0. The ENERGY STAR specifications can be viewed here: http://l.usa.gov/1QJFLgT

Annual Energy Savings Algorithm

ΔkWh = ((WattsBase - WattsEE) /1000) * HOURS * ISR * WHFe

⁸⁵⁸ For text of Energy and Independence and Security Act, see http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf

Page 368 of 507

Where:

WattsBase = Use equivalent baseline wattage from the table below,

based on actual LED lamp lumens⁸⁵⁹

= Actual LED lamp watts. WattsEE

HOURS = Average hours of use per year

> = If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. Otherwise, use site specific annual operating

hours information.⁸⁶⁰

ISR = In Service Rate or percentage of units rebated that are

installed and operational

 $= 1.00^{861}$

= Waste Heat Factor for Energy to account for cooling and **WHFe**

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	250	449	25
	450	799	29
	800	1099	43
Standard A-Type	1100	1599	53
	1600	1999	72
	2000	2599	72
	2600	3000	150

⁸⁵⁹ Based on ENERGY STAR Version 1.1 ENERGY STAR Product Specification for Lamps equivalence table; http://1.usa.gov/1RjFnX4

⁸⁶⁰ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

861 EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 -

May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

Page 369 of 507

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	3001	3999	200
	4000	6000	300
	250	449	25
	450	799	40
	800	1099	60
3-Way (Highest Setting), bug, marine, rough service, infrared	1100	1599	75
rough service, illitared	1600	1999	100
	2000	2549	125
	2550	2999	150
	90	179	10
Globe	180	249	15
(medium and intermediate bases less than 750 lumens)	250	349	25
than 750 famensy	350	749	40
Decorative	70	89	10
(Shapes B, BA, C, CA, DC, F, G, medium	90	149	15
and intermediate bases less than 750	150	299	25
lumens)	300	749	40
	90	179	10
Globe	180	249	15
(candelabra bases less than 1050	250	349	25
lumens)	350	499	40
	500	1049	60
	70	89	10
Decorative	90	149	15
(Shapes B, BA, C, CA, DC, F, G,	150	299	25
candelabra bases less than 1050 lumens)	300	499	40
iue.is,	500	1049	60
	400	449	40
Reflector with medium screw bases w/	450	499	45
diameter <=2.25"	500	649	50
	650	1199	65
	640	739	40
R, PAR, ER, BR, BPAR or similar bulb	740	849	45
shapes with medium screw bases w/	850	1179	50
diameter >2.5" (*see exceptions below)	1180	1419	65
	1420	1789	75

REGIONAL EVALUATION.

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
	1790	2049	90
	2050	2579	100
	2580	3429	120
	3430	4270	150
	540	629	40
	630	719	45
	720	999	50
R, PAR, ER, BR, BPAR or similar bulb	1000	1199	65
shapes with medium screw bases w/ diameter > 2.26" and ≤ 2.5" (*see	1200	1519	75
exceptions below)	1520	1729	90
	1730	2189	100
	2190	2899	120
	2900	3850	150
	400	449	40
*ER30, BR30, BR40, or ER40	450	499	45
	500	649-1179 ⁸⁶²	50
*BR30, BR40, or ER40	650	1419	65
*R20	400	449	40
	450	719	45
*All reflector lamps	200	299	20
below lumen ranges specified above	300	399-639 ⁸⁶³	30

Illustrative example - do not use as default assumption

For example, a 10W 550 lumen LED directional lamp with medium screw base diameter <= 2.25" is installed in a conditioned office building with gas heat in BGE service territory in 2015.

$$\Delta$$
kWh = ((50 - 10)/1,000) * 2,969 * 1.00 * 1.10
= 131 kWh

Baseline Adjustment

⁸⁶² The upper bounds for these categories depends on the lower bound of the next higher wattage, which varies by bulb type. ⁸⁶³ As above.

Page 371 of 507

Currently the EISA legislation only applies to omnidirectional bulbs, with decorative <40 watts and directional being exempted. If additional legislation is passed, this TRM will be adjusted accordingly.

To account for these new standards, the savings for this measure should be reduced to account for the higher baselines in 2020. The following table shows the calculated adjustments. The calculated energy savings for omnidirectional lamps should be multiplied by the appropriate factor from the table below for years 2020 and beyond ⁸⁶⁴:

Lower	Upper	Mid-life Adj	ustment in 2020		
Lumen	Lumen	ENERGY STAR V1.1	ENERGY S	TAR V2.0	
Range	Range	ENERGY STAR VI.I	CRI>=90	CRI<90	
200	449	100%	100%	100%	
450	799	100%	100%	100%	
800	1099	9%	16%	19%	
1,100	1599	11%	20%	24%	
1,600	1999	21%	23%	27%	
2,000	2599	23%	26%	30%	
2,600	3000	100%	100%	100%	
3001	3999	100%	100%	100%	
4000	6000	100%	100%	100%	

Summer Coincident Peak kW Savings Algorithm

ΔkW = ((WattsBase - WattsEE) /1000) * ISR * WHFd * CF

Where:

WHFd

= ((WallsBase - WallsEE) / 1000) ISK WHFU CF

= Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

⁸⁶⁴ See 'ESTAR Integrated Screw SSL Lamp_032014.xls' for details. The Minimum Lamp Efficacy Requirements in ENERGY STAR Product Specification for Lamps (Light Bulbs) V2.0 vary by Color Rendering Index (CRI).

Page 372 of 507

CF = Summer Peak Coincidence Factor for measure

= See table "C&I Interior Lighting Coincidence Factors by Building Type" in Appendix D.

Illustrative example - do not use as default assumption

For example, a 10W 550 lumen LED directional lamp with medium screw base diameter <=2.25" is installed in a conditioned office building with gas heat in BGE service territory and estimating PJM summer peak coincidence.

$$\Delta$$
kW = ((50 - 10)/1,000) * 1.0 * 0.69 * 1.32
= 0.036 kW

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

$$\Delta$$
MMBTU = (- Δ kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75
= (- Δ kWh / WHFe) * 0.00073

Where:

0.75

0.7 = Aspect ratio ⁸⁶⁵ 0.003413 = Constant to convert kWh to MMBTU 0.23 = Fraction of lighting heat that contributes to space heating ⁸⁶⁶

= Assumed heating system efficiency ⁸⁶⁷

Illustrative example - do not use as default assumption

For example, a 10W 550 lumen LED directional lamp with medium screw base diameter <=2.25" is installed a conditioned office building with gas heat in BGE service territory.

 ⁸⁶⁵ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
 866 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 867 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

Page 373 of 507

 Δ MMBTU = $(-\Delta kWh / WHFe) * 0.00073$

= - 0.087 MMBtu

Annual Water Savings Algorithm

n/a

Incremental Cost

If the implementation strategy allows the collection of actual costs, or an appropriate average, then that should be used. If not, the incremental cost for this measure is presented below: 868

	Lamp		Costs	Incremental
		Efficient	Baseline	Cost
Lamp Type	LED Wattage	LED	Incandescent or EISA compliant	Incandescent or EISA compliant
Omni-	<15W	\$6.11	\$1.50	\$4.61
directional	>=15W	\$6.81	\$1.50	\$5.31
	<15W	\$8.00	\$1.00	\$7.00
Decorative	<=15 to <25W	\$25.00	\$1.00	\$24.00
	>=25W	\$25.00	\$1.00	\$24.00
Directional	<20W	\$17.63	\$5.00	\$12.63
Directional	>=20W	\$70.78	\$5.00	\$65.78

Measure Life

The table below shows the assumed measure life for ENERGY STAR Versions 1.1 and 2.0:

Lamp Type ENERGY STAR V1.1 ⁸⁶⁹ ENERGY STAR V2.0 ⁸⁷⁰

-

⁸⁶⁸ Omnidirectional and directional costs based on NEEP 2014-2015 Residential Lighting Strategy Update. Decorative Costs under 15W based on typical costs on 1000bulbs.com. Higher wattage decorative based on VEIC study of units rebated through Efficiency Vermont Retail program. There is currently not sufficient data available to differentiate the incremental costs between ENERGY STAR V1.1 and V2.0 lamps.

The v1.1 ENERGY STAR Product Specification for Lamps (Light Bulbs) requires rated life of 25,000 hours for solid-state omnidirectional and directional lamps, and 15,000 hours for solid-state decorative lamps. Measure lifetimes assume 3,500 average annual operating hours.

Page 374 of 507

	Rated Life	Measure Life (Years)	Rated Life	Measure Life (Years)
	(Hours)	Commercial Interior	(Hours)	Commercial Interior
Omnidirectional	25,000	7	15,000	4
Decorative	15,000	4	15,000	4
Directional	25,000	7	25,000	7

Operation and Maintenance Impacts

For Decorative and Directional bulbs, without a baseline shift, the following component costs and lifetimes should be used to calculate O&M savings:

Lamp Type	Baseline Lamp Cost	Lamp Lifetime ⁸⁷¹ Commercial Interior
Decorative	\$1.00	0.29
Directional <15W	\$5.00	0.29
Directional >=15W	\$5.00	0.29

For Omni-directional bulbs, to account for the shift in baseline due to the Federal Legislation, the baseline replacement cost over the lifetime of the LED should be adjusted based on the key assumptions documented below:

	EISA 2012-2014 Compliant	EISA 2020 Compliant
Replacement Cost <10W	\$1.50	\$2.86

⁸⁷⁰ The v2.0 ENERGY STAR Product Specification for Lamps (Light Bulbs) requires rated life of 15,000 hours for solid-state omnidirectional and decorative lamps, and 25,000 hours for solid-state directional lamps. Measure lifetimes assume 3,500 average annual operating hours.

⁸⁷¹ Assumes incandescent baseline lamp life of 1000 hours.

Page 375 of 507

Replacement Cost >=10W	\$1.50	\$3.19
Component Life (hours)	1000	10,000

Page 376 of 507

LED Refrigerated Case Lighting

Unique Measure Code(s): CI_LT_TOS_LEDRCL_0615 and

CI_LT_RTR_LEDRCL_0615 Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of LED luminaries in vertical and horizontal refrigerated display cases replacing T8 or T12HO linear fluorescent lamp technology. Savings characterizations are provided for both coolers and freezers. Specified LED luminaires should meet v2.1 DesignLights Consortium Product Qualification Criteria for either the "Vertical Refrigerated Case Luminaire" or "Horizontal Refrigerated Case Luminares" category. LED luminaires not only provide the same light output with lower connected wattages, but also produce less waste heat which decreases the cooling load on the refrigeration system and energy needed by the refrigeration compressor. Savings and assumptions are based on a per linear foot of installed lighting basis.

Definition of Baseline Condition

The baseline equipment is assumed to be T8 or T12HO linear fluorescent lamps.

Definition of Efficient Condition

The efficient equipment is assumed to be DesignLights Consortium qualified LED vertical or horizontal refrigerated case luminaires.

Annual Energy Savings Algorithm

ΔkWh = (WattsPerLFBASE - WattsPerLFEE) / 1000 * LF * HOURS * WHFe

Where:

WattsPerLFBASE = Connected wattage per linear foot of the baseline fixtures; see table below for default values. 872
WattsPerLFEE = Connected wattage per linear foot of the LED fixtures. 873

⁸⁷² Pacific Gas & Electric. May 2007. LED Refrigeration Case Lighting Workpaper 053007 rev1. Values normalized on a per linear foot basis.

Page 377 of 507

= Actual installed. If actual installed wattage is unknown, see table below for default values.

Efficient Lamp	Baseline Lamp	Efficient Fixture Wattage (WattsPerLFEE)	Baseline Fixture Watts (WattsPerLFBASE)
LED Case Lighting System	T8 Case Lighting System	7.6	15.2
LED Case Lighting System	T12HO Case Lighting System	7.7	18.7

LF = Linear feet of installed LED luminaires.

= Actual installed

HOURS = Annual operating hours; assume 6,205 operating hours per

year if actual operating hours are unknown. 874

WHFe = Waste heat factor for energy to account for refrigeration

savings from efficient lighting. For prescriptive refrigerated lighting measures, the default value is 1.41 for refrigerated

cases and 1.52 for freezer cases. 875

Summer Coincident Peak kW Savings Algorithm

ΔkW = (WattsPerLFBASE - WattsPerLFEE) / 1000 * LF * WHFd * CF

Where:

WHFd = Waste heat factor for demand to account for

refrigeration savings from efficient lighting. For

prescriptive refrigerated lighting measures, the default

⁸⁷³ Pacific Gas & Electric. May 2007. LED Refrigeration Case Lighting Workpaper 053007 rev1. Values normalized on a per linear foot basis.

Theobald, M. A., Emerging Technologies Program: Application Assessment Report #0608, LED Supermarket Case Lighting Grocery Store, Northern California, Pacific Gas and Electric Company, January 2006. Assumes refrigerated case lighting typically operates 17 hours per day, 365 days per year.

⁸⁷⁵ New York Department of Public Service. 2014. The New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs - Residential, Multi-family, and Commercial/Industrial Measures Version 2.

Page 378 of 507

value is 1.40 for refrigerated cases and 1.51 for freezer cases. 876

cases.° CF = Sumr

= Summer Peak Coincidence Factor for measure

= 0.96 (lighting in Grocery). 877

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost⁸⁷⁸

Efficient Measure Incremental Cost (TOS, NC)		
Application Cost per Foot (\$.		
Vertical - Center	\$28.43	
Vertical - End	\$21.10	
Horizontal	\$21.55	

Efficient Measure Full Cost (Retrofit)		
Application Cost per Foot (\$/ft		
Vertical - Center	\$37.76	
Vertical - End	\$30.54	
Horizontal	\$31.15	

Measure Life⁸⁷⁹

The expected measure life is assumed to be 8 years.

⁸⁷⁶ New York Department of Public Service. 2014. The New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs - Residential, Multi-family, and Commercial/Industrial Measures Version 2.

EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014.

⁸⁷⁸ Navigant. May 2014. Incremental Cost Study Phase Three Final Report. Prepared for NEEP Regional Evaluation, Measurement & Verification Forum

The median rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 4/3/2015 https://www.designlights.org/resources/file/NEEPDLCQPL is 50,000 hours. Assuming average annual operating hours of 6,205, the estimated measure life is 8 years.

Page 379 of 507

Operation and Maintenance Impacts

LED case lighting is expected to have a longer service life than the baseline T8 and T12HO fluorescent lighting systems. Estimated O&M savings should be calculated on a site-specific basis depending on the actual baseline and efficient equipment.

Exterior LED Flood and Spot Luminaires

Unique Measure Code(s): CI_LT_TOS_LEDFLS_0615 and

CI_LT_RTR_LEDFLS_0615 Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of an exterior LED flood or spot luminaire for landscape or architectural illumination applications in place of a halogen incandescent or high-intensity discharge light source. Eligible applications include time of sale and new construction.

Definition of Baseline Condition

The baseline condition is defined as an exterior flood or spot fixture with a high intensity discharge light-source. Typical baseline technologies include halogen incandescent parabolic aluminized reflector (PAR) lamps and metal halide (MH) luminaires.

Definition of Efficient Condition

The efficient condition is defined as an LED flood or spot luminaire. Eligible luminaires must be listed on the DesignLights Consortium Qualified Products List⁸⁸⁰.

Annual Energy Savings Algorithm

 Δ kWh = ((WattsBASE - WattsEE) / 1000) * HOURS

Where:

WattsBASE

= Actual Connected load of baseline fixture

= If the actual baseline fixture wattage is unknown, use the actual LED lumens to find equivalent baseline wattage

from the table below.881

B80 DesignLights Consortium Qualified Products List https://www.designlights.org/qpl
Befficiency Vermont TRM User Manual No. 2014-85b; baseline are based on analysis of actual Efficiency Vermont installations of LED lighting. Exterior LED flood and spot luminaires are an evolving technology that may replace any number of baseline lamp and fixture types. It is recommended that programs track existing and new lamps and/or luminaire types, wattages, and lumen output in such way that baseline assumptions can be refined for future use.

Page 381 of 507

Bulb Type	Lower Lumen Range	Upper Lumen Range	WattsBase
DADZO	500	1000	52.5
PAR38	1000	4000	108.7
Metal Halide	4000	15000 ⁸⁸²	205.0

WattsEE = Actual Connected load of the LED luminaire

HOURS = Average hours of use per year

= If annual operating hours are unknown, assume 3,338 883.

Otherwise, use site specific annual operating hours

information. 884

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) * CF$

Where:

CF = Summer Peak Coincidence Factor for measure

 $= 0^{885}$

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost of the LED luminaire is presented by lumen output in the table below. 886

Lower Lumen Range	Upper Lumen	Incremental Cost
	Range	

⁸⁸² Source does not specify an upper lumen range for LED luminaires. Based on a review of manufacturer product catalogs, 15,000 lumens is the approximate initial lumen output of a 175W MH lamp.

⁸⁸³ Efficiency Vermont TRM User Manual No. 2014-85b; based on 5 years of metering on 235 outdoor circuits in New Jersey.

⁸⁸⁴ Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

⁸⁸⁵It is assumed that efficient outdoor area lighting, when functioning properly, will never result in coincident peak demand savings.

⁸⁸⁶ Efficiency Vermont TRM User Manual No. 2014-85b.

Page 382 of 507

Lower Lumen Range	Upper Lumen Range	Incremental Cost
500	1000	\$150
1000	4000	\$245
4000	15000	\$315

Measure Life

The measure life is assumed to be 15 years. 887

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. O&M impacts should be determined on a case-by-case basis. 888

_

⁸⁸⁷ The median rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 4/3/2015 https://www.designlights.org/resources/file/NEEPDLCQPL is 50,000 hours for Architectural Flood and Spot Luminaires and 100,000 hours for Landscape/Accent Flood and Spot Luminaires. Assuming average annual operating hours of 3,338 (Efficiency Vermont TRM User Manual No. 2014-85b; based on 5 years of metering on 235 outdoor circuits in New Jersey), the estimated measure life is 15 years for Architectural Flood and Spot Luminaires and 30 years for Landscape/Accent Flood and Spot Luminaires. By convention, measure life of C&I LED lighting is capped at 15 years.

Exterior LED flood and spot luminaires are an evolving technology that may replace any number of baseline lamp and fixture types. It is recommended that programs track existing and new lamps and/or luminaire types, wattages, lumen output, and costs in such way that generalized prescriptive O&M values can be developed for future use.

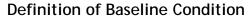
LED Four-Foot Linear Replacement Lamps

Unique Measure Code(s): CI_LT_RTR_LEDTUBE_0615

Effective Date: June 2015

End Date: TBD

Measure Description


This measure relates to the replacement of four-foot linear fluorescent lamps with tubular, LED four-foot linear replacement lamps. Depending on the specific LED replacement lamp product, this measure may require changing the electrical wiring, replacing the ballast with an external driver, or altering the existing lamp holders (or "tombstones") to accommodate the new lamp. Eligible applications are limited to retrofits. LED replacement lamp types are described in the table below: 889

LED Replacement	Description
Lamp Type	
Type A	The Type A lamp is designed with an internal driver that allows the lamp to operate directly from the existing linear fluorescent ballast. Most of these products are designed to work with T12, T8 and T5 ballasts.
Type B	The Type B lamp operates with an internal driver;
	however, the driver is powered directly from the main
	voltage supplied to the existing linear fluorescent fixture.
Type C	The Type C lamp operates with a remote driver that
	powers the LED linear lamp, rather than an integrated
	driver. The Type B lamp involves electrical modification to
	the existing fixture, but the low-voltage outputs of the
	driver are connected to the sockets instead of line voltage.

Measure eligibility is limited to "Type A" products that are powered by a new compatible T8 fluorescent electronic ballast installed at the same time as the LED replacement lamp or "Type C" products with an external LED driver.

All of the EmPOWER Maryland Utilities, no longer provide incentives for linear LED lamps with an internal driver connected directly to the line voltage (commonly referred to as "Type B.") This is due to the wide variety of installation characteristics of these types of lamps and the inherent safety concerns with these being powered directly from 120 - 277 voltage.

⁸⁸⁹ Underwriters Laboratories (UL) Standard 1598

REGIONAL EVALUATION.

The baseline condition is defined as an existing four-foot linear fluorescent fixture.

Definition of Efficient Condition

The efficient condition is defined as an as an four-foot linear fluorescent fixture retrofit with LED four-foot linear replacement lamp(s) and, if required, external driver. Eligible LED replacement lamp fixture wattage must be less than the baseline fixture wattage and listed on the DesignLights Consortium Oualified Products List⁸⁹⁰.

Annual Energy Savings Algorithm

ΔkWh = ((WattsBASE - WattsEE) / 1000) * HOURS * ISR * WHFe

Where:

WattsBASE = Actual connected load of baseline fixture

= If actual baseline wattage is unknown, assume the "Delta

Watts" from the table below based on existing

lamp/ballast system.

WattsEE = Actual connected load of the fixture with LED

replacement lamps.

= If actual baseline wattage is unknown, assume the "Delta"

Watts" from the table below based on existing

lamp/ballast system.

Default Baseline and Efficient Lamp Wattage Assumptions 891

Boldan Basonilo dila Elifotoni Lamp Wattago Assamptions			
Baseline Lamp/Ballast System	Baseline Lamp Wattage (WattsBASE)	Replacement Wattage (WattsEE)	Delta Watts
32W T8 IS NLO	29.5	23	6.5
28W T8 Premium PRS NLO	25	19	6
25W T8 Premium PRS NLO	22	16	6

HOURS = Average hours of use per year

201

BesignLights Consortium Qualified Products List http://www.designlights.org/QPL
 California Technical Forum. February 2015. T8 LED Tube Lamp Replacement Abstract
 Revision # 0; Note that the "Delta Watts" values, presented on a per lamp basis, implicitly, and conservatively, assume no savings for reduced or eliminated ballast energy consumption.

Page 385 of 507

= If annual operating hours are unknown, see table "C&I Interior Lighting Operating Hours by Building Type" in Appendix D. 892 Otherwise, use site specific annual

operating hours information.⁸⁹³

ISR = In Service Rate or percentage of units rebated that get

installed = 1.00 ⁸⁹⁴

WHFe = Waste Heat Factor for Energy to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = ((WattsBASE - WattsEE) / 1000) * ISR * WHFd * CF$

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling and

heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table "Waste Heat

Factors for C&I Lighting - Known HVAC Types" in Appendix D. If HVAC type is unknown or the space is unconditioned,

assume WHFe = WHFd = 1.0.

CF

= Summer Peak Coincidence Factor for measure

⁸⁹² The lighting hours of use tables in Appendix D are primarily based on fluorescent lamp operating hours. It is assumed that, for general ambient lighting applications, LED operating hours will be similar to fluorescent operating hours; however, LED operating hours are a potential candidate for future study.

⁸⁹³ Site-specific annual operating hours should be collected following best-practice data

collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

Because of LED linear replacement lamps have not been specifically evaluated in the Mid-Atlantic region an initial ISR of 1.0 is assumed. However, costs of these products continue to drop rapidly increasing the probability that participants may purchase additional stock to be installed at a later date. This factor should be considered for future evaluation work.

Page 386 of 507

= See table "C&I Interior Lighting Coincidence Factors by Building Type" in Appendix D.

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

 Δ MMBTU = (- Δ kWh / WHFe) * 0.70 * 0.003413 * 0.23 / 0.75 = (- Δ kWh / WHFe) * 0.00073

Where:

0.7 = Aspect ratio 895

0.003413 = Constant to convert kWh to MMBTU

0.23 = Fraction of lighting heat that contributes to space

heating ⁸⁹⁶

0.75 = Assumed heating system efficiency ⁸⁹⁷

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental costs (equipment and labor) LED linear replacement lamps are as follows: 898

Type A: \$22.67 per LED replacement lamp, \$47.50 for the ballast.

Type C: \$22.67 per LED replacement lamp, \$15.07 for the external driver.

Measure Life

_

 ⁸⁹⁵ HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.
 896 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
 897 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

⁸⁹⁸ Based on a review of incremental cost estimates from California Technical Forum. February 2015. T8 LED Tube Lamp Replacement Abstract Revision # 0, Efficiency Vermont TRM User Manual No. 2014-85b, and online wholesalers. As this measure is a retrofit-type, incremental costs assume the full cost of replacement of the lamps and (removal of) the ballast(s).

Page 387 of 507

The measure life is assumed to be 14 years. 899

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. O&M impacts should be determined on a case-by-case basis. 900

⁸⁹⁹ The median rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 4/3/2015 https://www.designlights.org/resources/file/NEEPDLCQPL is 50,000 hours. Assuming average annual operating hours of 3,500 for a typical commercial lighting application, the estimated measure life is 14 years.

Fluorescent LED replacement lamps luminaires are an evolving technology that may replace any number of baseline lamp types. It is recommended that programs track existing and new lamps types, wattages, lumen output, and costs in such way that generalized prescriptive O&M values can be developed for future use.

Page 388 of 507

Heating Ventilation and Air Conditioning (HVAC) End Use

Unitary HVAC Systems*

Unique Measure Code(s): CI_HV_TOS_HVACSYS_0516,

CI_HV_EREP_HVACSYS_0516 Effective Date: May 2016

End Date: TBD

Measure Description

This measure documents savings associated with the installation of new heating, ventilating, and air conditioning systems exceeding baseline efficiency criteria in place of an existing system or a new standard efficiency system of the same capacity. This measure covers air conditioners (including unitary air conditioners and packaged terminal AC) and heat pumps (air source and packaged terminal heat pumps). It does not cover ductless mini-split units. This measure applies to time of sale, new construction, and early replacement opportunities.

Definition of Baseline Condition

Time of Sale or New Construction: The baseline condition is a new system meeting minimum efficiency standards as presented in the 2012 International Energy Conservation Code (IECC 2012) and the 2015 International Energy Conservation Code (IECC 2015) (see table "Baseline Efficiencies by System Type and Unit Capacity" below) 901 or federal standards where more stringent than local energy codes.

Early Replacement: The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the measure life.

Definition of Efficient Condition

The efficient condition is an HVAC system of the same type as the baseline system exceeding baseline efficiency levels.

_

⁹⁰¹ Commercial energy code baseline requirements for Washington, D.C. and Delaware are currently consistent with IECC 2012 (Delaware currently uses ASHRAE 90.1-2010, but the HVAC system requirements are consistent with IECC 2012), whereas Maryland's baseline requirements are consistent with IECC 2015.

Page 389 of 507

Baseline Efficiencies by System Type and Unit Capacity

Size Category (Cooling Capacity)	Subcategory	Baseline Condition (IECC 2012)	Baseline Condition (IECC 2015)
Air Conditioners, Air Cooled			
<65,000 Btu/h	Split system	13.0 SEER	13.0 SEER
	Single package	13.0 SEER	14.0 SEER
≥65,000 Btu/h and <135,000 Btu/h	Split system and single package	11.2 EER 11.4 IEER	11.2 EER 12.8 IEER
≥135,000 Btu/h and <240,000 Btu/h	Split system and single package	11.0 EER 11.2 IEER	11.0 EER 12.4 IEER
≥240,000 Btu/h and <760,000 Btu/h	Split system and single package	10.0 EER 10.1 IEER	10.0 EER 11.6 IEER
≥760,000 Btu/h	Split system and single package	9.7 EER 9.8 IEER	9.7 EER 11.2 IEER
Air Conditioners, Water Cooled			
<65,000 Btu/h	Split system and single package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER
≥65,000 Btu/h and <135,000 Btu/h	Split system and single package	12.1 EER 12.3 IEER	12.1 EER 13.9 IEER
≥135,000 Btu/h and <240,000 Btu/h	Split system and single package	12.5 EER 12.7 IEER	12.5 EER 13.9 IEER
≥240,000 Btu/h and <760,000 Btu/h	Split system and single package	12.4 EER 12.6 IEER	12.4 EER 13.6 IEER
≥760,000 Btu/h	Split system and single package	12.0 EER 12.4 IEER	12.2 EER 13.5 IEER
Air Conditioners, Evaporatively Cooled			
<65,000 Btu/h	Split system and single package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER
≥65,000 Btu/h and <135,000 Btu/h	Split system and single package	12.1 EER 12.3 IEER	12.1 EER 12.3 IEER
≥135,000 Btu/h and <240,000 Btu/h	Split system and single package	12.0 EER 12.2 IEER	12.0 EER 12.2 IEER
≥240,000 Btu/h and <760,000 Btu/h	Split system and single package	11.9 EER 12.1 IEER	11.9 EER 12.1 IEER
≥760,000 Btu/h	Split system and single package	11.7 EER 11.9 IEER	11.7 EER 11.9 IEER

Page 390 of 507

Size Category (Cooling Capacity) Heat Pumps, Air	Subcategory	Baseline Condition (IECC 2012)	Baseline Condition (IECC 2015)
Cooled 902			
<65,000 Btu/h	Split System	13.0 SEER 7.7 HSPF	14.0 SEER 8.2 HSPF
	Single Package	13.0 SEER 7.7 HSPF	14.0 SEER 8.0 HSPF
≥65,000 Btu/h and <135,000 Btu/h	Split system and single package	11.0 EER 11.2 IEER 3.3 COP	11.0 EER 12.0 IEER 3.3 COP
≥135,000 Btu/h and <240,000 Btu/h	Split system and single package	10.6 EER 10.7 IEER 3.2 COP	10.6 EER 11.6 IEER 3.2 COP
≥240,000 Btu/h and <760,000 Btu/h	Split system and single package	9.5 EER 9.6 IEER 3.2 COP	9.5 EER 10.6 IEER 3.2 COP

Size Category (Cooling Capacity)	Subcategory	Baseline Condition (Federal Standards) 903
Packaged Terminal Air Conditioners 904,905		
All Capacities	New Construction (Standard Size) ⁹⁰⁶	14.0 - (0.300 * Cap/1000) EER
All Capacities	Replacement (Non-Standard Size)	10.9 - (0.213 * Cap/1000) EER

_

 $^{^{902}}$ Heating mode efficiencies for heat pumps >=65,000 Btu/h are provided at the 47°F db/43° wb outdoor air rating condition.

⁹⁰³ Code of Federal Regulations, Energy Efficiency Program for Certain Commercial and Industrial Equipment, title 10, sec. 431.96 (2016).

Industrial Equipment, title 10, sec. 431.96 (2016).

904 Replacement unit shall be factory labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS." Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width.

[&]quot;Cap" = The rated cooling capacity of the project in Btu/h. If the unit's capacity is less than 7,000 Btu/h, use 7,000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculations.

Federal standard as presented for this equipment type is effective January 1, 2017. This standard is consistent with IECC 2015 and ASHRAE 90.1-2013 requirements and is recommended as a consistent regional baseline.

Page 391 of 507

Size Category (Cooling Capacity)	Subcategory	Baseline Condition (Federal Standards) 903
Packaged Terminal Heat Pumps ^{907,908}		
All Capacities	New Construction (Standard Size)	14.0 - (0.300 * Cap/1000) EER 3.7 - (0.052 * Cap/1000) COP
All Capacities	Replacement (Non-Standard Size)	10.8 - (0.213 * Cap/1000) EER 2.9 - (0.026 * Cap/1000) COP

Notes: 1) All cooling mode efficiency ratings in the table above assume electric resistance heating section type (or none). Subtract 0.2 from each baseline efficiency rating value if unit has heating section other than electric resistance.

Annual Energy Savings Algorithm

Air Conditioners (includes air-, water-, and evaporatively-cooled unitary ACs and PTACs)

Time of Sale:

For units with capacities less than 65,000 Btu/h and all PTACs, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) as follows:

 $\Delta kWh = (Btu/h/1000) * ((1/SEERBASE) - (1/SEEREE)) * HOURS$

For units with capacities greater than or equal to 65,000 Btu/h, the energy savings are calculated using the Integrated Energy Efficiency Ratio (EER) as follows:

 $\Delta kWh = (Btu/h/1000) * ((1/IEERBASE) - (1/IEEREE)) * HOURS$

Early Replacement 909:

_

⁹⁰⁷ Replacement unit shall be factory labeled as follows: "MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS." Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width.

[&]quot;Cap" = The rated cooling capacity of the project in Btu/h. If the unit's capacity is less than 7,000 Btu/h, use 7,000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculations.

For units with capacities less than 65,000 Btu/h and all PTACs, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) as follows:

ΔkWh for remaining life of existing unit (i.e., measure life less the age of the existing equipment):

= (Btu/h/1000) * ((1/SEEREXIST) - (1/SEEREE)) * HOURS

ΔkWh for remaining measure life (i.e., measure life less the remaining life of existing unit):

= (Btu/h/1000) * ((1/SEERBASE) - (1/SEEREE)) * HOURS

For units with capacities greater than or equal to 65,000 Btu/h, the energy savings are calculated using the Integrated Energy Efficiency Ratio (IEER) as follows:

ΔkWh for remaining life of existing unit (i.e., measure life less the age of the existing equipment):

= (Btu/h/1000) * ((1/IEEREXIST) - (1/IEEREE)) * HOURS

ΔkWh for remaining measure life (i.e., measure life less the remaining life of existing unit):

= (Btu/h/1000) * ((1/IEERBASE) - (1/IEEREE)) * HOURS

Heat Pumps (includes air-source HPs and PTHPs)

Time of Sale:

For units with capacities less than 65,000 Btu/h (except PTHPs), the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) and Heating Season Performance (HSPF) as follows:

```
\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HEAT}

\Delta kWh_{COOL} = (Btu/h_{COOL}/1000) * ((1/SEERBASE) - (1/SEEREE)) * HOURS_{COOL}
```

⁹⁰⁹ The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.

```
\Delta kWh_{HEAT} = (Btu/h_{HEAT}/1000) * ((1/HSPFBASE) - (1/HSPFEE)) * HOURS_{HEAT}
```

For units with capacities greater than or equal to 65,000 Btu/h (except PTHPs), the energy savings are calculated using the Integrated Energy Efficiency Ratio (IEER) and Coefficient of Performance (COP) as follows:

```
\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HEAT}

\Delta kWh_{COOL} = (Btu/h_{COOL}/1000) * ((1/IEERBASE) - (1/IEEREE)) * HOURS_{COOL}

\Delta kWh_{HEAT} = (Btu/h_{HEAT}/3412) * ((1/COPBASE) - (1/COPEE)) * HOURS_{HEAT}
```

For all PTHPs, the energy savings are calculated using the Energy Efficiency Ratio (EER) and Coefficient of Performance (COP) as follows:

```
\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HEAT}

\Delta kWh_{COOL} = (Btu/h_{COOL}/1000) * ((1/EERBASE) - (1/EEREE)) * HOURS_{COOL}

\Delta kWh_{HEAT} = (Btu/h_{HEAT}/3412) * ((1/COPBASE) - (1/COPEE)) * HOURS_{HEAT}
```

Early Replacement 910:

For units with capacities less than 65,000 Btu/h, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) and Heating Season Performance (HSPF) as follows:

 Δ kWh for remaining life of existing unit (i.e., measure life less the age of the existing equipment):

```
\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HEAT}

\Delta kWh_{COOL} = (Btu/h_{COOL}/1000) * ((1/SEEREXIST) - (1/SEEREE))

* HOURS<sub>COOL</sub>

\Delta kWh_{HEAT} = (Btu/h_{HEAT}/1000) * ((1/HSPFEXIST) - (1/HSPFEE))

* HOURS<sub>HEAT</sub>
```

 Δ kWh for remaining measure life (i.e., measure life less the remaining life of existing unit):

```
\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HFAT}
```

_

⁹¹⁰ The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.

Page 394 of 507

```
\DeltakWh<sub>COOL</sub> = (Btu/h<sub>COOL</sub>/1000) * ((1/SEERBASE) - (1/SEEREE)) * HOURS<sub>COOL</sub> \DeltakWh<sub>HEAT</sub> = (Btu/h<sub>HEAT</sub>/1000) * ((1/HSPFBASE) - (1/HSPFEE)) * HOURS<sub>HEAT</sub>
```

For units with capacities greater than or equal to 65,000 Btu/h, the energy savings are calculated using the Integrated Energy Efficiency Ratio (EER) and Coefficient of Performance (COP) as follows:

 ΔkWh for remaining life of existing unit (i.e., measure life less the age of the existing equipment):

ΔkWh for remaining measure life (i.e., measure life less the remaining life of existing unit):

```
\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HEAT}

\Delta kWh_{COOL} = (Btu/h_{COOL}/1000) * ((1/IEERBASE) - (1/IEEREE)) *

HOURS_{COOL}

\Delta kWh_{HEAT} = (Btu/h_{HEAT}/3412) * ((1/COPBASE) - (1/COPEE)) *

HOURS_{HEAT}
```

For all PTHPs, the energy savings are calculated using the Energy Efficiency Ratio (EER) and Coefficient of Performance (COP) as follows:

 Δ kWh for remaining life of existing unit (i.e., measure life less the age of the existing equipment):

ΔkWh for remaining measure life (i.e., measure life less the remaining life of existing unit):

```
\Delta kWh = \Delta kWh_{COOL} + \Delta kWh_{HEAT}

\Delta kWh_{COOL} = (Btu/h_{COOL}/1000) * ((1/EERBASE) - (1/EEREE)) * HOURS_{COOL}
```

Page 395 of 507

 Δ kWh_{HEAT} = (Btu/h_{HEAT}/3412) * ((1/COPBASE) - (1/COPEE)) * HOURS_{HEAT}

Where:

 Δ kWh_{COOL} = Annual cooling season electricity savings (kWh) Δ kWh_{HEAT} = Annual heating season electricity savings (kWh) Δ kWh_{COOL} = Cooling capacity of equipment in Btu/hour

= Actual Installed

 Btu/h_{HEAT} = Heating capacity of equipment in Btu/hour

= Actual Installed

SEEREE = SEER of efficient unit

= Actual Installed

SEERBASE = SEER of baseline unit

= Based on IECC 2012 or IECC 2015 for the installed

capacity. See table above.

SEEREXIST = SEER of the existing unit.

= Actual

HSPFEE = HSPF of efficient unit

= Actual Installed

HSPFBASE = HSPF of baseline unit

= Based on IECC 2012 or IECC 2015 for the installed

capacity. See table above.

HSPFEXIST = HSPF of the existing unit.

= Actual

IEEREE = IEER of efficient unit

= Actual Installed

IEERBASE = IEER of baseline unit

= Based on IECC 2012 or IECC 2015 for the installed

capacity. See table above.

IEEREXIST = IEER of the existing unit.

= Actual

COPEE = COP of efficient unit

= Actual Installed

COPBASE = COP of baseline unit

= Based on IECC 2012 or IECC 2015 for the installed

capacity. See table above.

COPEXIST = COP of the existing unit.

= Actual

EERBASE = EER of baseline unit

= Based on IECC 2012 or 2015 for the installed capacity.

See table above.

Page 396 of 507

EEREE = EER of efficient unit (If the actual EER is unknown, it

may be approximated by using the following equation: EER

= SEER/1.2)

= Actual installed

EEREXIST = EER of existing unit

= Actual

3412 = Conversion factor (Btu/kWh)

 $HOURS_{COOL}$ = Full load cooling hours⁹¹¹

= If actual full load cooling hours are unknown, see table "Full Load Cooling Hours by Location and Equipment Capacity" below. Otherwise, use site specific full load

cooling hours information.

HOURS_{HEAT} = Full load heating hours

= If actual full load heating hours are unknown, see table "Full Load Heating Hours by Location and Building Type" below. Otherwise, use site specific full load heating hours

information.

Full Load Cooling Hours by Location and Equipment Capacity 912

City, State	HOURS _{Cool} by Equipment Capacity			
,	< 135 kBtu/h	>= 135 kBtu/h		
Dover, DE	910	1,636		
Wilmington, DE	980	1,762		
Baltimore, MD	1,014	1,823		
Hagerstown, MD	885	1,591		
Patuxent River, MD	1,151	2,069		
Salisbury, MD	1,008	1,812		

⁹¹¹ From U.S. DOE. 2013. *The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures*: "Although the EFLH is calculated with reference to a peak kW derived from EER, it is acceptable to use these EFLH with SEER or IEER. Some inconsistency occurs in using full-load hours with efficiency ratings measured at part loading, but errors in calculation are thought to be small relative to the expense and complexity of developing hours-of-use estimates precisely consistent with SEER and IEER."

Full load cooling hours estimated by adjusting the "Mid-Atlantic" hours from "C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011" by the full-load cooling hour estimates from the ENERGY STAR Central AC Calculator, 2013. For scaling purposes, the analysis assumes the initial Mid-Atlantic values are consistent with Baltimore, MD as suggested by the KEMA study. Because the ENERGY STAR calculator does not provide full load hours estimates for all cities of interest, a second scaling was performed using cooling degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

Page 397 of 507

City, State	HOURS _{Cool} by Equipment Capacity			
y ,	< 135 kBtu/h >= 135 kBtu/h			
Washington D.C.	1,275	2,292		

Full Load Heating Hours by Location and Building Type 913

Building Type	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Assembly	676	692	620	657	451	507	559
Auto Repair	2,292	2,344	2,106	2,229	1,543	1,728	1,901
Big Box Retail	286	298	241	271	107	151	192
Fast Food Restaurant	957	983	866	926	590	681	766
Full Service Restaurant	988	1,016	891	956	597	694	784
Grocery	286	298	241	271	107	151	192
Light Industrial	867	885	803	845	608	672	732
Motel	659	667	632	650	547	575	601
Primary School	978	993	926	960	767	819	868
Religious Worship	750	754	737	746	698	711	723
Small Office	511	524	466	496	329	374	416
Small Retail	657	674	595	636	410	471	528
Warehouse	556	576	487	533	278	347	411
Other	805	823	739	783	541	606	667

For example, a 5 ton unitary AC, split system with SEER rating of 15.0 installed in Baltimore:

$$\Delta$$
kWh = (60,000/1000) * (1/13 - 1/15) * 1014
= 624 kWh

Summer Coincident Peak kW Savings Algorithm

⁹¹³ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

Time of Sale:

$$\Delta kW = (Btu/h_{COOL}/1000) * ((1/EERBASE) - (1/EEREE)) * CF$$

Early Replacement:

ΔkW for remaining life of existing unit (i.e., measure life less the age of the existing equipment):

 $= (Btu/h_{COOL}/1000) * ((1/EEREXIST) - (1/EEREE)) * CF$

ΔkW for remaining measure life (i.e., measure life less the remaining life of existing unit):

 $= (Btu/h_{COOI}/1000) * ((1/EERBASE) - (1/EEREE)) * CF$

Where:

 CF_{PIM} = PJM Summer Peak Coincidence Factor (June to August

weekdays between 2 pm and 6 pm) valued at peak weather

= 0.360 for units <135 kBtu/h and 0.567 for units \ge 135

kBtu/h⁹¹⁴

CFSSP = Summer System Peak Coincidence Factor (hour ending

5pm on hottest summer weekday)

= 0.588 for units <135 kBtu/h and 0.874 for units ≥135

kBtu/h⁹¹⁵

For example, a 5 ton unitary AC, split system with EER rating of 12.5 installed in Baltimore estimating PJM summer peak coincidence: 916

$$\Delta kW = (60,000/1000) * (1/10.8 - 1/12.5) * 0.360$$

= 0.27 kW

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm

⁹¹⁴ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

⁹¹⁵ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

⁹¹⁶ Assumes baseline unit with 13 SEER converted to EER using the following estimate: EER = SEER/1.2

Page 399 of 507

n/a

Incremental Cost 917

The incremental costs are shown in the tables below for time of sale and new construction scenarios. If the measure is an early replacement, the full installed cost of the efficient unit should be used as the incremental cost and determined on a site-specific basis. For the purposes of cost-effectiveness screening, there can also be a deferred cost credit given at the end of the existing equipment's remaining life to account for when the customer would have had to purchase new equipment if they had not performed the early replacement. 918

Air-Cooled Unitary Air Conditioners 919

Size Category	Efficient Condition (CEE Tier 1)	Efficient Condition (CEE Tier 2)
>=65,000 Btu/h and <135,000	\$62.96/ton	\$125.92/ton
>=135,000 Btu/h and <240,000 Btu/h	\$62.96/ton	\$125.92/ton
>=240,000 Btu/h and <760,000 Btu/h	\$18.78/ton	\$37.56/ton

Air-Source Unitary Heat Pumps 920

Size Category	ient Condition CEE Tier 1)	Efficient Condition (CEE Tier 2)
<65,000 Btu/h	\$443/unit	\$886/ton
>=65,000 Btu/h and <135,000	\$62.96/ton	\$125.92/ton

01

⁹¹⁷ Navigant. May 2014. Incremental Cost Study Phase Three Final Report. Prepared for NEEP Regional Evaluation, Measurement & Verification Forum. In all cases, incremental costs are presented relative to the baseline efficiencies presented in the Baseline Efficiencies by System Type and Unit Capacity table for the relevant size categories.

⁹¹⁸ Incremental costs for water- and evaporatively-cooled ACs, PTACs, and PTHPs will be addressed in subsequent versions of the TRM. In the interim, incremental costs for these equipment types should be determined on a site-specific basis.

⁹¹⁹ CEE efficiency tiers as presented in Consortium for Energy Efficiency. 2016. CEE Commercial Unitary Air-Conditioning and Heat Pumps Specification, Effective January 12, 2016.

⁹²⁰ Ibid. In the absence of better data, incremental costs for air-source heat pumps >=65,000 Btu/h are assumed equal to the air-cooled unitary AC equipment for the corresponding size categories. Therefore, the CEE tiers presented here reflect cooling mode requirements for AC equipment.

Page 400 of 507

Size Category	Efficient Condition (CEE Tier 1)	Efficient Condition (CEE Tier 2)
>=135,000 Btu/h and <240,000 Btu/h	\$62.96/ton	\$125.92/ton
>=240,000 Btu/h and <760,000 Btu/h	\$18.78/ton	\$37.56/ton

Measure Life

The measure life is assumed to be 15 years. 921

Operation and Maintenance Impacts n/a

 $^{^{921}}$ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007,

Page 401 of 507

Ductless Mini-Split Heat Pump (DMSHP)

Unique Measure Code(s): CI_HV_TOS_DMSHP_0615,

CI_HV_EREP_DMSHP_0615 Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of new ENERGY STAR rated ductless "mini-split" heat pump(s) (DMSHP). A ductless mini-split heat pump is a type of heat pump with an outdoor condensing unit connected via refrigerant line to one or more indoor evaporator coils. Ductless mini-split heat pumps deliver cooling at the same or higher efficiency as standard central AC units, but can also deliver heat. Further, since the units do not require ductwork, they avoid duct losses.

Definition of Baseline Condition

This measure assumes installation in a small commercial space.

Time of Sale or New Construction: Since the efficient unit is unducted, it is assumed that the baseline equipment will also be unducted. In such cases, or if the baseline condition for an early replacement is unknown, it is assumed that the baseline equipment is a window AC unit with a gas hot water boiler feeding hot water baseboards. The assumed baseline efficiency is that of equipment minimally compliant federal efficiency standards.

Early Replacement: The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the measure life. ⁹²² If the space is currently uncooled, it is assumed that the building owner would have installed cooling by other means and should therefore be treated as a lost opportunity measure with a window AC baseline.

Definition of Efficient Condition

The efficient equipment is assumed to be an ENERGY STAR qualified ductless mini-split heat pump, with a minimum 14.5 SEER, 12.0 EER, and 8.2

 $^{^{922}}$ To enable improvements to this measure characterization in the future, the existing equipment types should be tracked by the program to ensure that this measure characterizes the appropriate baseline conditions.

Page 402 of 507

HSPF. If the rated efficiency of the actual unit is higher than the ENERGY STAR minimum requirements, the actual efficiency ratings should be used in the calculation.

Baseline and Efficient Levels by Unit Capacity

If the measure is a retrofit, the actual efficiencies of the baseline heating and cooling equipment should be used. If it is a market opportunity, the baseline efficiency should be selected from the tables below.

Baseline Window AC Efficiency 923

Equipment Type	Capacity (Btu/h)	Federal Standard with louvered sides (CEER)	Federal Standard without louvered sides (CEER)
	< 8,000	11.0	10.0
	8,000 to 10,999	10.9	9.6
Without Reverse Cycle	11,000 to 13,999	10.9	9.5
	14,000 to 19,999	10.7	9.3
	20,000 to 24,999	9.4	9.4
	<14,000	9.8	9.3
With Reverse Cycle	14,000 to 19,999	9.8	8.7
	>=20,000	9.3	8.7
Casement-Only	All	9.5	
Casement-Slider	All	10.4	

Baseline Central AC Efficiency

Equipment Type	Capacity (Btu/h)	SEER	EER
Split System Air Conditioners 924	All	13	11
Packaged Air Conditioners 925	All	14	11.5
Packaged Air Source Heat Pumps 926	AII	14	11.5

⁹²³ Federal standards.

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/41 ⁹²⁴ Federal Standard as of January 1, 2015.

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75 925 Ibid

⁹²⁶ Ibid

Page 403 of 507

Baseline Heating System Efficiency

Equipment Type	Efficiency Metric	Efficiency
Gas Boiler ⁹²⁷	AFUE	82%
Air Source Heat Pump - Split System 928	HSPF	8.2
Air Source Heat Pump - Packaged	HSPF	8.0
Electric Resistance ⁹²⁹	HSPF	3.41

Annual Energy Savings Algorithm

 $\Delta kWh_{total} = \Delta kWh_{cool} + \Delta kWh_{heat}$ $\Delta kWh_{cool} = CCAP x (1/SEER_{base} - 1/SEER_{ee}) x EFLH_{cool}$ $\Delta kWh_{heat}^{930} = HCAP x (ELECHEAT/HSPF_{base} - 1/HSPF_{ee}) x EFLH_{heat}$

Where:

CCAPCooling capacity of DMSHP unit, in kBtu/hr SEER of baseline unit. If unknown, use 9.8⁹³¹. SEER_{base} $SEER_{ee}$ SEER of actual DMSHP. If unknown, use ENERGY STAR minimum of 14.5. Full load hours for cooling equipment. See table EFLH_{cool} below for default values. Heating capacity of DMSHP unit, in kBtu/hr HCAP ELECHEAT 1 if the baseline is electric heat, 0 otherwise. If unknown, assume the baseline is a gas boiler, so ELECHEAT = 0.HSPF of baseline equipment. See table above 932. HSPF_{base} HSPF of actual DMSHP. If unknown, use ENERGY $HSPF_{ee}$ STAR minimum of 8.2. EFLH_{heat} Full load hours for heating equipment. See table below for default values.

Full Load Cooling Hours by Location and Equipment Capacity 933

⁹²⁸ Federal standards for air source heat pumps

⁹²⁷ Federal Standards for gas boilers

Electric heat has a COP of 1.0. Converted into HSPF units this is approximately 3.41.

⁹³⁰ This will be negative if the baseline has non-electric heat. This is because some electricity from the DMSHP is now assumed to be used for space heating. There us a corresponding savings in fossil fuel heat.

⁹³¹ Federal standard for typical window AC sizes with louvered sides.

⁹³² If unknown, assume the baseline is a gas furnace, with no electrical savings

⁹³³ Full load cooling hours estimated by adjusting the "Mid-Atlantic" hours from "C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011" by the full-load cooling hour estimates from the ENERGY STAR Central AC Calculator, 2013. For scaling purposes, the analysis assumes

Page 404 of 507

City, State	HOURS by Equipment Capacity				
y, c.a.c	< 135 kBtu/h	>= 135 kBtu/h			
Dover, DE	910	1,636			
Wilmington, DE	980	1,762			
Baltimore, MD	1,014	1,823			
Hagerstown, MD	885	1,591			
Patuxent River, MD	1,151	2,069			
Salisbury, MD	1,008	1,812			
Washington D.C.	1,275	2,292			

Heating Full Load Hours 934

Building Type	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Assembly	676	692	620	657	451	507	559
Auto Repair	2,292	2,344	2,106	2,229	1,543	1,728	1,901
Big Box Retail	286	298	241	271	107	151	192
Fast Food Restaurant	957	983	866	926	590	681	766
Full Service Restaurant	988	1,016	891	956	597	694	784
Grocery	286	298	241	271	107	151	192
Light Industrial	867	885	803	845	608	672	732
Motel	659	667	632	650	547	575	601
Primary School	978	993	926	960	767	819	868
Religious Worship	750	754	737	746	698	711	723
Small Office	511	524	466	496	329	374	416
Small Retail	657	674	595	636	410	471	528

the initial Mid-Atlantic values are consistent with Baltimore, MD as suggested by the KEMA study. Because the ENERGY STAR calculator does not provide full load hours estimates for all cities of interest, a second scaling was performed using cooling degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory

Page	405	of	507
------	-----	----	-----

Building Type	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Warehouse	556	576	487	533	278	347	411
Other	805	823	739	783	541	606	667

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = CCAP x (1/EER_{base} - 1/EER_{ee}) x CF$$

Where:

 EER_{base} = EER of baseline unit. If unknown, use 9.8⁹³⁵.

 EER_{ee} = EER of actual DMSHP. If unknown, use ENERGY STAR

minimum of 12.0.

CF_{PJM} = PJM Summer Peak Coincidence Factor (June to

August weekdays between 2 pm and 6 pm) valued at

peak weather

= 0.360 for units <135 kBtu/h and 0.567 for units ≥135

kBtu/h⁹³⁶

CF_{SSP} = Summer System Peak Coincidence Factor (hour

ending 5pm on hottest summer weekday)

= 0.588 for units <135 kBtu/h and 0.874 for units

≥135 kBtu/h⁹³⁷

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

 Δ MMBtu = HCAP x EFLH_{heat} / AFUE / 1,000

Where:

. .

⁹³⁵ Federal standard for typical window AC sizes with louvered sides.

⁹³⁶ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

⁹³⁷ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

Page 406 of 507

EFLH_{heat} = Full load hours for heating equipment. See table

above.

AFUE = AFUE of baseline equipment. If unknown use 82% 938.

Incremental Cost

The full installed cost of the ductless mini-split system is shown below ⁹³⁹.

Capacity	Efficiency				
(kBtu/h)	13 SEER	18 SEER	21 SEER	26 SEER	
9	\$2,733	\$3,078	\$3,236	\$3,460	
12	\$2,803	\$3,138	\$3,407	\$3,363	
18	\$3,016	\$3,374	\$3,640	N/A	
24	\$3,273	\$3,874	N/A	N/A	

The full installed cost of the baseline equipment is shown below.

Unit	Cost
Window AC ⁹⁴⁰	\$170/unit
Gas furnace ⁹⁴¹	\$1,606/unit
Electric	
Baseboard 942	\$0

If the measure is a time of sale or new construction project, subtract the costs of the baseline heating and cooling equipment from the appropriate cost of the DSMHP, as shown in the first table above. If the measure is an early replacement, use the full installed cost of the DMSHP as the incremental cost. For the purposes of cost-effectiveness screening, there can also be a deferred cost credit given at the end of the existing equipment's remaining life to account for when the customer would have had to purchase new equipment if they had not performed the early replacement.

http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRomAC.xls)

⁹³⁸ Federal standard for gas boilers.

⁹³⁹ Navigant, Inc. Incremental Cost Study Phase 2. January 16, 2013. Table 16.

⁹⁴⁰ Energy Star Calculator.

⁹⁴¹ Energy Star Calculator. 46% added to value to reflect labor, based on ratio of equipment to labor cost for measure EffFurn-cond-90AFUE in DEER database.

http://www.energystar.gov/buildings/sites/default/uploads/files/Furnace_Calculator.xls?8178 -e52c

⁹⁴² If existing case is electric resistance heat, assume project replaces existing functional baseboard.

Page 407 of 507

Measure Life

The measure life for a DSMHP is 18 years. 943

Operation and Maintenance Impacts n/a

GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Page 408 of 507

Variable Frequency Drive (VFD) for HVAC*

Unique Measure Code(s): CI_MO_RTR_VFDRIVE_0516

Effective Date: May 2016

End Date: TBD

Measure Description

This measure defines savings associated with installing a variable frequency drive on a motor of 200 hp or less for the following HVAC applications: supply fans, return fans, exhaust fans, chilled water pumps, and boiler feedwater pumps. The fan or pump speed will be controlled to maintain the desired system pressure. The application must have a load that varies and proper controls (i.e., Two-way valves, VAV boxes) must be installed.

Definition of Baseline Condition

The baseline condition is a motor, 200 hp or less, without a VFD control.

Definition of Efficient Condition

The efficient condition is a motor, 200 hp or less, with a VFD control.

Annual Energy Savings Algorithm 944

HVAC Fan Applications

$$\Delta kWh = \Delta kWh_{FAN} * (1 + IE_{ENERGY})$$

$$\Delta kWh_{FAN} = kWh_{BASE} - kWh_{RETRO}$$

$$kWh_{BASE} = \left(0.746 * HP * \frac{LF}{\eta_{MOTOR}}\right) * RHRS_{BASE} * \sum_{0\%}^{100\%} (\%FF * PLR_{BASE})$$

$$kWh_{RET} = \left(0.746 * HP * \frac{LF}{\eta_{MOTOR}}\right) * RHRS_{BASE} * \sum_{0\%}^{100\%} (\%FF * PLR_{RET})$$

Where:

 ΔkWh_{FAN} = Fan-only annual energy savings

Unless otherwise noted, savings characterization and associated parameters adopted from Del Balso, R., and K. Monsef. "Investigation into the Reliability of Energy Efficiency/Demand Side Management Savings Estimates for Variable Frequency Drives in Commercial Applications", University of Colorado, Department of Civil, Environmental and Architectural Engineering, 2013.

Page 409 of 507

 IE_{ENERGY} = HVAC interactive effects factor for energy

= Assume 0%⁹⁴⁵

 ΔkWh_{FAN} = Baseline annual energy consumption (kWh/yr) ΔkWh_{RETRO} = Retrofit annual energy consumption (kWh/yr)

0.746 = Conversion factor for hp to kWh

HP = Nominal horsepower of controlled motor

= Actual

LF = Load Factor; Motor Load at Fan Design CFM

= If actual load factor is unknown, assume 65%.

 η_{MOTOR} = Installed nominal/nameplate motor efficiency

= Actual efficiency

RHRS_{BASE} = Annual operating hours for fan motor based on building

type

= If actual hours are unknown, assume defaults in VFD Operating Hours by Application and Building Type table

below.

%FF = Percentage of run-time spent within a given flow

fraction range

= If actual values unknown, see Default Fan Duty Cycle

table below for default values

Default Fan Duty Cycle

Flow Fraction (% of design cfm)	Percent of Time at Flow Fraction (%FF)
0% to 10%	0.0%
10% to 20%	1.0%
20% to 30%	5.5%
30% to 40%	15.5%
40% to 50%	22.0%
50% to 60%	25.0%
60% to 70%	19.0%
70% to 80%	8.5%
80% to 90%	3.0%
90% to 100%	0.5%

⁹⁴⁵ Del Balso, R., and K. Monsef, 2013 notes that the default HVAC interactive effects factor presented in the paper, 15.7%, "should not be used for actual program implementation, but such a factor should be developed and used based on a more complete set of energy modeling results for a given jurisdiction." A value of zero should be assumed, essentially omitting interactive effects, until a jurisdiction-specific analysis can be performed.

Page 410 of 507

PLR_{BASE} = Part load ratio for a given flow fraction range based on

the baseline flow control type

PLR_{RETRO} = Part load ratio for a given flow fraction range based on

the retrofit flow control type

Part Load Ratios by Control and Fan Type and Flow Fraction (PLR)

Control Type	Flow Fraction									
control type	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
No Control or Bypass Damper	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Discharge Dampers	0.46	0.55	0.63	0.70	0.77	0.83	0.88	0.93	0.97	1.00
Outlet Damper, BI & Airfoil Fans	0.53	0.53	0.57	0.64	0.72	0.80	0.89	0.96	1.02	1.05
Inlet Damper Box	0.56	0.60	0.62	0.64	0.66	0.69	0.74	0.81	0.92	1.07
Inlet Guide Vane, BI & Airfoil Fans	0.53	0.56	0.57	0.59	0.60	0.62	0.67	0.74	0.85	1.00
Inlet Vane Dampers	0.38	0.40	0.42	0.44	0.48	0.53	0.60	0.70	0.83	0.99
Outlet Damper, FC Fans	0.22	0.26	0.30	0.37	0.45	0.54	0.65	0.77	0.91	1.06
Eddy Current Drives	0.17	0.20	0.25	0.32	0.41	0.51	0.63	0.76	0.90	1.04
Inlet Guide Vane, FC Fans	0.21	0.22	0.23	0.26	0.31	0.39	0.49	0.63	0.81	1.04
VFD with duct static pressure controls	0.09	0.10	0.11	0.15	0.20	0.29	0.41	0.57	0.76	1.01
VFD with low/no duct static pressure (<1" w.g.)	0.05	0.06	0.09	0.12	0.18	0.27	0.39	0.55	0.75	1.00

HVAC Pump Applications

$$\Delta$$
kWh = ((HP * 0.746 * LF) / η_{MOTOR}) * RHRS_{BASE} * ESF

Where:

HP = Nominal horsepower of controlled motor

= Actual

Page 411 of 507

0.746 = Conversion factor for hp to kWh

LF = Load Factor; Motor Load at Fan Design CFM

= If actual load factor is unknown, assume 65%.

 η_{MOTOR} = Installed nominal/nameplate motor efficiency

= Actual efficiency

RHRS_{BASE} = Annual operating hours for fan motor based on building

type

= If actual hours are unknown, assume defaults in VFD Operating Hours by Application and Building Type table

below.

ESF = Energy Savings Factor (see table "Energy and Demand

Savings Factors" below)

Summer Coincident Peak kW Savings Algorithm

HVAC Fan Applications

 ΔkW = ΔkW_{FAN} * (1 + IE_{DEMAND}) ΔkW_{FAN} = ΔkW_{BASE} - ΔkW_{RETRO}

 ΔkW_{BASE} = (0.746 * HP * LF / η_{MOTOR}) * PLR_{BASE}, PEAK ΔkW_{RETRO} = (0.746 * HP * LF / η_{MOTOR}) * PLR_{RETRO}, PEAK

Where:

 ΔkW_{FAN} = Fan-only annual demand savings (kW)

 IE_{ENERGY} = HVAC interactive effects factor for demand

= If unknown, assume 15.7%

 ΔkW_{FAN} = Baseline summer coincident peak demand (kW) ΔkW_{RETRO} = Retrofit summer coincident peak demand (kW)

 $PLR_{BASE, PEAK}$ = PLR for the average flow fraction during summer peak

period for baseline flow control type (default average flow

fraction during peak period = 90%)

 $PLR_{RETRO, PEAK} = PLR$ for the average flow fraction during summer peak

period for retrofit flow control type (default average flow

fraction during peak period = 90%)

HVAC Pump Applications

$$\Delta kW = ((HP * 0.746 * LF) / \eta_{MOTOR}) * DSF * CF$$

Where:

DSF = Demand Savings Factor (see table "Energy and Demand

Savings Factors" below)

Page 412 of 507

CF = Summer Peak Coincidence Factor for measure $= 0.55^{946}$

VFD Operating Hours by Application and Building Type (RHRS_{BASE})⁹⁴⁷

Facility Type	Fan Motor Hours	Chilled Water Pumps	Heating Pumps
Auto Related	4,056	1,878	5,376
Bakery	2,854	1,445	5,376
Banks, Financial Centers	3,748	1,767	5,376
Church	1,955	1,121	5,376
College - Cafeteria	6,376	2,713	5,376
College - Classes/Administrative	2,586	1,348	5,376
College - Dormitory	3,066	1,521	5,376
Commercial Condos	4,055	1,877	5,376
Convenience Stores	6,376	2,713	5,376
Convention Center	1,954	1,121	5,376
Court House	3,748	1,767	5,376
Dining: Bar Lounge/Leisure	4,182	1,923	5,376
Dining: Cafeteria / Fast Food	6,456	2,742	5,376
Dining: Family	4,182	1,923	5,376
Entertainment	1,952	1,120	5,376
Exercise Center	5,836	2,518	5,376
Fast Food Restaurants	6,376	2,713	5,376
Fire Station (Unmanned)	1,953	1,121	5,376
Food Stores	4,055	1,877	5,376
Gymnasium	2,586	1,348	5,376
Hospitals	7,674	3,180	5,376
Hospitals / Health Care	7,666	3,177	5,376
Industrial - 1 Shift	2,857	1,446	5,376
Industrial - 2 Shift	4,730	2,120	5,376
Industrial - 3 Shift	6,631	2,805	5,376
Laundromats	4,056	1,878	5,376
Library	3,748	1,767	5,376
Light Manufacturers	2,857	1,446	5,376
Lodging (Hotels/Motels)	3,064	1,521	5,376
Mall Concourse	4,833	2,157	5,376
Manufacturing Facility	2,857	1,446	5,376
Medical Offices	3,748	1,767	5,376

⁹⁴⁶ UI and CL&P Program Saving Documentation for 2009 Program Year, Table 1.1.1; HVAC - Variable Frequency Drives - Pumps.
947 United Illuminating Company and Connecticut Light & Power Company. 2012. Connecticut Program Savings Document - 8th Edition for 2013 Program Year. Orange, CT.

Page 413 of 507

Facility Type Hours Pumps Pumps Motion Picture Theatre 1,954 1,121 5,376 Multi-Family (Common Areas) 7,665 3,177 5,376 Museum 3,748 1,767 5,376 Nursing Homes 5,840 2,520 5,376 Office (General Office Types) 3,748 1,767 5,376 Office (Retail 3,748 1,767 5,376 Parking Garages & Lots 4,368 1,990 5,376 Parking Garages & Lots 4,368 1,990 5,376 Penitentiary 5,477 2,389 5,376 Peritorming Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Restaurants		Fan Motor	Chilled Water	Heating
Multi-Family (Common Areas) 7,665 3,177 5,376 Museum 3,748 1,767 5,376 Nursing Homes 5,840 2,520 5,376 Office (General Office Types) 3,748 1,767 5,376 Office/Retail 3,748 1,767 5,376 Parking Garages & Lots 4,368 1,990 5,376 Penitentiary 5,477 2,389 5,376 Penitentiary 5,477 2,389 5,376 Performing Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 </th <th>Facility Type</th> <th></th> <th></th> <th></th>	Facility Type			
Museum 3,748 1,767 5,376 Nursing Homes 5,840 2,520 5,376 Office (General Office Types) 3,748 1,767 5,376 Office/Retail 3,748 1,767 5,376 Parking Garages & Lots 4,368 1,990 5,376 Penitentiary 5,477 2,389 5,376 Performing Arts Theatre 2,586 1,348 5,376 Performing Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 Schools (Jr./Sr. High) 2,187 1	Motion Picture Theatre	1,954	1,121	5,376
Nursing Homes 5,840 2,520 5,376 Office (General Office Types) 3,748 1,767 5,376 Office/Retail 3,748 1,767 5,376 Parking Garages & Lots 4,368 1,990 5,376 Penitentiary 5,477 2,389 5,376 Penitentiary 5,477 2,389 5,376 Performing Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Preschool/E	Multi-Family (Common Areas)	7,665	3,177	5,376
Office (General Office Types) 3,748 1,767 5,376 Office/Retail 3,748 1,767 5,376 Parking Garages & Lots 4,368 1,990 5,376 Penitentiary 5,477 2,389 5,376 Performing Arts Theatre 2,586 1,348 5,376 Performing Arts Theatre 2,586 1,348 5,376 Performing Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Restaurants 4,182 1,923 5,376 Retail 4,0	Museum	3,748	1,767	5,376
Office/Retail 3,748 1,767 5,376 Parking Garages & Lots 4,368 1,990 5,376 Penitentiary 5,477 2,389 5,376 Performing Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena <	Nursing Homes	5,840	2,520	5,376
Parking Garages & Lots 4,368 1,990 5,376 Penitentiary 5,477 2,389 5,376 Performing Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Transportation	Office (General Office Types)	3,748	1,767	5,376
Penitentiary 5,477 2,389 5,376 Performing Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Warehouse (Not Refrigerated)	Office/Retail	3,748	1,767	5,376
Performing Arts Theatre 2,586 1,348 5,376 Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	Parking Garages & Lots	4,368	1,990	5,376
Police / Fire Stations (24 Hr) 7,665 3,177 5,376 Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	Penitentiary	5,477	2,389	5,376
Post Office 3,748 1,767 5,376 Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	Performing Arts Theatre	2,586	1,348	5,376
Pump Stations 1,949 1,119 5,376 Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	Police / Fire Stations (24 Hr)	7,665	3,177	5,376
Refrigerated Warehouse 2,602 1,354 5,376 Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	Post Office	3,748	1,767	5,376
Religious Building 1,955 1,121 5,376 Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	Pump Stations	1,949	1,119	5,376
Residential (Except Nursing Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	Refrigerated Warehouse	2,602	1,354	5,376
Homes) 3,066 1,521 5,376 Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376		1,955	1,121	5,376
Restaurants 4,182 1,923 5,376 Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376				
Retail 4,057 1,878 5,376 School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	·			
School / University 2,187 1,205 5,376 Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376				
Schools (Jr./Sr. High) 2,187 1,205 5,376 Schools (Preschool/Elementary) 2,187 1,205 5,376 Schools (Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376				
Schools 2,187 1,205 5,376 Schools 3,750 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376				
(Preschool/Elementary) 2,187 1,205 5,376 Schools 3,750 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376		2,187	1,205	5,376
Schools 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376		0.407	4 005	5.07/
(Technical/Vocational) 2,187 1,205 5,376 Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376		2,187	1,205	5,376
Small Services 3,750 1,768 5,376 Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376		2 197	1 205	5 376
Sports Arena 1,954 1,121 5,376 Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	,			
Town Hall 3,748 1,767 5,376 Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376				
Transportation 6,456 2,742 5,376 Warehouse (Not Refrigerated) 2,602 1,354 5,376	•			
Warehouse (Not Refrigerated) 2,602 1,354 5,376				
, , , , , , , , , , , , , , , , , , , ,	•			
I Waste Water Treatment Plant 6 631 7 805 5 276	Waste Water Treatment Plant	6,631	2,805	5,376
Waste Water Heatment Flant 0,031 2,003 3,376 Workshop 3,750 1,768 5,376				

Page 414 of 507

Energy and Demand Savings Factors 948

HVAC Pump VFD Savings Factors					
System ESF DSF					
Chilled Water Pump	0.633	0.460			
Hot Water Pump	0.652	0.000			

Annual Fossil Fuel Savings Algorithm

Annual Water Savings Algorithm

Incremental Cost

The incremental cost for this measure varies by controlled motor hp. See table "VFD Incremental Costs" below.

VFD Incremental Costs 949

Rated Motor Horsepower (HP)	Total Installed Costs
5	\$2,125
15	\$3,193
25	\$4,260
50	\$6,448
75	\$8,407
100 ⁹⁵⁰	\$10,493
200 951	\$17,266

⁹⁴⁸ United Illuminating Company and Connecticut Light & Power Company. 2012. Connecticut Program Savings Document - 8th Edition for 2013 Program Year. Orange, CT; energy and demand savings constants were derived using a temperature bin spreadsheet and typical heating, cooling, and fan load profiles. Note, these values have been adjusted from the source data for remove the embedded load factor.

⁹⁴⁹ Navigant. 2013. Incremental Cost Study Phase Two Final Report. Burlington, MA. ⁹⁵⁰ The Incremental Cost Study does not provide labor cost estimates for units 100 hp and above. Labor cost estimates derived from RSMeans Mechanical Cost Data 2010. US average labor costs for 100 hp and 200 hp units adjusted to the Mid-Atlantic region using population weighted (2010 Census) "Location Factors" from RSMeans. ⁹⁵¹ Ibid.

Page 415 of 507

Measure Life

The measure life is assumed to be 15 years for HVAC applications. 952

Operation and Maintenance Impacts

n/a

 $^{^{952}}$ Navigant. 2013. Incremental Cost Study Phase Two Final Report. Burlington, MA.

Page 416 of 507

Electric Chillers

Unique Measure Code: CI_HV_TOS_ELCHIL_0615, CI_HV_EREP_ELCHIL_0615

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of a new high-efficiency electric water chilling package in place of an existing chiller or a new standard efficiency chiller of the same capacity. This measure applies to time of sale, new construction, and early replacement opportunities.

Definition of Baseline Condition

Time of Sale or New Construction: For Washington, D.C. and Delaware, the baseline condition is a standard efficiency water chilling package equal to the requirements presented in the International Energy Conservation Code 2012 (IECC 2012), Table C403.2.3(7). For Maryland, the baseline condition is a standard efficiency water chilling package equal to the requirements presented in the International Energy Conservation Code 2015 (IECC 2015), Table C403.2.3(7).

Early Replacement: The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the measure life.

Definition of Efficient Condition

For Washington, D.C. and Delaware, the efficient condition is a high-efficiency electric water chilling package exceeding the requirements presented in the International Energy Conservation Code 2012 (IECC 2012), Table C403.2.3(7). For Maryland, the efficient condition is a high-efficiency electric water chilling package exceeding the requirements presented in the International Energy Conservation Code 2015 (IECC 2015), Table C403.2.3(7).

Annual Energy Savings Algorithm

Time of Sale and New Construction:

ΔkWh = TONS * (IPLVbase - IPLVee) * HOURS

Page 417 of 507

Early Replacement 953:

 ΔkWh for remaining life of existing unit (i.e., measure life less the age of the existing equipment):

= TONS * (IPLVexist - IPLVee) * HOURS

ΔkWh for remaining measure life (i.e., measure life less the remaining life of existing unit):

= TONS * (IPLVbase - IPLVee) * HOURS

Where:

TONS = Total installed capacity of the water chilling

package[tons] = Actual Installed

IPLVexist = Integrated Part Load Value (IPLV)⁹⁵⁴ of the existing

equipment [kW/ton]

IPLVbase = Integrated Part Load Value (IPLV) of the new baseline

equipment [kW/ton]

= Varies by equipment type and capacity. See "Time of

Sale Baseline Equipment Efficiency" table in the

"Reference Tables" section below 955

IPLVee = Integrated Part Load Value (IPLV) of the efficient

equipment [kW/ton] = Actual Installed

HOURS = Full load cooling hours

= If actual full load cooling hours are unknown, assume values presented in table "Default Electric Chiller Full Load Cooling Hours" in the "Reference Tables" section below. Otherwise, use site specific full load cooling hours

information.

-

⁹⁵³ The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a "number of years to adjustment" and "savings adjustment" input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.

⁹⁵⁴ Integrated Part Load Value (IPLV) is an HVAC industry standard single-number metric for reporting part-load performance.

⁹⁵⁵ Baseline efficiencies based on International Energy Conservation Code 2012, Table C403.2.3(7) Minimum Efficiency Requirements: Water Chilling Packages and International Energy Conservation Code 2015, Table C403.2.3(7) Water Chilling Packages - Efficiency Requirements

Summer Coincident Peak kW Savings Algorithm

Time of Sale and New Construction:

ΔkW = TONS * (Full_Loadbase - Full_Loadee) * CF

Early replacement:

 ΔkW for remaining life of existing unit (i.e., measure life less the age of the existing equipment):

= TONS * (Full_Loadexist - Full_Loadee) * CF

ΔkW for remaining measure life (i.e., measure life less the remaining life of existing unit):

= TONS * (Full_Loadbase - Full_Loadee) * CF

Where:

Full_Loadexist = Full load efficiency of the existing equipment [kW/ton] Full_Loadbase = Full load efficiency of the baseline equipment [kW/ton]

= Varies by equipment type and capacity. See "Time of

Sale Baseline Equipment Efficiency" table in the

"Reference Tables" section below 956

Full_Loadee = Full load efficiency of the efficient equipment

= Actual Installed [kW/ton]

CF_{PJM} = PJM Summer Peak Coincidence Factor (June to August

weekdays between 2 pm and 6 pm) valued at peak weather

 $= 0.808^{957}$

CF_{SSP} = Summer System Peak Coincidence Factor (hour ending

5pm on hottest summer weekday)

 $= 0.923^{958}$

Annual Fossil Fuel Savings Algorithm

n/a

_

⁹⁵⁶ Baseline efficiencies based on International Energy Conservation Code 2012, Table C403.2.3(7) Minimum Efficiency Requirements: Water Chilling Packages and International Energy Conservation Code 2015, Table C403.2.3(7) Water Chilling Packages - Efficiency Requirements

⁹⁵⁷ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. Combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

⁹⁵⁸ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

Page 419 of 507

Annual Water Savings Algorithm n/a

Incremental Cost

The incremental costs for chillers are shown in the tables below for time of sale and new construction scenarios. 959 Because of differences in baselines due to differing code requirements by jurisdiction, the incremental costs vary by jurisdiction. If the measure is an early replacement, the full installed cost of the efficient unit should be used as the incremental cost and determined on a site-specific basis. For the purposes of cost-effectiveness screening, there can also be a deferred cost credit given at the end of the existing equipment's remaining life to account for when the customer would have had to purchase new equipment if they had not performed the early replacement.

Air-Cooled Chiller Incremental Costs (\$/Ton) for Washington, D.C. and Delaware

Delaware						
Capacity	Baseline	Efficient EER				
(Tons)	EER	9.9	10.2	10.52	10.7	
50	9.562	\$258	\$486	\$730	\$867	
100	9.562	\$128	\$243	\$364	\$433	
150	9.562	\$86	\$162	\$244	\$289	
200	9.562	\$53	\$99	\$149	\$177	
400	9.562	\$26	\$50	\$74	\$88	

Air-Cooled Chiller Incremental Costs (\$/Ton) for Maryland

Capacity	Capacity Baseline		Efficient EER				
(Tons)	EER	9.9	10.2	10.52	10.7		
50	10.1	N/A	\$76	\$320	\$457		
100	10.1	N/A	\$38	\$159	\$228		
150	10.1	N/A	\$25	\$107	\$152		
200	10.1	N/A	\$15	\$65	\$93		
400	10.1	N/A	\$8	\$32	\$46		

⁹⁵⁹ Navigant. 2013. Incremental Cost Study Phase Two Final Report. Burlington, MA. Table values adapted from published values to align with baseline code requirements ("Path A") by interpolating or extrapolating from nearest pair of published efficiency values. "N/A" indicates either an efficiency value below baseline requirements or a gap in the published data from the source document.

Page 420 of 507

Water-Cooled Scroll/Screw Chiller Incremental Costs (\$/Ton) for Washington, D.C. and Delaware

Capacity	Baseline		Efficien	it kW/ton	
(Tons)	kW/ton	0.72	0.68	0.64	0.60
50	0.78	\$114	\$164	N/A	N/A
100	0.775	\$52	\$77	N/A	N/A
150	0.68	N/A	N/A	N/A	N/A
200	0.68	N/A	N/A	\$61	\$122
400	0.62	N/A	N/A	N/A	\$16

Water-Cooled Scroll/Screw Chiller Incremental Costs (\$/Ton) for Maryland

Capacity	Baseline	Efficient kW/ton					
(Tons)) kW/ton	0.72	0.68	0.64	0.60		
50	0.75	\$57	\$107	N/A	N/A		
100	0.72	\$0	\$25	N/A	N/A		
150	0.66	N/A	N/A	N/A	N/A		
200	0.66	N/A	N/A	\$31	\$92		
400	0.61	N/A	N/A	N/A	\$8		

Water-Cooled Centrifugal Chiller Incremental Costs (\$/Ton) for Washington, D.C. and Delaware

Capacity	Baseline	Ef	ficient kW	/ton
(Tons)	kW/ton	0.6	0.58	0.54
100	0.634	\$62	\$99	\$172
150	0.634	\$42	\$66	\$115
200	0.634	\$31	\$49	\$86
300	0.576	N/A	N/A	\$55
600	0.57	N/A	N/A	\$22

Water-Cooled Centrifugal Chiller Incremental Costs (\$/Ton) for Maryland

Capacity	Baseline	Efficient kW/ton				
(Tons)	kW/ton	0.6	0.58	0.54		
100	0.61	\$18	\$55	\$128		
150	0.61	\$12	\$36	\$85		
200	0.61	\$9	\$27	\$64		
300	0.56	N/A	N/A	\$31		

Page 421 of 507

Capacity	Baseline	Ef	ficient kW	/ton
(Tons)		0.6	0.58	0.54
600	0.56	N/A	N/A	\$15

Measure Life

The measure life is assumed to be 23 years 960.

Operation and Maintenance Impacts

n/a

Reference Tables

Time of Sale Baseline Equipment Efficiency for Washington, D.C. and Delaware 961

Equipment			Pat	h A ^a	Path B ^a	
Equipment Type	Size Category	Units	Full Load	IPLV	Full Load	IPLV
Air-Cooled	<150 tons	EER	≥9.562	≥12.500	NA	NA
Chillers	≥150 tons	EER	≥9.562	≥12.750	NA	NA
Water Cooled,	<75 tons	kW/ton	≤0.780	≤0.630	≤0.800	≤0.600
Electrically	≥75 tons and <150 tons	kW/ton	≤0.775	≤0.615	≤0.790	≤0.586
Operated, Positive	≥150 tons and <300 tons	kW/ton	≤0.680	≤0.580	≤0.718	≤0.540
Displacement	≥300 tons	kW/ton	≤0.620	≤0.540	≤0.639	≤0.490
Water Cooled,	<150 tons	kW/ton	≤0.634	≤0.596	≤0.639	≤0.450
Electrically	≥150 tons and <300 tons	kW/ton	≤0.634	≤0.596	≤0.639	≤0.450
Operated,	≥300 tons and <600 tons	kW/ton	≤0.576	≤0.549	≤0.600	≤0.400
Centrifugal	≥600 tons	kW/ton	≤0.570	≤0.539	≤0.590	≤0.400

a. Compliance with IECC 2012 can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill the requirements of Path A or B.

Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007, "http://www.ctsavesenergy.org/files/Measure Life Report 2007.pdf"

^{2007.}pdf"

961 Baseline efficiencies based on International Energy Conservation Code 2012, Table C403.2.3(7) Minimum Efficiency Requirements: Water Chilling Packages.

Page 422 of 507

Time of Sale Baseline Equipment Efficiency for Marvland 962

Equipment			Pat	h A ^a	Pat	h B ^a
Туре	Size Category	Units	Full Load	IPLV	Full Load	IPLV
Air-Cooled	<150 tons	EER	≥10.100	≥13.700	≥9.700	≥15.800
Chillers	≥150 tons	EER	≥10.100	≥14.000	≥9.700	≥16.100
Water Cooled	<75 tons	kW/ton	≤0.750	≤0.600	≤0.780	≤0.500
Water Cooled, Electrically	≥75 tons and <150 tons	kW/ton	≤0.720	≤0.560	≤0.750	≤0.490
Operated,	≥150 tons and <300 tons	kW/ton	≤0.660	≤0.540	≤0.680	≤0.440
Positive	≥300 tons and <600 tons	kW/ton	≤0.610	≤0.520	≤0.625	≤0.410
Displacement	≥600 tons	kW/ton	≤0.560	≤0.500	≤0.585	≤0.380
	<150 tons	kW/ton	≤0.610	≤0.550	≤0.695	≤0.440
Water Cooled,	≥150 tons and <300 tons	kW/ton	≤0.610	≤0.550	≤0.635	≤0.400
Electrically	≥300 tons and <400 tons	kW/ton	≤0.560	≤0.520	≤0.595	≤0.390
Operated,	≥400 tons and <600 tons	kW/ton	≤0.560	≤0.500	≤0.585	≤0.380
Centrifugal	≥600 tons	kW/ton	≤0.560	≤0.500	≤0.585	≤0.380

a. Compliance with IECC 2015 can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill the requirements of Path A or В.

Default Electric Chiller Full Load Cooling Hours 963

Building Type	System Type ^a	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Community College	CAV w/o economizer	1,010	1,048	1,121	1,044	1,202	1,117	1,274
Community College	CAV w/ economizer	752	781	836	777	897	833	952
Community College	VAV w/ economizer	585	607	649	605	695	647	736
High School	CAV w/o	819	830	851	829	875	850	896

⁹⁶² Baseline efficiencies based on International Energy Conservation Code 2015, Table C403.2.3(7) Water Chilling Package - Efficiency Requirements.

⁹⁶³ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using cooling degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

Page 423 of 507

Building Type	System Type ^a	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
	economizer							
High School	CAV w/ economizer	428	440	463	439	489	462	511
High School	VAV w/ economizer	306	316	336	315	359	335	379
Hospital	CAV w/o economizer	2,094	2,135	2,213	2,130	2,302	2,210	2,379
Hospital	CAV w/ economizer	1,307	1,341	1,406	1,338	1,479	1,403	1,543
Hospital	VAV w/ economizer	1,142	1,165	1,208	1,162	1,257	1,206	1,300
Hotel	CAV w/o economizer	3,166	3,165	3,163	3,165	3,161	3,163	3,159
Hotel	CAV w/ economizer	2,972	2,972	2,971	2,972	2,971	2,971	2,971
Hotel	VAV w/ economizer	2,953	2,958	2,967	2,957	2,977	2,966	2,986
Large Retail	CAV w/o economizer	1,719	1,730	1,750	1,729	1,772	1,749	1,792
Large Retail	CAV w/ economizer	987	1,011	1,057	1,009	1,109	1,055	1,155
Large Retail	VAV w/ economizer	817	838	877	835	921	875	959
Office Building	CAV w/o economizer	2,162	2,193	2,252	2,189	2,318	2,249	2,377
Office Building	CAV w/ economizer	700	710	729	709	750	728	768
Office Building	VAV w/ economizer	670	685	716	684	749	714	779
University	CAV w/o economizer	1,103	1,135	1,198	1,132	1,267	1,194	1,329
University	CAV w/ economizer	796	822	871	819	925	868	974
University	VAV w/ economizer	626	645	682	643	724	680	760

a. "CAV" refers to constant air volume systems whereas "VAV" refers to variable air volume systems.

Gas Boiler

Unique Measure Code: CI_HV_TOS_GASBLR_0614 and

CI_HV_RTR_GASBLR_0614 Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the installation of a high efficiency gas boiler in the place of a standard efficiency gas boiler. This measure applies to time of sale and new construction opportunities.

Definition of Baseline Condition

Time of Sale: The baseline condition is a gas boiler with efficiency equal to the current federal standards. See the "Time of Sale Baseline Equipment Efficiency" table in the "Reference Tables" section.

Definition of Efficient Condition

The efficient condition is a high-efficiency gas boiler of at least 85% AFUE for units <300 kBtu/h and 85% E_t for units >300 kBtu/h. See the "Time of Sale Baseline Equipment Efficiency" table in the "Reference Tables" section.

Annual Energy Savings Algorithm

n/a

Summer Coincident Peak kW Savings Algorithm

n/a

Annual Fossil Fuel Savings Algorithm

 Δ MMBtu = CAP * HOURS * (1/EFF_{base} - 1/EFF_{ee}) / 1,000,000

Where:

CAP = Equipment capacity [Btu/h]

= Actual Installed

HOURS = Full Load Heating Hours

Page 425 of 507

= See "Heating Full Load Hours" table in the "Reference

Tables" section below 964

 EFF_{base} = The efficiency of the baseline equipment; Can be

expressed as thermal efficiency (E_t) , combustion efficiency

 (E_c) , or Annual Fuel Utilization Efficiency (AFUE),

depending on equipment type and capacity.

= For time of sale: See "Time of Sale Baseline Equipment

Efficiency" table in the "Reference Tables" section

below⁹⁶⁵

equipment

EFF_{ee} = The efficiency of the efficient equipment; Can be

expressed as thermal efficiency (E_t), combustion efficiency

 (E_c) , or Annual Fuel Utilization Efficiency (AFUE), depending on equipment type and capacity.

= Actual Installed

1,000,000 = Btu/MMBtu unit conversion factor

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure varies by size category and efficiency level. See the "Time of Sale Incremental Costs" table in the "Reference Tables" section below.

Measure Life

The measure life is assumed to be 20 years 966.

Operation and Maintenance Impacts

n/a

HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.
 Baseline efficiencies based on the Energy Independence and Security Act of 2007 and the International Energy Conservation Code 2009, Table 503.2.3(5) Boilers, Gas- and Oil-Fired, Minimum Efficiency Requirements.

⁹⁶⁶ Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

Page 426 of 507

Reference Tables

Time of Sale Baseline Equipment Efficiency 967

Equipment Type	Equipment Type Size Category		Minimum Efficiency
	<300,000 Btu/h	Hot water	82% AFUE
	<300,000 Btu/11	Steam	80% AFUE
	200,000	Hot water	80% E _t
	>=300,000 Btu/h and <=2,500,000 Btu/h	Steam - all, except natural draft	79.0% E _t
Boilers, Gas-fired	Btu/11	Steam - natural draft	77.0% E _t
		Hot water	82.0% E _c
	>2,500,000 Btu/h	Steam - all, except natural draft	79.0% E _t
		Steam - natural draft	77.0% E _t

Time of Sale Incremental Costs 968

Sizo Cotogory	Incremer		
Size Category (kBtu/h)	>=85% and <90% Efficiency	>=90% Efficiency	Efficiency Metric
<300	\$934	\$1481	AFUE
300	\$572	\$3,025	E _t
500	\$1,267	\$3,720	E _t
700	\$1,962	\$4,414	E _t
900	\$2,657	\$5,109	E _t
1,100	\$3,352	\$5,804	E _t

⁹⁶⁷ Baseline efficiencies based on current federal standards:

http://www1.eere.energy.gov/buildings/appliance_standards/residential/fb_tsd_0907.html VEIC believes it is reasonable to assume that the cost provided from this study for an 85% unit is appropriate for units in the 85-90% AFUE range and the cost for the 91% unit can be used for 91+% units. This is based on the observation that most of the products available in the 85-90 range are in the lower end of the range, as are those units available above 91% AFUE. For units >= 300 kBtu/h costs adopted from the Northeast Energy Efficiency Partnerships Incremental Cost Study Report, Navigant, 2011.

http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/74fr36312.pdf.

⁹⁶⁸ For units <300 kBtu/h, costs derived from Page E-13 of Appendix E of Residential Furnaces and Boilers Final Rule Technical Support Document:

Page 427 of 507

1,300	\$4,047	\$6,499	E _t
1,500	\$4,742	\$7,194	E _t
1,700	\$5,436	\$7,889	E _t
2,000	\$6,479	\$8,931	E _t
>=2200	\$7,174	\$9,626	E _t

Heating Full Load Hours 969

Building Type	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Assembly	676	692	620	657	451	507	559
Auto Repair	2,292	2,344	2,106	2,229	1,543	1,728	1,901
Big Box Retail	286	298	241	271	107	151	192
Fast Food Restaurant	957	983	866	926	590	681	766
Full Service Restaurant	988	1,016	891	956	597	694	784
Grocery	286	298	241	271	107	151	192
Light Industrial	867	885	803	845	608	672	732
Motel	659	667	632	650	547	575	601
Primary School	978	993	926	960	767	819	868
Religious Worship	750	754	737	746	698	711	723
Small Office	511	524	466	496	329	374	416
Small Retail	657	674	595	636	410	471	528
Warehouse	556	576	487	533	278	347	411
Other	805	823	739	783	541	606	667

⁹⁶⁹ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

Page 428 of 507

Gas Furnace

Unique Measure Code: CI_HV_TOS_GASFUR_0615,

CI_HV_RTR_GASFUR_0615 Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of a high efficiency gas furnace with capacity less than 225,000 Btu/h with an electronically commutated fan motor (ECM) in the place of a standard efficiency gas furnace. This measure applies to time of sale and new construction opportunities.

Definition of Baseline Condition

Time of Sale: The baseline condition is a gas furnace with an Annual Fuel Utilization Efficiency (AFUE) of 80% with a standard efficiency furnace fan.

Definition of Efficient Condition

The efficient condition is a high-efficiency gas furnace with an AFUE of 90% or higher. This characterization only applies to furnaces with capacities less than 225,000 Btu/h with an electronically commutated fan motor (ECM).

Annual Energy Savings Algorithm 970

 $\Delta kWh = 733 \ kWh^{971}$

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0.19 \text{ kW}^{972}$

Annual Fossil Fuel Savings Algorithm

 Δ MMBtu = CAP * HOURS * ((1/AFUE_{base}) - (1/AFUE_{ee})) / 1,000,000

Where:

-

⁹⁷⁰ Energy and Demand Savings come from the ECM furnace fan motor. These motors are also available as a separate retrofit on an existing furnace.

⁹⁷¹ Deemed savings from ECM Furnace Impact Assessment Report. Prepared by PA Consulting for the Wisconsin Public Service Commission 2009. Based on in depth engineering analysis and interviews taking into account the latest research on behavioral aspects of furnace fan use.
⁹⁷² Efficiency Vermont Technical Reference User Manual No. 2010-67a. Measure Number I-A-6-a.

Page 429 of 507

CAP = Capacity of the high-efficiency equipment [Btu/h]

= Actual Installed

HOURS = Full Load Heating Hours

= See "Heating Full Load Hours" table in the "Reference

Tables" section below 973

 $AFUE_{base}$ = Annual Fuel Utilization Efficiency of the baseline

equipment

= For time of sale: 0.80⁹⁷⁴

 $AFUE_{ee}$ = Annual Fuel Utilization Efficiency of the efficient

equipment

= Actual Installed.

1,000,000 = Btu/MMBtu unit conversion factor

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is provided below 975:

Efficiency of	Incremental
Furnace (AFUE)	Cost
90%	\$630
92%	\$802
96%	\$1,747

http://www1.eere.energy.gov/buildings/appliance_standards/residential/fb_tsd_0907.html

⁹⁷³ HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory. 974 Baseline efficiencies based on International Energy Conservation Code 2012, Table C403.2.3(4) Warm Air Furnaces and Combination Warm Air Furnaces/Air-Conditioning Units, Warm Air Duct Furnaces and Unit Heaters, Minimum Efficiency Requirements and International Energy Conservation Code 2015, Table C403.2.3(4) Warm Air Furnaces and Combination Warm Air Furnaces/Air-Conditioning Units, Warm Air Duct Furnaces and Unit Heaters, Minimum Efficiency Requirements. Review of GAMA shipment data indicates a more suitable market baseline is 80% AFUE. Further, pending federal standards, 10 CFR 430.32(e)(1)(i), scheduled to take effect in November 2015 will raise the baseline for non-weatherized gas furnaces to 80% AFUE. The baseline unit is non-condensing.

⁹⁷⁵ Costs derived from Page E-3 of Appendix E of Residential Furnaces and Boilers Final Rule Technical Support Document:

Page 430 of 507

Measure Life

The measure life is assumed to be 18 years 976.

Operation and Maintenance Impacts

n/a

Reference Tables

Heating Full Load Hours 977

Building Type	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Assembly	676	692	620	657	451	507	559
Auto Repair	2,292	2,344	2,106	2,229	1,543	1,728	1,901
Big Box Retail	286	298	241	271	107	151	192
Fast Food Restaurant	957	983	866	926	590	681	766
Full Service Restaurant	988	1,016	891	956	597	694	784
Grocery	286	298	241	271	107	151	192
Light Industrial	867	885	803	845	608	672	732
Motel	659	667	632	650	547	575	601
Primary School	978	993	926	960	767	819	868
Religious Worship	750	754	737	746	698	711	723
Small Office	511	524	466	496	329	374	416
Small Retail	657	674	595	636	410	471	528
Warehouse	556	576	487	533	278	347	411
Other	805	823	739	783	541	606	667

0

⁹⁷⁶ Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007, "http://www.ctsavesenergy.org/files/Measure Life Report 2007.pdf"

HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory

Page 431 of 507

Dual Enthalpy Economizer

Unique Measure Code: CI_HV_RTR_DEECON_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure involves the installation of a dual enthalpy economizer to provide free cooling during the appropriate ambient conditions. Enthalpy refers to the total heat content of the air. A dual enthalpy economizer uses two sensors — one measuring return air enthalpy and one measuring outdoor air enthalpy. Dampers are modulated for optimum and lowest enthalpy to be used for cooling. This measure applies only to retrofits.

Definition of Baseline Condition

The baseline condition is the existing HVAC system with no economizer.

Definition of Efficient Condition

The efficient condition is the HVAC system with dual enthalpy controlled economizer.

Annual Energy Savings Algorithm

 $\Delta kWh = TONS * SF$

Where:

TONS = Actual Installed

SF = Savings factor for the installation of dual enthalpy

economizer control [kWh/ton],

= See "Savings Factors" table in "Reference Tables"

section below⁹⁷⁸

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0 \ kW^{979}$

⁹⁷⁸ kWh/ton savings from "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, scaled based on enthalpy data from New York City and Mid-Atlantic cities from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.
⁹⁷⁹ Demand savings are assumed to be zero because economizer will typically not be operating

7/7 Demand savings are assumed to be zero because economizer will typically not be operating during the peak period.

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental costs for this measure are presented in the "Dual Enthalpy Economizer Incremental Costs" table below.

Dual Enthalpy Economizer Incremental Costs 980

HVAC System Capacity (Tons)	Incremental Cost
5	\$943
15	\$1,510
25	\$2,077
40	\$2,927
70	\$4,628

Measure Life

The measure life is assumed to be 10 years 981.

Operation and Maintenance Impacts

n/a

Navigant. 2013. Incremental Cost Study Phase Two Final Report. Burlington, MA.General agreement among sources; Recommended value from Focus on Energy Evaluation. Business Programs: Measure Life Study. August 25, 2009.

Page 433 of 507

Reference Tables

Savings Factors 982

Savings Factors (kWh/ton)	Dover, DE	Wilmington, DE	Baltimore, MD	Hagerstown, MD	Patuxent River, MD	Salisbury, MD	Washington D.C.
Assembly	26	22	25	29	25	27	25
Big Box Retail	144	125	143	165	141	155	139
Fast Food	37	32	37	42	36	40	36
Full Service Restaurant	29	25	29	34	29	32	28
Light Industrial	24	21	23	27	23	25	23
Primary School	40	34	39	45	39	43	39
Small Office	177	153	175	201	173	189	171
Small Retail	90	78	89	103	88	97	87
Religious	6	5	6	6	6	6	6
Warehouse	2	2	2	2	2	2	2
Other	58	50	57	66	57	62	56

_

 $^{^{982}}$ kWh/ton savings from NY Standard Approach Model, with scaling factors based on enthalpy data from NYC and Mid-Atlantic cities.

Page 434 of 507

AC Tune-Up

Unique Measure Code(s): CI_HV_RET_ACTUNE_0615

Effective Date: June 2015

End Date: TBD

Measure Description

This measure is for a "tune-up" for a commercial central AC. This measure only applies to residential-style central AC systems of 5.4 tons (65,000 Btu/h) or less. Tune-ups for larger units, including units with variable air volume and air handling units, should be treated as custom measures. A recent California evaluation suggests that tune-ups on these larger systems may be better handled by breaking up the overall tune-up into a series of specific activities performed - for example, refrigerant charge correction, economizer repair, leak sealing, etc⁹⁸³. For smaller units, tuning measures may include:

- Refrigerant charge correction
- Cleaning the condensate drain line
- Clean and straighten coils and fans
- Replace air filter
- Repair damaged insulation

Definition of Baseline Condition

The baseline condition is a pre-tune-up air conditioner. Where possible, spot measurements should be used to estimate the baseline EER. An HVAC system is eligible for a tune-up once every five years.

Definition of Efficient Condition

The efficient condition is a post-tune-up air conditioner. Where possible, spot measurements should be used to estimate the EER post-tune-up.

Annual Energy Savings Algorithm

ΔkWh = CCAP x EFLH x 1/SEER_{pre} x %_impr

Where:

CCAP

= Cooling capacity of existing AC unit, in kBtu/hr

⁹⁸³ California Public Utilities Commission. *HVAC Impact Evaluation Final Report*. January 28, 2014.

Page 435 of 507

 $SEER_{pre}$ = SEER of actual unit, before the tune-up. If testing is

not done on the baseline condition, use the nameplate

SEER.

EFLH = Full load hours for cooling equipment. See table below % impr = Percent improvement based on measured EERs pre-

= Percent improvement based on measured EERs preand post-tune-up. Calculated as (EER_{post} - EER_{pre})/EER_{post}, where subscripts "pre" and "post" refer to the EER

before and after the tune-up, respectively. If onsite testing data is not available, assume %_impr = 0.05.984

Full Load Cooling Hours by Location and Equipment Capacity 985

City, State	HOURS by Equipment Capacity
-	< 135 kBtu/h
Dover, DE	910
Wilmington, DE	980
Baltimore, MD	1,014
Hagerstown, MD	885
Patuxent River, MD	1,151
Salisbury, MD	1,008
Washington D.C.	1,275

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = CCAP \times 1/EER_{pre} \times \%_{impr} \times CF$

Where:

CCAP

= Cooling capacity of DMSHP unit, in kBtu/hr

 EER_{pre}

= EER of actual unit, before the tune-up. If testing is not done on the baseline condition, use the nameplate EER.

⁹⁸⁴ Energy Center of Wisconsin, May 2008; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research."

⁹⁸⁵ Full load cooling hours estimated by adjusting the "Mid-Atlantic" hours from "C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011" by the full-load cooling hour estimates from the ENERGY STAR Central AC Calculator, 2013. For scaling purposes, the analysis assumes the initial Mid-Atlantic values are consistent with Baltimore, MD as suggested by the KEMA study. Because the ENERGY STAR calculator does not provide full load hours estimates for all cities of interest, a second scaling was performed using cooling degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

Page 436 of 507

%_impr = Percent improvement based on measured EERs pre and

post tune-up. Calculated as $(EER_{post} - EER_{pre})/EER_{post}$. If onsite testing data is not available, assumed % impr =

0.05.986

 CF_{PIM} = PJM Summer Peak Coincidence Factor (June to August

weekdays between 2 pm and 6 pm) valued at peak

weather

= 0.360 for units <135 kBtu/h and 0.567 for units ≥135

kBtu/h⁹⁸⁷

CF_{SSP} = Summer System Peak Coincidence Factor (hour ending

5pm on hottest summer weekday)

= 0.588 for units <135 kBtu/h and 0.874 for units ≥135

kBtu/h⁹⁸⁸

Annual Fossil Fuel Savings Algorithm

n/a

Incremental Cost

Use the actual cost of the tune-up. If this is unknown, use a default of \$35/ton⁹⁸⁹.

Measure Life

The measure life for an AC tune-up is 5 years. 990

Operation and Maintenance Impacts

n/a

_

⁹⁸⁶ Energy Center of Wisconsin, May 2008; "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research."

⁹⁸⁷ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

⁹⁸⁸ C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, "Report Revision Memo," KEMA, August 2011

⁹⁸⁹ Illinois Statewide Technical Reference Manual for Energy Efficiency Version 4.0 Final February 24 2015

⁹⁹⁰ GDS Associates, Inc. (2007). *Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures*. Prepared for The New England State Program Working Group; Page 1-3, Table 1.

Refrigeration End Use

ENERGY STAR Commercial Freezers

Unique Measure Code(s): CI_RF_TOS_FREEZER_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes the installation of an ENERGY STAR qualified, high-efficiency packaged commercial freezer intended for food product storage.

Definition of Baseline Condition

The baseline condition is a standard-efficiency packaged commercial freezer meeting, but not exceeding, federal energy efficiency standards.

Definition of Efficient Condition

The efficient condition is a high-efficiency packaged commercial freezer meeting ENERGY STAR Version 2.1 requirements⁹⁹¹.

Annual Energy Savings Algorithm

ΔkWh = (kWhBASEdailymax - kWhEEdailymax) * 365

Where:

kWhBASEdailymax ⁹⁹² = See table below.

Product Volume (in cubic feet)	kWhBASEdailymax
Solid Door Cabinets	0.40V + 1.38
Glass Door Cabinets	0.75V + 4.10

Where V = Association of Home Appliances Manufacturers (AHAM) volume

kWhEEdailymax ⁹⁹³ = See table below.

991 ENERGY STAR Program Requirements Product Specification for Commercial Refrigerators and Freezers Eligibility Criteria Version 2.1, ENERGY STAR, January 2008.

⁹⁹² Code of Federal Regulations, Energy Efficiency Program for Certain Commercial and Industrial Equipment, title 10, sec. 431.66 (2013).

⁹⁹³ ENERGY STAR Program Requirements Product Specification for Commercial Refrigerators and Freezers Eligibility Criteria Version 2.1, ENERGY STAR, January 2008.

Product Volume (in cubic feet)	kWhEEdailymax
Vertical Configuration	
Solid Door Cabinets	
0 < V < 15	≤ 0.250V + 1.250
15 ≤ V < 30	≤ 0.400V - 1.000
30 ≤ V < 50	≤ 0.163V + 6.125
50 ≤ V	≤ 0.158V + 6.333
Glass Door Cabinets	
0 < V < 15	≤ 0.607V + 0.893
15 ≤ V < 30	≤ 0.733V - 1.000
30 ≤ V < 50	≤ 0.250V + 13.500
50 ≤ V	≤ 0.450V + 3.500
Chest Configuration	
Solid or Glass Door Cabinets	≤ 0.270V + 0.130

Where V = Association of Home Appliances Manufacturers (AHAM) volume

Illustrative examples - do not use as default assumption

For example, for a 50 ${\rm ft}^2$ vertical configuration, solid door freezer:

$$\Delta$$
kWh = ((0.4 * 50 + 1.38) - (0.158 * 50 + 6.333)) * 365
= 2,608.7 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (\Delta kWh/HOURS) \times CF$$

Where:

HOURS = Full load hours

= 5858 ⁹⁹⁴

CF = Summer Peak Coincidence Factor for measure

 $= 0.772^{995}$

⁹⁹⁴ Efficiency Vermont Technical Reference User Manual No. 2013-82.5, August 2013; Derived from Washington Electric Coop data by West Hill Energy Consultants.

⁹⁹⁵ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. Combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

Page 439 of 507

Illustrative examples - do not use as default assumption

For example, for a 50 ft² vertical configuration, solid door freezer:

$$\Delta$$
kW = (2,608.7 / 5858) * 0.772

= 0.34 kW

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm n/a

Incremental Cost 996

The incremental cost for this measure is assumed to be \$25 for solid door freezers and \$256 for glass door freezers.

Measure Life

The measure life is assumed to be 12 years. 997

Operation and Maintenance Impacts

n/a

 ⁹⁹⁶ Unit Energy Savings (UES) Measures and Supporting Documentation, ComFreezer_v3_0.xlsm,
 October 2012, Northwest Power & Conservation Council, Regional Technical Forum
 ⁹⁹⁷ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05,

[&]quot;Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

Page 440 of 507

ENERGY STAR Commercial Refrigerator

Unique Measure Code(s): CI_RF_TOS_REFRIG_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes the installation of an ENERGY STAR qualified, high-efficiency packaged commercial refrigerator intended for food product storage.

Definition of Baseline Condition

The baseline condition is a standard-efficiency packaged commercial refrigerator meeting, but not exceeding, federal energy efficiency standards.

Definition of Efficient Condition

The efficient condition is a high-efficiency packaged commercial refrigerator meeting ENERGY STAR Version 2.1 requirements 998.

Annual Energy Savings Algorithm

ΔkWh = (kWhBASEdailymax - kWhEEdailymax) * 365

Where:

kWhBASEdailymax ⁹⁹⁹ = See table below.

Product Volume (in cubic feet)	kWhBASEdailymax
Solid Door Cabinets	0.10V + 2.04
Glass Door Cabinets	0.12V + 3.34

Where V = Association of Home Appliances Manufacturers (AHAM) volume

kWhEEdailymax ¹⁰⁰⁰ = See table below.

91

⁹⁹⁸ ENERGY STAR Program Requirements Product Specification for Commercial Refrigerators and Freezers Eligibility Criteria Version 2.1, ENERGY STAR, January 2008.

⁹⁹⁹ Code of Federal Regulations, Energy Efficiency Program for Certain Commercial and Industrial Equipment, title 10, sec. 431.66 (2013).

¹⁰⁰⁰ ENERGY STAR Program Requirements Product Specification for Commercial Refrigerators and Freezers Eligibility Criteria Version 2.1, ENERGY STAR, January 2008.

Product Volume (in cubic feet)	kWhEEdailymax
Vertical Configuration	
Solid Door Cabinets	
0 < V < 15	≤ 0.089V + 1.411
15 ≤ V < 30	≤ 0.037V + 2.200
30 ≤ V < 50	≤ 0.056V + 1.635
50 ≤ V	≤ 0.060V + 1.416
Glass Door Cabinets	
0 < V < 15	≤ 0.118V + 1.382
15 ≤ V < 30	≤ 0.140V + 1.050
30 ≤ V < 50	≤ 0.088V + 2.625
50 ≤ V	≤ 0.110V + 1.500
Chest Configuration	
Solid or Glass Door Cabinets	≤ 0.125V + 0.475

Where V = Association of Home Appliances Manufacturers (AHAM) volume

Illustrative examples - do not use as default assumption

For example, for a 50 ft² vertical configuration, solid door refrigerator:

$$\Delta$$
kWh = ((0.1 * 50 + 2.04) - (0.06 * 50 + 1.416)) * 365
= 957.8 kWh

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = (\Delta kWh/HOURS) * CF$$

Where:

HOURS = Full load hours

= 5858 ¹⁰⁰¹

CF = Summer Peak Coincidence Factor for measure

 $= 0.772^{-1002}$

¹⁰⁰¹ Efficiency Vermont Technical Reference User Manual No. 2013-82.5, August 2013; Derived from Washington Electric Coop data by West Hill Energy Consultants.

Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. Combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

Page 442 of 507

Illustrative examples - do not use as default assumption

For example, for a 50 ft² vertical configuration, solid door refrigerator:

 Δ kW = (957.8 / 5858) * 0.772 = 0.13 kW

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost 1003

The incremental cost for this measure is assumed to be \$0 for solid door refrigerators and \$158 for glass door refrigerators.

Measure Life

The measure life is assumed to be 12 years. 1004

Operation and Maintenance Impacts

n/a

¹⁰⁰³ Unit Energy Savings (UES) Measures and Supporting Documentation, ComRefrigerator_v3.xlsm, October 2012, Northwest Power & Conservation Council, Regional Technical Forum.

¹⁰⁰⁴ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05,

[&]quot;Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

Page 443 of 507

Night Covers for Refrigerated Cases

Unique Measure Code(s): CI_RF_TOS_NTCOV_0615

Effective Date: June 2015

End Date: TBD

Measure Description

By covering refrigerated cases, the heat gain due to the spilling of refrigerated air and convective mixing with room air is reduced at the case opening. Continuous curtains can be pulled down overnight while the store is closed, yielding significant energy savings.

Definition of Baseline Condition

In order for this characterization to apply, the baseline equipment is assumed to be a refrigerated case without a night cover.

Definition of Efficient Condition

In order for this characterization to apply, the efficient equipment is assumed to be a refrigerated case with a continuous cover deployed during overnight periods. Characterization assumes covers are deployed for six hours daily.

Annual Energy Savings Algorithm

 $\Delta kWh = (LOAD / 12,000) * FEET * (3.516) / COP * ESF * 8,760$ $\Delta kWh = 346.5 * FEET / COP$

Where: LOAD = average refrigeration load per linear foot of refrigerated case without night covers deployed = 1,500 Btu/ h^{1005} per linear foot FFFT = linear (horzontal) feet of covered refrigerated case 12,000 = conversion factor - Btu per ton cooling. = conversion factor - Coefficient of Performance (COP) to 3.516 kW per ton. = Coefficient of Performance of the refrigerated case. COP= assume 2.2¹⁰⁰⁶, if actual value is unknown.

¹⁰⁰⁵ Davis Energy Group, Analysis of Standard Options for Open Case Refrigerators and Freezers, May 11, 2004. Accessed on 7/7/10 <

http://www.energy.ca.gov/appliances/2003rulemaking/documents/case_studies/CASE_Open_ Case_Refrig.pdf>

Page 444 of 507

ESF = Energy Savings Factor; reflects the percent reduction in

refrigeration load due to the deployment of night covers.

= **9**%¹⁰⁰⁷

8,760 = assumed annual operating hours of the refrigerated case

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0^{1008}$

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental capital cost for this measure is \$42 per linear foot of cover installed including material and labor. 1009

Measure Life

The expected measure life is assumed to be 5 years ¹⁰¹⁰.

Operation and Maintenance Impacts

n/a

¹⁰⁰⁶ Kuiken et al, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, KEMA, March 22, 2010.

¹⁰⁰⁷ Effects of the Low Emissivity Shields on Performance and Power Use of a Refrigerated Display Case, Southern California Edison, August 8, 1997. Accessed on 7/7/10.

http://www.sce.com/NR/rdonlvres/2AAEFF0B-4CE5-49A5-8E2C-

³CE23B81F266/0/AluminumShield_Report.pdf>; Characterization assumes covers are deployed for six hours daily.

Assumed that the continuous covers are deployed at night; therefore no demand savings occur during the peak period.

¹⁰⁰⁹ 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05, "Cost Values and Summary Documentation", California Public Utilities Commission, December 16, 2008 http://deeresources.com/deer0911planning/downloads/DEER2008_Costs_ValuesAndDocumentation 080530Rev1.zip>

^{1010 2008} Database for Energy-Efficiency Resources (DEER), Version 2008.2.05,

[&]quot;Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

Page 445 of 507

Anti-Sweat Heater Controls*

Unique Measure Code(s): CI_RF_TOS_ASHC_0516

Effective Date: May 2016

End Date: TBD

Measure Description

Anti-sweat door heaters (ASDH) prevent condensation from forming on cooler and freezer doors. By installing a control device to turn off door heaters when there is little or no risk of condensation, significant energy savings can be realized. There are two commercially available control strategies - (1) ON/OFF controls and (2) micropulse controls - that respond to a call for heating, which is typically determined using either a door moisture sensor or an indoor air temperature and humidity sensor to calculate the dew point. In the first strategy, the ON/OFF controls turn the heaters on and off for minutes at a time, resulting in a reduction in run time. In the second strategy, the micropulse controls pulse the door heaters for fractions of a second, in response to the call for heating.

Both of these strategies result in energy and demand savings. Additional savings come from refrigeration interactive effects. When the heaters run less, they introduce less heat into the refrigerated spaces and reduce the cooling load.

Definition of Baseline Condition

In order for this characterization to apply, the baseline condition is assumed to be a commercial glass door cooler or refrigerator with a standard heated door running 24 hours a day, seven days per week (24/7) with no controls installed.

Definition of Efficient Condition

In order for this characterization to apply, the efficient equipment is assumed to be a door heater control on a commercial glass door cooler or refrigerator utilizing either ON/OFF or micropulse controls.

Annual Energy Savings Algorithm

 $\Delta kWh = kW_d * (\%ON_{NONF} - \%ON_{CONTROL}) * NUMdoors * HOURS * WHFe$

Where:

 kW_d = connected load kW per connected door

Page 446 of 507

= If actual kW_d is unknown, assume 0.13 kW^{1011} .

 $%ON_{NONE}$ = Effective run time of uncontrolled ASDH

= assume 90.7%¹⁰¹².

 $%ON_{CONTROL}$ = Effective run time of ASDH with controls

= assume 58.9% for ON/OFF controls and 42.8% for

micropulse controls 1013.

NUMdoors = number of reach-in refrigerator or freezer doors

controlled by sensor

= Actual number of doors controlled by sensor

HOURS = Hours of operation

= 8,760

WHFe = Waste Heat Factor for Energy; represents the increased

savings due to reduced waste heat from motors that must

be rejected by the refrigeration equipment. = assume 1.25 for cooler and 1.50 for freezer

applications 1014.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = kW_d * WHFd * CF$

Where:

WHFd = Waste Heat Factor for Demand; represents the increased

savings due to reduced waste heat from motors that must

be rejected by the refrigeration equipment.

= assume 1.25 for cooler and 1.50 for freezer

CF = Summer Peak Coincidence Factor

= If site specific CFs are unkown, use deemed estimates in

the table below 1015.

Coincidence Factors by Control Type

<i>_</i>	<u> </u>
Control Type	CF
On/Off Controls	0.32
Micropulse Controls	0.45

Annual Fossil Fuel Savings Algorithm

¹⁰¹¹ Cadmus. 2015. Commercial Refrigeration Loadshape Project. Lexington, MA.

¹⁰¹² Ibid.

¹⁰¹³ Ibid.

 ¹⁰¹⁴ Ibid. Coincidence factors developed by dividing the PJM Summer Peak Savings for ASDH Controls from Table 52 by the product of the average wattage of ASDH per connected door (0.13 kW) and the Waste Heat Factor for Demand.
 1015 Ihid

Page 447 of 507

n/a

Annual Water Savings Algorithm

Incremental Cost

The incremental capital cost is \$994 for a door heater controller, \$123 for a cooler door, and \$219 for a freezer door 1016. Values include labor costs.

Measure Life

The expected measure life is assumed to be 12 years. 1017

Operation and Maintenance Impacts n/a

Navigant. 2015. Incremental Cost Study Phase Four, Final Report. Burlington, MA.
 2008 Database for Energy-Efficiency Resources (DEER), Version 2008.2.05,
 "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16,

[&]quot;Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

Page 448 of 507

Evaporator Fan Electronically-Commutated Motor (ECM) Retrofit**

Unique Measure Code(s): CI_RF_RET_ECMFAN_0516

Effective Date: May 2016

End Date: TBD

Measure Description

Evaporator fans circulate air in refrigerated spaces by drawing air across the evaporator coil and into the space. Fans are found in both reach-in and walk-in coolers and freezers. Energy and demand savings for this measure are achieved by reducing motor operating power. Additional savings come from refrigeration interactive effects. Because electronically-commutated motors (ECMs) are more efficient and use less power, they introduce less heat into the refrigerated space compared to the baseline motors and result in a reduction in cooling load on the refrigeration system.

Definition of Baseline Condition

In order for this characterization to apply, the baseline condition is assumed to be an evaporator fan powered by a shaded pole (SP) motor that runs 24 hours a day, seven days per week (24/7) with no controls.

Definition of Efficient Condition

In order for this characterization to apply, the efficient equipment is assumed to be an evaporator fan powered by an ECM that runs 24/7 with no controls.

Annual Energy Savings Algorithm

 $\Delta kWh = kW_{hp} * HP * %\Delta_{P} * %ON_{UC} * HOURS * WHFe$

Where:

KVV_{hp}

= ECM connected load kW per horsepower

= If actual kW_{hp} is unknown, assume 0.758 kW/hp¹⁰¹⁸.

HP

= Horsepower of ECM

= Actual horsepower of ECM.

¹⁰¹⁸ Cadmus. 2015. Commercial Refrigeration Loadshape Project. Lexington, MA.

Page 449 of 507

%**∆**P = Percent change in power relative to ECM kW, calculated

as the kW of the SP motor minus the kW of the ECM.

divided by the kW of the ECM

= If actual $\%\Delta_P$ is unknown, assume 157% ¹⁰¹⁹.

= Effective run time of uncontrolled motors %ON_{UC}

= If actual $\%ON_{UC}$ is unknown, assume 97.8% 1020 .

HOURS = Hours of operation

= 8,760

WHFe = Waste Heat Factor for Energy; represents the increased

savings due to reduced waste heat from motors that must

be rejected by the refrigeration equipment.

= assume 1.38 for cooler and 1.76 for freezer

applications 1021.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = kW_{hp} * HP * WHFd * CF$

Where:

WHFd = Waste Heat Factor for Demand; represents the increased

savings due to reduced waste heat from motors that must

be rejected by the refrigeration equipment. = assume 1.38 for cooler and 1.76 for freezer

applications 1022.

CF = Summer Peak Coincidence Factor

= If site specific CFs are unkown, use 1.53¹⁰²³.

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

¹⁰¹⁹ Ibid.

¹⁰²⁰ Ibid.

¹⁰²¹ Ibid.

¹⁰²² Ibid.

¹⁰²³ Ibid. Coincidence factors developed by dividing the PJM Peak Savings for EF Motors and Controls from Table 47 by the product of the average ECM wattage per rated horsepower (0.758 kW/hp) and the Waste Heat Factor for Demand. Note: the CF is greater than one because it is calculated relative to the wattage of the post-retrofit ECM motor as opposed to the existing SP motor.

Page 450 of 507

Incremental Cost

The incremental capital cost is \$60. Values include labor costs. 1024

Measure Life

The expected measure life is assumed to be 15 years. 1025

Operation and Maintenance Impacts n/a

¹⁰²⁴ Based on a review of the Maine, Vermont, Illinois, and Wisconsin technical reference manuals, published incremental cost estimates for this measure range from \$25 to \$245. Assume the median cost of \$60. ¹⁰²⁵ Energy & Resource Solutions (ERS). 2005. Measure Life Study: prepared for The

¹⁰²⁸ Energy & Resource Solutions (ERS). 2005. Measure Life Study: prepared for The Massachusetts Joint Utilities

Evaporator Fan Motor Controls**

Unique Measure Code(s): CI_RF_RET_EFCTRL_0516

Effective Date: May 2016

End Date: TBD

Measure Description

Evaporator fans circulate cool air in refrigerated spaces by drawing air across the evaporator coil and into the space. Uncontrolled, evaporator fans run 24 hours a day, seven days per week (24/7). Evaporator fan controls reduce fan run time or speed depending on the call for cooling, and therefore provide an opportunity for energy and demand savings. There are two commercially available strategies - (1) ON/OFF controls and (2) multispeed controls - that respond to a call for cooling. In the first strategy, the ON/OFF controls turn the motors on and off in response to the call for cooling, generating energy and demand savings as a result of a reduction in run time. In the second strategy, the multispeed controls change the speed of the motors in response to the call for cooling, saving energy and reducing demand by reductingoperating power and run time (multispeed controls can also turn the motor off).

Additional savings come from the refrigeration interactive effects. Because fan controls reduce motor operating power and/or run time, they introduce less heat into the refrigerated space compared to uncontrolled motors and result in a reduction in cooling load on the refrigeration system.

Definition of Baseline Condition

In order for this characterization to apply, the baseline condition is assumed to be an evaporator fan powered by an uncontrolled ECM or SP motor that runs 24/7.

Definition of Efficient Condition

In order for this characterization to apply, the efficient equipment is assumed to be an evaporator fan powered by an ECM or SP motor utilizing either ON/OFF or multispeed controls.

Annual Energy Savings Algorithm

 $\Delta kWh = kW_{hp} * HP * (\%ON_{UC} - \%ON_{CONTROL}) * HOURS * WHFe$

Where:

 kW_{hp} = connected load kW per horsepower of motor

= If actual kW_{hp} is unknown, assume 0.758 kW/hp for ECM

and 2.088 kW/hp for SP motor 1026.

HP = Horespower of ECM or SP motor

= Actual horsepower of ECM or SP motor.

NON_{UC} = Effective run time of uncontrolled motor

= If actual $\%ON_{UC}$ is unkown, assume 97.8% 1027 .

%ON_{CONTROL} = Effective run time of motor with controls

= Assume 63.6% for ON/OFF style controls and 69.2% for

multi-speed style controls 1028.

HOURS = Hours of operation

= 8,760

WHFe = Waste Heat Factor for Energy; represents the increased

savings due to reduced waste heat from motors that must

be rejected by the refrigeration equipment. = assume 1.38 for cooler and 1.76 for freezer

applications 1029.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = kW_{hp} * HP * WHFd * CF$

Where:

WHFd = Waste Heat Factor for Demand; represents the increased

savings due to reduced waste heat from motors that must

be rejected by the refrigeration equipment. = assume 1.38 for cooler and 1.76 for freezer

applications 1030.

CF = Summer Peak Coincidence Factor

= If site specific CFs are unkown, use 0.26¹⁰³¹.

¹⁰²⁸ Ibid.

¹⁰²⁹ Ibid.

¹⁰³⁰ Ibid.

¹⁰²⁶ Cadmus. 2015. Commercial Refrigeration Loadshape Project. Lexington, MA.

¹⁰²⁷ Ibid.

¹⁰³¹ Ibid. Coincidence factors developed by dividing the PJM Peak Savings for EF Motors and Controls from Table 47 by the product of the average baseline motor wattage per rated

Page 453 of 507

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

Incremental Cost

The incremental capital cost is \$532 for multispeed controls¹⁰³². Value includes labor costs.

The actual measure installation cost for ON/OFF controls should be used (including materials and labor)¹⁰³³.

Measure Life

The expected measure life is assumed to be 10 years. 1034

Operation and Maintenance Impacts n/a

horsepower (0.758 kW/hp for ECM and 2.088 kW/hp for SP) and the Waste Heat Factor for Demand.

¹⁰³⁴ Energy & Resource Solutions (ERS). 2005. Measure Life Study: prepared for The Massachusetts Joint Utilities

Navigant. 2015. Incremental Cost Study Phase Four, Final Report. Burlington, MA.
 Ibid. Navigant's research revealed that ON/OFF controls are typically only found in refrigeration management systems. These systems have capabilities beyond evaporator fan control, including controls for the compressor cycle, defrost cycle, door heaters, outdoor air economizer, and more. The cost of these systems is highly variable depending on capability and falls in the approximate range of \$500 - \$1,700.

Page 454 of 507

Hot Water End Use

C&I Heat Pump Water Heater

Unique Measure Code(s): CI_WT_TOS_HPCIHW_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the installation of a Heat Pump water heater in place of a standard electric water heater. This measure applies to time of sale and new construction opportunities.

Definition of Baseline Condition

The baseline condition is a standard electric water heater.

Definition of Efficient Condition

The efficient condition is a heat pump water heater.

Annual Energy Savings Algorithm

$$\Delta kWh = (kBtu_req / 3.413) * ((1/EFbase) - (1/EFee))$$

Where:

kBtu_req (Office) = Required annual heating output of office (kBtu) = 6.059 1035

 $kBtu_req$ (School) = Required annual heating output of school (kBtu) = $22,191^{-1036}$

Assumes an 80F temperature rise based on a typical hot water holding tank temperature setpoint of 140F and 60F supply water. Actual supply water temperature will vary by season and source.

Water heating requirement equation adopted from FEMP Federal Technology Alert: Commercial Heat Pump Water Heater, 2000.

Assumes an 80F temperature rise based on a typical hot water holding tank temperature setpoint of 140F and 60F supply water. Actual supply water temperature will vary by season and source.

Water heating requirement equation adopted from FEMP Federal Technology Alert: Commercial Heat Pump Water Heater, 2000.

¹⁰³⁵ Assumes an office with 25 employees; According to 2003 ASHRAE Handbook: HVAC Applications, Office typically uses 1.0 gal/person per day.

¹⁰³⁶ Assumes an elementary school with 300 students; According to 2003 ASHRAE Handbook: HVAC Applications, Elementary School typically uses 0.6 gal/person per day of operation. Assumes 37 weeks of operation.

Page 455 of 507

3.413 = Conversion factor from kBtu to kWh

EFee = Energy Factor of Heat Pump domestic water

heater = 2.0 ¹⁰³⁷

EFbase = Energy Factor of baseline domestic water heater

 $= 0.904^{1038}$

 Δ kWh Office = (6,059 / 3.413) * ((1/0.904) - (1/2.0))

= 1076.2 kWh

 Δ kWh School = (22,191 / 3.413) * ((1/0.904) - (1/2.0))

= 3941.4 kWh

If the deemed "kBtu_req" estimates are not applicable, the following equation can be used to estimate annual water heating energy requirements:

kBtu_req = GPD * 8.33 * 1.0 * WaterTempRise * 365

Where:

GDP = Average daily hot water requirements

(gallons/day)

= Actual usage (Note: days when the building is unoccupied must be included in the averaging

calculation)

8.33 = Density of water (lb/gallon)

1.0 = Specific heat of water (Btu/lb-°F)

WaterTempRise = Difference between average temperature of water

delivered to site and water heater setpoint (°F)

365 = Days per year

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh / Hours * CF$

Where:

Hours (Office) = Run hours in office

¹⁰³⁷ Efficiencies based on ENERGY STAR Residential Water Heaters, Final Criteria Analysis: http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/water_heaters/WaterHeaterDraftCriteriaAnalysis.pdf
1038 Ihid.

Page 456 of 507

 $= 5885^{1039}$

Hours (School) = Run hours in school

 $= 2218^{1040}$

CF (Office) = Summer Peak Coincidence Factor for office

> measure $= 0.630^{1041}$

CF (School) = Summer Peak Coincidence Factor for school

> measure $= 0.580^{-1042}$

ΔkW Office = (1076.2 / 5885) * 0.630

= 0.12 kW

= (3941.4 / 3.413) * 0.580ΔkW School

= 1.03 kW

If annual operating hours and CF estimates are unknown, use deemed HOURS and CF estimates above. Otherwise, use site specific values.

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$925. 1043

Measure Life

The measure life is assumed to be 10 years. 1044

Operation and Maintenance Impacts

n/a

¹⁰³⁹ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. ¹⁰⁴⁰ Ibid.

¹⁰⁴¹ Ibid.

¹⁰⁴² Ibid.

¹⁰⁴³ Cost based on ENERGY STAR Residential Water Heaters, Final Criteria Analysis:

http://www.energystar.gov/ia/partners/prod_development/new_specs/downloads/water_hea ters/WaterHeaterDraftCriteriaAnalysis.pdf

¹⁰⁴⁴ Vermont Energy Investment Corporation "Residential Heat Pump Water Heaters: Energy Efficiency Potential and Industry Status" November 2005.

Page 457 of 507

Pre-Rinse Spray Valves

Unique Measure Code(s): CI_WT_TOS_PRSPRY_0615

Effective Date: June 2015

End Date: TBD

Measure Description

All pre-rinse valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. They reduce water consumption, water heating cost, and waste water (sewer) charges. Pre-rinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The spray valves usually have a clip to lock the handle in the "on" position. Pre-rinse valves are inexpensive and easily interchangeable with different manufacturers' assemblies. The primary impacts of this measure are water savings. Energy savings depend on the facility's water heating fuel - if the facility does not have electric water heating, there are no electric savings for this measure; if the facility does not have fossil fuel water heating, there are no MMBtu savings for this measure.

Definition of Baseline Condition

The baseline equipment is assumed to be a spray valve with a flow rate of 3 gallons per minute.

Definition of Efficient Condition

The efficient equipment is assumed to be a pre-rinse spray valve with a flow rate of 1.6 gallons per minute, and with a cleanability performance of 26 seconds per plate or less.

Annual Energy Savings Algorithm

 Δ kWh = Δ Water x HOT% x 8.33 x (Δ T) x (1/EFF) / 3413

Where:

∆Water

= Water savings (gallons); see calculation in "Water

Impact" section below.

HOT_%

= The percentage of water used by the pre-rinse spray

valve that is heated

 $=69\%^{1045}$

8.33

= The energy content of heated water (Btu/gallon/°F)

¹⁰⁴⁵ Measures and Assumptions for DSM Planning (2009). Navigant Consulting. Prepared for the Ontario Energy Board. This factor is a candidate for future improvement through evaluation.

Page 458 of 507

 ΔT = Temperature rise through water heater (°F)

= 70¹⁰⁴⁶

EFF = Water heater thermal efficiency

 $= 0.97^{1047}$

3413 = Factor to convert Btu to kwh

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0$

Annual Fossil Fuel Savings Algorithm

 Δ MMBtu = Δ Water x HOT% x 8.33 x (Δ T) x (1/EFF) x 10⁻⁶

Where:

EFF = Water heater thermal efficiency

 $= 0.80^{1048}$

 10^{-6} = Factor to convert Btu to MMBtu

Annual Water Savings Algorithm

 Δ Water = (FLO_{base} - FLO_{eff}) x 60 x HOURS_{day} x 365

Where:

ΔWater = Annual water savings (gal)

 FLO_{base} = The flow rate of the baseline spray nozzle

= 3 gallons per minute

FLO_{eff} = The flow rate of the efficient equipment

= 1.6 gallons per minute

60 = minutes per hour 365 = days per year

HOURS = Hours used per day - depends on facility type as

below: 1049

Facility Type

Hours of Pre-Rinse Spray Valve Use

 1046 Engineering judgment; assumes typical supply water temperature of 70°F and a hot water storage tank temperature of 140°F.

¹⁰⁴⁷ Federal Standards.

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/51 lecc 2006. Performance requirement for electric resistance water heaters.

 1049 Hours estimates based on $\stackrel{.}{PG\&E}$ savings estimates, algorithms, sources (2005). Food Service Pre-Rinse Spray Valves

Page 459 of 507

	per Day (HOURS)
Full Service Restaurant	4
Other	2
Limited Service (Fast Food)	1
Restaurant	

Incremental Cost

The actual measure installation cost should be used (including material and labor).

Measure Life

The measure life is assumed to be 5 years. 1050

Operation and Maintenance Impacts

n/a

 ²⁰⁰⁸ Database for Energy-Efficiency Resources (DEER), Version 2008.2.05,
 "Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16,

[&]quot;Effective/Remaining Useful Life Values", California Public Utilities Commission, December 16, 2008.

Page 460 of 507

Appliance End Use

Commercial Clothes Washer**

Unique Measure Code(s): CI_LA_TOS_CCWASH_0516

Effective Date: May 2016

End Date: TBD

Measure Description

This measure relates to the purchase (time of sale) and installation of a commercial clothes washer (i.e., soft-mounted front-loading or soft-mounted top-loading clothes washer that is designed for use in applications in which the occupants of more than one household will be using the clothes washer, such as multi-family housing common areas and coin laundries) exceeding the ENERGY STAR minimum qualifying efficiency standards presented below: 1051

Efficiency Level	Modified Energy Factor (MEF)	Water Factor (WF)
ENERGY STAR	>= 2.2	<= 4.5

The Modified Energy Factor (MEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity; the higher the number, the greater the efficiency.

The Water Factor (WF) is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Definition of Baseline Condition

The baseline efficiency is determined according to the Modified Energy Factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. The federal baseline MEF as of May 2016 is 2.00 for front loading units and 1.60 for top loading units.

Definition of Efficient Condition

The efficient condition is a clothes washer meeting the ENERGY STAR efficiency criteria presented above.

¹⁰⁵¹ U.S. EPA. 2015. ENERGY STAR® Program Requirements Product Specification for Clothes Washers Eligibility Criteria Version 7.1

Annual Energy Savings Algorithm

 $\Delta kWh = \Delta kWh_{CW} + \Delta kWh_{DHW} + \Delta kWh_{DRYFR}$

 $\Delta kWh_{CW} = (kWh_{UNIT, BASE} - kWh_{UNIT, EE}) * %CW$

ΔkWh_{DHW} = (kWh_{UNIT, BASE} - kWh_{UNIT, EE}) * %DHW * DHW_{ELEC}

 $\Delta kWh_{DRYER} = [(kWh_{TOTAL,BASE} - kWh_{TOTAL,EE}) - (kWh_{UNIT,BASE} - kWh_{UNIT,EE})] *$ %LOADS_{DRYED} / DRYER_{USAGE} * DRYER_{USAGE MOD} * DRYER_{ELEC}

kWh_{UNIT.i} = kWh_{UNIT_RATED.i} * Ncycles / Ncycles_ref

kWh_{TOTAL,i} = Capacity / MEF_i * Ncycles

Where

i = Subscript denoting either baseline ("BASE") or

efficient ("EE") equipment

= Clothes washer machine electric energy savings ΔkWh_{CW}

 ΔkWh_{DHW} = Water heating electric energy savings

∆kWh_{DRYER} = Dryer electric energy savings

kWh_{UNIT. BASE} = Conventional unit electricity consumption

exclusive of required dryer energy

kWh_{UNIT, EE} = ENERGY STAR unit electricity consumption

exclusive of required dryer energy

kWh_{TOTAL}, BASE = Conventional unit electricity consumption

inclusive of required dryer energy (assuming electric

dryer)

kWh_{TOTAL, EE} = ENERGY STAR unit electricity consumption

inclusive of required dryer energy (assuming electric

dryer)

kWhunit RATED, BASE = Conventional rated unit electricity

consumption

= If actual value unknown, assume 241 kWh/yr¹⁰⁵²

kWh_{UNIT_RATED_EE} = Efficient rated unit electricity consumption

= If actual value unknown, assume 97 kWh/yr¹⁰⁵³

%CW = Percentage of unit energy consumption unsed for

clothes washer operation

= If unknown, assume 20%. 1054

¹⁰⁵² U.S. EPA. 2016. Savings Calculator for ENERGY STAR Qualified Appliances. Accessed March 7, 2016.

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx ^{1053'} Ibid

¹⁰⁵⁴ Ibid

Page 462 of 507

%DHW = Percentage of unit energy consumption used for

water heating

= If unknown, assume 80%. 1055

 DHW_{FLFC} = 1 if electric water heating; 0 if gas water heating

= Modified Energy Factor of baseline unit MEF_{BASE}

= Values provided in table below

 MEF_{EE} = Modified Energy Factor of efficient unit

= Actual. If unknown assume average values

provided below.

= Clothes washer capacity (cubic feet) Capacity

= Actual. If capacity is unknown assume average

3.43 cubic feet 1056

Efficiency Level	Modified Energy Factor (MEF)	
	Front Loading	Top Loading
Federal Standard	>= 2.00	>= 1.60
ENERGY STAR	>= 2.20	

Ncycles = Number of cycles per year

= If actual value unknown, assume 1,241 for

multifamily applications and 2,190 for landromats 1057

Ncycles ref = Reference number of cycles per year

 $= 392^{1058}$

%LOADS_{DRYED} = Percentage of washer loads dried in machine

= If actual value unknown, assume 100%

DRYER_{USAGE} = Dryer usage factor

 $= 0.84^{1059}$

DRYER_{USAGE MOD} = Dryer usage in buildings with dryer and washer

 $DRYER_{FLFC}$ = 1 if electric dryer; 0 if gas dryer

¹⁰⁵⁶ Based on the average commercial clothes washer volume of all units meeting ENERGY STAR V7.1 criteria listed in the ENERGY STAR database of certified products accessed on 03/07/2016. https://www.energystar.gov/productfinder/product/certified-commercial-clotheswashers/results

¹⁰⁵⁷ U.S. EPA. 2016. Savings Calculator for ENERGY STAR Qualified Appliances. Accessed March

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

¹⁰⁵⁸ Ibid

¹⁰⁵⁹ Ibid

¹⁰⁶⁰ Ibid

Page 463 of 507

Note, utilities may consider whether it is appropriate to claim kWh savings from the reduction in water consumption arising from this measure. The kWh savings would be in relation to the pumping and wastewater treatment. See water savings for characterization.

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = \Delta kWh/Hours * CF$

Where:

Hours = Assumed Run hours of Clothes Washer

 $= 265^{1061}$

CF = Summer Peak Coincidence Factor for measure

 $= 0.029^{1062}$

Annual Fossil Fuel Savings Algorithm

 Δ MMBtu = Δ MMBtu_{DHW} + Δ MMBtu_{DRYER}

 Δ MMBtu_{DHW} = (kWh_{UNIT}, BASE - kWh_{UNIT}, EE) * %DHW / DHW_{EFF} *

 $MMBtu_convert\ ^*DHW_{GAS}$

 Δ MMBtu_{DRYER} = [(kWh_{TOTAL,BASE} - kWh_{TOTAL,EE}) - (kWh_{UNIT,BASE} - kWh_{UNIT,EE})] *

MMBtu _convert * %LOADS_{DRYED} / DRYER_{USAGE} * DRYER_{USAGE_MOD} *

DRYERGAS.CORR * DRYERGAS

Where:

 $\Delta MMBtu_{DHW}$ = Water heating gas energy savings

 $\Delta MMBtu_{DRYER} = Dryer gas energy savings$

 DHW_{EFF} = Gas water heater efficiency

= If actual unknown, assume 75%

MMBtu convert = Convertion factor from kWh to MMBtu

= 0.003413

 DHW_{GAS} = 1 if gas water heating; 0 if electric water heating

DRYER_{GAS, CORR} = Gas dryer correction factor; 1.12¹⁰⁶³

¹⁰⁶¹ Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program." March 21, 2014, page 36. This data applies to residential applications. In the absence of metered data specific to multifamily common area and commercial laundromat applications, this coincidence value is used as a proxy given consistency with the PJM peak definition; however, this value is likely conservatively low for commercial applications and is a candidate for update should more applicable data become available.

¹⁰⁶² Ibid.

Page 464 of 507

 $DRYER_{GAS}$ = 1 if gas dryer; 0 if electric dryer

Annual Water Savings Algorithm

 Δ Water (CCF) = Capacity * (WF_{BASE} - WF_{FF}) * Ncycles / 748

Where

 WF_{BASE} = Water Factor of baseline clothes washer

= Values provided below

WF_{FF} = Water Factor of efficient clothes washer

= Actual. If unknown assume value provided below.

748 = Conversion factor from gallons to CCF

Efficiency Level	Water Factor (WF)	
	Front Loading	Top Loading
Federal Standard	<= 5.5	<= 8.5
ENERGY STAR	<= 4.5	

kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities' must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

$$\Delta kWh_{water}^{1064} = 2.07 \text{ kWh/CCF} * \Delta Water (CCF)$$

Incremental Cost

The incremental cost for this measure is \$200¹⁰⁶⁵:

Measure Life

The measure life is assumed to be 7 years ¹⁰⁶⁶.

 $http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx \\ ^{1066} Ihid$

¹⁰⁶³ U.S. EPA. 2016. Savings Calculator for ENERGY STAR Qualified Appliances. Accessed March 7, 2016.

http://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx 1064 This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, "Energy Savings Plan, Prepared for DC Water." Washington, D.C., 2010. See DC Water Conservation.xlsx for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region. 1065 U.S. EPA. 2016. Savings Calculator for ENERGY STAR Qualified Appliances. Accessed March 7, 2016.

Page 465 of 507

Operation and Maintenance Impacts n/a

Page 466 of 507

Plug Load End Use

Advanced Power Strip

Unique Measure Code: CI_PL_TOS_APS_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the installation of a Current-Sensing Master/Controlled Advanced Power Strip (APS)in place of a standard "power strip," a device used to expand a single wall outlet into multiple outlets. This measure is assumed to be a time of sale installation.

Definition of Baseline Condition

The baseline condition is a standard "power strip". This strip is simply a "plug multiplier" that allows the user to plug in multiple devices using a single wall outlet. Additionally, the baseline unit has no ability to control power flow to the connected devices.

Definition of Efficient Condition

The efficient condition is a Current-Sensing Master/Controlled Advanced Power Strip that functions as both a "plug multiplier" and also as a plug load controller. The efficient unit has the ability to essentially disconnect controlled devices from wall power when the APS detects that a controlling device, or master load, has been switched off. The efficient device effectively eliminates standby power consumption for all controlled devices when the master load is not in use.

Annual Energy Savings Algorithm

 $\Delta kWh = 26.9 \ kWh^{1068}$

_

¹⁰⁶⁷ Most advanced power strips have one or more uncontrolled plugs that can be used for devices where a constant power connection is desired such as fax machines and wireless routers.

Power Strips for Office Environments prepared for the Regional Evaluation, Measurement, and Verification Forum facilitated by the Northeast Energy Efficiency Partnerships." Assumes savings consistent with the 20W threshold setting for the field research site (of two) demonstrating higher energy savings. ERS noted that the 20 W threshold may be unreliable due to possible inaccuracy of the threshold setting in currently available units. It is assumed that future technology improvements will reduce the significance of this issue. Further, savings from the site with higher average savings was adopted (26.9 kWh versus 4.7 kWh) acknowledging that investigations of APS savings in other jurisdictions have found significantly

Page 467 of 507

Summer Coincident Peak kW Savings Algorithm

 $\Delta kW = 0 kW$

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be \$16 for a 5-plug \$26 for a 7-plug 1069.

Measure Life

The measure life is assumed to be 4 years 1070.

Operation and Maintenance Impacts

n/a

higher savings. For example, Northwest Power and Conservation Council, Regional Technical Forum. 2011. "Smart Power Strip Energy Savings Evaluation" found average savings of 145 kWh. NYSERDA Measure Characterization for Advanced Power Strips David Rogers, Power Smart Engineering, "Smart Strip Electrical Savings and Usability,"

David Rogers, Power Smart Engineering, "Smart Strip Electrical Savings and Usability, October 2008

Page 468 of 507

Commercial Kitchen Equipment End Use

Commercial Fryers*

Unique Measure Code(s): CI_KE_TOS_FRY_0516

Effective Date: May 2016

End Date: TBD

Measure Description

Commercial fryers that have earned the ENERGY STAR offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Frypot insulation reduces standby losses resulting in a lower idle energy rate. This measure applies to both standard sized fryers and large vat fryers. ¹⁰⁷¹ Standard sized fryers that have earned the ENERGY STAR are up to 30% more efficient than non-qualified models; large vat fryers are 35% more efficient. This measure applies to time of sale opportunities.

Definition of Baseline Condition

The baseline equipment is assumed to be a standard efficiency electric fryer with a heavy load efficiency of 75% for standard sized equipment and 70% for large vat equipment or a gas fryer with heavy load efficiency of 35% for both standard sized and large vat equipment.

Definition of Efficient Condition

The efficient equipment is assumed to be an ENERGY STAR qualified electric or gas fryer. 1072

Annual Energy Savings Algorithm

$$\begin{split} kWh_i &= (kWh_Cooking_i + kWh_Idle_i) \ x \ DAYS \\ kWh_Cooking_i &= LB \ x \ E_{FOOD}/EFF_i \\ kWh_Idle_i &= IDLE_i \ x \ (HOURS_{DAY} - LB/PC_i) \\ kWh_i &= [LB \ x \ E_{FOOD}/EFF_i + IDLE_i \ x \ (HOURS_{DAY} - LB/PC_i)] \ x \ DAYS \\ \Delta kWh &= kWh_{base} - kWh_{eff} \end{split}$$

¹⁰⁷¹ Standard fryers measures >12 inches and < 18 inches wide, and have shortening capacities > 25 pounds and < 65 pounds. Large vat fryers measure > 18 inches and < 24 inches wide, and have shortening capacities > 50 pounds.

¹⁰⁷² US EPA. December 2015. ENERGY STAR® Program Requirements Product Specification for Commercial Fryers Eligibility Criteria Version 3.0

Page 469 of 507

Where: 1073

i = either "base" or "eff" depending on whether the

calculation of energy consumption is being performed for

the baseline or efficient case, respectively.

kWh_Cooking_i = daily cooking energy consumption (kWh) kWh_Idle_i = daily idle energy consumption (kWh)

kWh_{base} = the annual energy usage of the baseline equipment

calculated using baseline values

kWh_{eff} = the annual energy usage of the efficient equipment

calculated using efficient values

 $HOURS_{DAY}$ = average daily operating hours

= if average daily operating hours are unknown, assume

default of 16 hours/day for standard fryers and 12

hours/day for large vat fryers.

 E_{FOOD} = ASTM Energy to Food (kWh/lb); the amount of energy

absorbed by the food during cooking, per pound of food

= 0.167

LB = Pounds of food cooked per day (lb/day)

= if average pounds of food cooked per day is unknown,

assume default of 150 lbs/day.

DAYS = annual days of operation

= if annual days of operation are unknown, assume default

of 365 days.

EFF = Heavy load cooking energy efficiency (%)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

IDLE = Idle energy rate (kW)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

PC = Production capacity (lb/hr)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

_

ment_calculator.xlsx>

Unless otherwise noted, all default assumptions are from US EPA. February 2015. Savings
 Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.
 http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equip

Page 470 of 507

Electric Fryer Performance Metrics: Baseline and Efficient Values

	Standard Size		Large Vat	
	Energy			Energy
	Baseline	Efficient	Baseline	Efficient
Parameter	Model	Model	Model	Model
IDLE (kW)	1.05	0.80	1.35	1.10
EFF	75%	83%	70%	80%
PC	65	70	100	110

Summer Coincident Peak kW Savings Algorithm 1074

 $\Delta kW = \Delta kWh / (HOURS_{DAY} \times DAYS)$

Annual Fossil Fuel Savings Algorithm

 $MMBtu_i = (MMBtu_Cooking_i + MMBtu_Idle_i) \times DAYS$

 $MMBtu_Cooking_i = LB \times E_{FOOD}/EFF_i$

 $MMBtu_Idle_i = IDLE_i \times (HOURS_{DAY} - LB/PC_i)$

 $MMBtu_i = [LB \times E_{FOOD}/EFF_i + IDLE_i \times (HOURS_{DAY} - LB/PC_i)] \times DAYS$

 Δ MMBtu = MMBtu_{base} - MMBtu_{eff}

Where: 1075

*MMBtu_Cooking*_i = daily cooking energy consumption (*MMBtu*)

MMBtu_ldle_i = daily idle energy consumption (MMBtu)

MMBtu_{base} = the annual energy usage of the baseline equipment

calculated using baseline values

 $MMBtu_{eff}$ = the annual energy usage of the efficient equipment

calculated using efficient values

 E_{FOOD} = ASTM Energy to Food (MMBtu/Ib); the amount of energy

absorbed by the food during cooking, per pound of food

= 0.00057

IDLE = Idle energy rate (MMBtu/h)

¹⁰⁷⁴ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

Page 471 of 507

= see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

Gas Fryer Performance Metrics: Baseline and Efficient Values

	Standard Size		Large	e Vat
	Energy			Energy
	Baseline	Efficient	Baseline	Efficient
Parameter	Model	Model	Model	Model
IDLE (MMBtu/h)	0.014	0.009	0.016	0.012
EFF	35%	50%	35%	50%
PC	60	65	100	110

Annual Water Savings Algorithm n/a

Incremental Cost

For electric fryers, the incremental cost is assumed to be \$210 for standard sized equipment and \$0 for large vat equipment. For gas fryers, the incremental cost is assumed to be \$2,441 for both standard sized and large vat equipment 1077.

Measure Life 12 years 1078

Operation and Maintenance Impacts n/a

__

¹⁰⁷⁶ US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

¹⁰⁷⁷ Navigant. 2015. *Incremental Cost Study Phase Four Final Report*. Burlington, MA.

US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Page 472 of 507

Commercial Steam Cookers

Unique Measure Code(s): CI_KE_TOS_STMR_0615

Effective Date: June 2015

End Date: TBD

Measure Description

Energy efficient steam cookers that have earned the ENERGY STAR label offer shorter cook times, higher production rates, and reduced heat loss due to better insulation and more efficient steam delivery system. This measure applies to time of sale opportunities.

Definition of Baseline Condition

The baseline condition assumes a standard efficiency electric or gas boiler-style steam cooker.

Definition of Efficient Condition

The efficient condition assumes the installation of an ENERGY STAR qualified electric or gas steam cooker. 1079

Annual Energy Savings Algorithm

$$\begin{split} & \text{kWh}_i = (\text{kWh_Cooking}_i + \text{kWh_Idle}_i) \text{ x DAYS} \\ & \text{kWh_Cooking}_i = \text{LB x E}_{FOOD}/\text{EFF}_i \\ & \text{kWh_Idle}_i = \left[(1 - \text{PCT}_{\text{steam}}) \text{ x IDLE}_i + \text{PCT}_{\text{steam}} \text{ x PC}_i \text{ x PANS x E}_{FOOD}/\text{EFF}_i \right] \text{ x} \\ & \text{TIME}_{idle} \\ & \text{TIME}_{idle} = (\text{HOURS}_{DAY} - \text{LB}/(\text{PC}_i \text{ x PANS})) \\ & \text{kWh}_i = \left[\text{LB x E}_{FOOD}/\text{EFF}_i + ((1 - \text{PCT}_{\text{steam}}) \text{ x IDLE}_i + \text{PCT}_{\text{steam}} \text{ x PC}_i \text{ x PANS x E}_{FOOD}/\text{EFF}_i \right) \text{ x (HOURS}_{DAY} - \text{LB}/(\text{PC}_i \text{ x PANS})) \right] \text{ x DAYS} \\ & \Delta \text{kWh} = \text{kWh}_{base} - \text{kWh}_{eff} \end{split}$$

Where: 1080

_

ment_calculator.xlsx>

¹⁰⁷⁹ US EPA. August 2003. ENERGY STAR® Program Requirements Product Specification for Commercial Steam Cookers Eligibility Criteria Version 1.2

Unless otherwise noted, all default assumption from US EPA. February 2015. Savings
 Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.
 http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equip

Page 473 of 507

i = either "base" or "eff" depending on whether the

calculation of energy consumption is being performed for

the baseline or efficient case, respectively.

kWh_Cooking_i = daily cooking energy consumption (kWh) kWh_Idle_i = daily idle energy consumption (kWh)

 $Time_{idle}$ = daily idle time (h)

kWh_{base} = the annual energy usage of the baseline equipment

calculated using baseline values

kWh_{eff} = the annual energy usage of the efficient equipment

calculated using efficient values

DAYS = annual days of operation

= if annual days of operation are unknown, assume default

of 365 days.

LB = Pounds of food cooked per day (lb/day)

= if average pounds of food cooked per day is unknown,

assume default of 100 lbs/day.

 E_{FOOD} = ASTM Energy to Food (kWh/lb); the amount of energy

absorbed by the food during cooking, per pound of food

= 0.0308

EFF = Heavy load cooking energy efficiency (%)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

 PCT_{steam} = percent of time in constant steam mode (%)

= if percent of time in constant steam mode is unknown,

assume default of 40%.

IDLE = Idle energy rate (kW/h)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

PC = Production capacity per pan (lb/hr)

= default baseline production capacity per pan is 23.3. If actual efficient production capacity per pan is unknown,

assume default of 16.7.

PANS = number of pans per unit

= actual installed number of pans per unit

 $HOURS_{DAY}$ = average daily operating hours

= if average daily operating hours are unknown, assume

default of 12 hours/day.

Electric Steam Cooker Performance Metrics: Baseline and Efficient Values

	No. of		Energy Efficient
Parameter	Pans	Baseline Model	Model

Page	474	of	507
------	-----	----	-----

		Steam Generator	Boiler Based	AII
	3			0.400
IDLE (kW)	4	1.200	1.000	0.530
IDLE (KW)	5	1.200	1.000	0.670
	6+			0.800
EFF	All	30%	26%	50%

Summer Coincident Peak kW Savings Algorithm 1081

 $\Delta kW = \Delta kWh / (HOURS_{DAY} \times DAYS)$

Annual Fossil Fuel Savings Algorithm

MMBtu_i = (MMBtu_Cooking_i + MMBtu_Idle_i) x DAYS

 $MMBtu_Cooking_i = LB \times E_{FOOD}/EFF_i$

 $TIME_{idle} = (HOURS_{DAY} - LB/(PC_i \times PANS))$

MMBtu_i = $[LB \times E_{FOOD}/EFF_i + ((1 - PCT_{steam}) \times IDLE_i + PCT_{steam} \times PC_i \times PC_i]$

PANS x E_{FOOD} /EFF_i) x (HOURS_{DAY} - LB/(PC_i x PANS))] x DAYS

 Δ MMBtu = MMBtu_{base} - MMBtu_{eff}

Where: 1082

MMBtu_{base} = the annual energy usage of the baseline equipment

calculated using baseline values

MMBtu_{eff} = the annual energy usage of the efficient equipment

calculated using efficient values

MMBtu_Cooking_i = daily cooking energy consumption (MMBtu)

MMBtu_ldle_i = daily idle energy consumption (MMBtu)

 E_{FOOD} = ASTM Energy to Food (MMBtu/lb); the amount of energy

absorbed by the food during cooking, per pound of food

¹⁰⁸¹ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

¹⁰⁸² Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

 $< http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx> \\$

Page 475 of 507

= 0.000105

IDLE = Idle energy rate (MMBtu/h)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

PC = Production capacity per pan (lb/hr)

= default baseline production capacity per pan is 23.3. If actual efficient production capacity per pan is unknown,

assume default of 20.

Gas Steam Cooker Performance Metrics: Baseline and Efficient Values

		Baseline Model		Energy Efficient Model
	No. of	Steam	Boiler	
Parameter	Pans	Generator	Based	All
	3			0.00625
IDLE	4	0.018	0.015	0.00835
(MMBtu)	5	0.016	0.013	0.01040
	6+			0.01250
EFF	AII	18%	15%	38%

Annual Water Savings Algorithm

 Δ Water = (GPH_{base} - GPH_{eff}) x HOURS_{DAY} x DAYS

Where: 1083

GPH_{base} = Water consumption rate (gal/h) of baseline equipment

= if water consumption rate of baseline equipment is

unknown, assume default values from table below.

GPH_{eff} = Water consumption rate (gal/h) of efficient equipment

= if water consumption rate of efficient equipment is unknown, assume default values from table below.

		Baseline Model	Energy Efficient Model		Model
	No. of		Steam	Boiler	
Parameter	Pans	All	Generator	Based	Boilerless
GPH	All	40	15	10	3

Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Page 476 of 507

Incremental Cost 1084

The incremental cost of an electric ENERGY STAR steam cooker is \$630 for 3-pans, \$1,210 for 4-pans, \$0 for 5-pans, and \$0 for 6-pans+. The incremental cost of a gas ENERGY STAR steam cooker is \$260 for 3-pans, N/A for 4-pans, \$0 for 5-pans, and \$870 for 6-pans+.

Measure Life 12 years 1085

Operation and Maintenance Impacts n/a

¹⁰⁸⁴ US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Page 477 of 507

Commercial Hot Food Holding Cabinets

Unique Measure Code(s): CI_KE_TOS_HFHC_0615

Effective Date: June 2015

End Date: TBD

Measure Description

Commercial insulated hot food holding cabinet models that meet ENERGY STAR requirements incorporate better insulation, reducing heat loss, and may also offer additional energy saving devices such as magnetic door gaskets, auto-door closures, or dutch doors. The insulation of the cabinet also offers better temperature uniformity within the cabinet from top to bottom. This means that qualified hot food holding cabinets are more efficient at maintaining food temperature while using less energy. This measure applies to time of sale opportunities.

Definition of Baseline Condition

The baseline equipment is assumed to be a standard efficiency hot food holding cabinet.

Definition of Efficient Condition

The efficient equipment is assumed to be an ENERGY STAR qualified hot food holding cabinet. 1086

Annual Energy Savings Algorithm

 $\Delta kWh = (IDLE_{base} - IDLE_{eff}) / 1000 x HOURS_{DAY} x DAYS$

Where: 1087

 $IDLE_{base}$ = the idle energy rate of the baseline equpiment (W). See

table below for calculation of default values.

 $IDLE_{eff}$ = the idle energy rate of the efficient equipment (W). If

actual efficient values are unknown, assume default values

from table below.

1,000 = conversion of W to kW

 $HOURS_{DAY}$ = average daily operating hours

¹⁰⁸⁶ US EPA. April 2011. ENERGY STAR® Program Requirements Product Specification for Commercial Hot Food Holding Cabinets Eligibility Criteria Version 2.0.

ment_calculator.xlsx>

Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment. http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equip

Page 478 of 507

= if average daily operating hours are unknown, assume

default of 15 hours/day.

DAYS = annual days of operation

= if annual days of operation are unknown, assume default of 365 days.

Summer Coincident Peak kW Savings Algorithm 1088

 $\Delta kW = (IDLE_{base} - IDLE_{eff}) / 1000$

Hot Food Holding Cabinet Performance Metrics: Baseline and Efficient Values

VOLUME (Cubic Feet)	Product Idle Energy Consumption Rate (Watts)		
VOLOME (Cubic Feet)	Baseline Model		
	(IDLE _{base})	Efficient Model (IDLE _{eff})	
0 < VOLUME < 13	40 x VOLUME	21.5 x VOLUME	
13 ≤ VOLUME < 28	40 x VOLUME	2.0 x VOLUME + 254.0	
28 ≤ VOLUME	40 x VOLUME	3.8 x VOLUME + 203.5	

Note: VOLUME = the internal volume of the holding cabinet (ft³). = actual volume of installed unit

Annual Fossil Fuel Savings Algorithm n/a

Annual Water Savings Algorithm n/a

Incremental Cost

The incremental cost for ENERGY STAR hot food holding cabinets is assumed to be \$0.1089

4

¹⁰⁸⁸ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment. http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Page 479 of 507

Measure Life 12 years 1090

Operation and Maintenance Impacts n/a

Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.
http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Page 480 of 507

Commercial Griddles

Unique Measure Code(s): CI_KE_TOS_GRID_0615

Effective Date: June 2015

End Date: TBD

Measure Description

ENERGY STAR qualified commercial griddles have higher cooking energy efficiency and lower idle energy rates than standard equipment. The result is more energy being absorbed by the food compared with the total energy use, and less wasted energy when the griddle is in standby mode. This measure applies to time of sale opportunities.

Definition of Baseline Condition

The baseline equipment is assumed to be a standard efficiency electric griddle with a cooking energy efficiency of 65% or a gas griddle with a cooking efficiency of 32%.

Definition of Efficient Condition

The efficient equipment is assumed to be an ENERGY STAR qualified electric or gas griddle. 1091

Annual Energy Savings Algorithm

 $kWh_{i} = (kWh_Cooking_{i} + kWh_Idle_{i}) \times DAYS$ $kWh_Cooking_{i} = LB \times E_{FOOD}/EFF_{i}$ $kWh_Idle_{i} = IDLE_{i} \times SIZE \times [HOURS_{DAY} - LB/(PC_{i} \times SIZE)]$ $kWh_{i} = [LB \times E_{FOOD}/EFF_{i} + IDLE_{i} \times SIZE \times (HOURS_{DAY} - LB/(PC_{i} \times SIZE))] \times DAYS$ $\Delta kWh = kWh_{base} - kWh_{eff}$

Where: 1092

_

¹⁰⁹¹ US EPA. January 2011. ENERGY STAR® Program Requirements Product Specification for Commercial Griddles Eligibility Criteria Version 1.2.

Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.
http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Page 481 of 507

i = either "base" or "eff" depending on whether the

calculation of energy consumption is being performed for

the baseline or efficient case, respectively.

kWh_Cooking_i = daily cooking energy consumption (kWh) kWh_Idle_i = daily idle energy consumption (kWh)

kWh_{base} = the annual energy usage of the baseline equipment

calculated using baseline values

kWh_{eff} = the annual energy usage of the efficient equipment

calculated using efficient values

LB = Pounds of food cooked per day (lb/day)

= if average pounds of food cooked per day is unknown,

assume default of 100 lbs/day.

 E_{FOOD} = ASTM Energy to Food (kWh/Ib); the amount of energy

absorbed by the food during cooking, per pound of food

= 0.139

EFF = Heavy load cooking energy efficiency (%)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

IDLE = Idle energy rate (kW/ft^2)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

SIZE = size of the griddle surface (ft^2) HOURS_{DAY} = average daily operating hours

= if average daily operating hours are unknown, assume

default of 12 hours/day.

PC = Production capacity ($lb/hr/ft^2$)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

DAYS = annual days of operation

= if annual days of operation are unknown, assume default

of 365 days.

Efficient Griddle Performance Metrics: Baseline and Efficient Values

Parameter	Baseline Model	Efficient Model
IDLE (kW/ft ²)	0.40	0.32
EFF	65%	70%
PC	5.83	6.67

Page 482 of 507

Summer Coincident Peak kW Savings Algorithm 1093

 $\Delta kW = \Delta kWh / (HOURS_{DAY} \times DAYS)$

Annual Fossil Fuel Savings Algorithm

MMBtu_i = (MMBtu_Cooking_i + MMBtu_Idle_i) x DAYS

 $MMBtu_Cooking_i = LB \times E_{FOOD}/EFF_i$

 $MMBtu_Idle_i = IDLE_i \times SIZE \times [HOURS_{DAY} - LB/(PC_i \times SIZE)]$

MMBtu_i = [LB x E_{FOOD}/EFF_i + IDLE_i x SIZE x (HOURS_{DAY} - LB/(PC_i x

SIZE))] x DAYS

 Δ MMBtu = MMBtu_{base} - MMBtu_{eff}

Where: 1094

MMBtu_Cooking_i = daily cooking energy consumption (*MMBtu*)

MMBtu_ldle_i = daily idle energy consumption (MMBtu)

 $MMBtu_{base}$ = the annual energy usage of the baseline equipment

calculated using baseline values

 $MMBtu_{eff}$ = the annual energy usage of the efficient equipment

calculated using efficient values

 E_{FOOD} = ASTM Energy to Food (MMBtu/Ib); the amount of energy

absorbed by the food during cooking, per pound of food

= 0.000475

IDLE = Idle energy rate (MMBtu/h/ft 2)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

Gas Griddle Performance Metrics: Baseline and Efficient Values

Parameter	Baseline Model	Efficient Model
IDLE (MMBtu/h/ft ²)	0.00350	0.00265
EFF	32%	38%
PC	4.17	7.50

¹⁰⁹³ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

¹⁰⁹⁴ Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

 $< http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx>$

Page 483 of 507

Annual Water Savings Algorithm

n/a

Incremental Cost 1095

The incremental cost of an electric ENERGY STAR griddle is assumed to be \$0. The incremental cost of a gas ENERGY STAR griddle is assumed to be \$360.

Measure Life 12 years 1096

Operation and Maintenance Impacts

n/a

¹⁰⁹⁵ US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equip ment_calculator.xlsx>

Page 484 of 507

Commercial Convection Ovens

Unique Measure Code(s): CI_KE_TOS_CONOV_0615

Effective Date: June 2015

End Date: TBD

Measure Description

Commercial convection ovens that are ENERGY STAR certified have higher heavy load cooking efficiencies and lower idle energy rates making them on average about 20 percent more efficient than standard models. This measure applies to time of sale opportunities.

Definition of Baseline Condition

The baseline equipment is assumed to be a standard efficiency convection oven with a heavy load efficiency of 65% for full size (i.e., a convection oven this is capable of accommodating full-size sheet pans measuring 18 x 26 x 1-inch) electric ovens, 68% for half size (i.e., a convection oven that is capable of accommodating half-size sheet pans measuring 18 x 13 x 1-inch) electric ovens, and 30% for gas ovens.

Definition of Efficient Condition

The efficient equipment is assumed to be an ENERGY STAR qualified electric or gas convection oven. 1097

Annual Energy Savings Algorithm

$$\begin{split} & kWh_i = (kWh_Cooking_i + kWh_Idle_i) \ x \ DAYS \\ & kWh_Cooking_i = LB \ x \ E_{FOOD}/EFF_i \\ & kWh_Idle_i = IDLE_i \ x \ (HOURS_{DAY} - LB/PC_i) \\ & kWh_i \ = [LB \ x \ E_{FOOD}/EFF_i + IDLE_i \ x \ (HOURS_{DAY} - LB/PC_i)] \ x \ DAYS \\ & \Delta kWh \ = kWh_{base} - kWh_{eff} \end{split}$$

Where: 1098

10

ment_calculator.xlsx>

¹⁰⁹⁷ US EPA. January 2014. ENERGY STAR® Program Requirements Product Specification for Commercial Ovens Eligibility Criteria Version 2.1

Unless otherwise noted, all default assumption from US EPA. February 2015. Savings
 Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.
 http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equip

Page 485 of 507

i = either "base" or "eff" depending on whether the

calculation of energy consumption is being performed for

the baseline or efficient case, respectively.

kWh_Cooking_i = daily cooking energy consumption (kWh) = daily idle energy consumption (kWh) kWh_ldle_i

= the annual energy usage of the baseline equipment kWh_{base}

calculated using baseline values

kWh_{eff} = the annual energy usage of the efficient equipment

calculated using efficient values

= average daily operating hours HOURSDAY

= if average daily operating hours are unknown, assume

default of 12 hours/day.

DAYS = annual days of operation

= if annual days of operation are unknown, assume default

of 365 days.

 E_{FOOD} = ASTM Energy to Food (kWh/lb); the amount of energy

absorbed by the food during cooking, per pound of food

= 0.0732

LB = Pounds of food cooked per day (lb/day)

= if average pounds of food cooked per day is unknown,

assume default of 100 lbs/day.

= Heavy load cooking energy efficiency (%) **EFF**

> = see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

IDLE = Idle energy rate (kW)

= see table below for default baseline values. If actual

efficient values are unknown, assume default values from

table below.

PC= Production capacity (lb/hr)

= see table below for default baseline values. If actual

efficient values are unknown, assume default values from

table below.

Page 486 of 507

Electric Convection Oven Performance Metrics: Baseline and Efficient Values 1099

	Half	Size	Full Size	
	Baseline	Energy Efficient	Baseline	Energy Efficient
Parameter	Model	Model	Model	Model
IDLE (kW)	1.03	1.00	2.00	1.60
EFF	68%	71%	65%	71%
PC	45	50	90	90

Summer Coincident Peak kW Savings Algorithm 1100

 $\Delta kW = \Delta kWh / (HOURS_{DAY} \times DAYS)$

Annual Fossil Fuel Savings Algorithm

MMBtu_i = (MMBtu_Cooking_i + MMBtu_Idle_i) x DAYS

 $MMBtu_Cooking_i = LB \times E_{FOOD}/EFF_i$

 $MMBtu_Idle_i = IDLE_i \times (HOURS_{DAY} - LB/PC_i)$

 $MMBtu_i = [LB \ x \ E_{FOOD}/EFF_i + IDLE_i \ x \ (HOURS_{DAY} - LB/PC_i)] \ x \ DAYS$

 Δ MMBtu = MMBtu_{base} - MMBtu_{eff}

Where: 1101

MMBtu_Cooking_i = daily cooking energy consumption (MMBtu)

 $MMBtu Idle_i = daily idle energy consumption (MMBtu)$

 $MMBtu_{base}$ = the annual energy usage of the baseline equipment

calculated using baseline values

 $MMBtu_{eff}$ = the annual energy usage of the efficient equipment

calculated using efficient values

E_{FOOD} = ASTM Energy to Food (MMBtu/lb); the amount of energy

absorbed by the food during cooking, per pound of food

1099 Food Service Technology Center (FSTC). Default value from life cycle cost calculator. http://www.fishnick.com/saveenergy/tools/calculators/eovencalc.php

ment_calculator.xlsx>

No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment. http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equip

Page 487 of 507

= 0.000250

IDLE = Idle energy rate (MMBtu/h)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

Gas Convection Oven Performance Metrics: Baseline and Efficient Values

	Baseline	Energy
Parameter	Model	Efficient Model
IDLE (MMBtu/h)	0.0151	0.0120
EFF	44%	46%
PC	83	86

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost is assumed to be $$0^{1102}$ for electric commercial convection ovens and $-$1,778^{1103}$ for gas ovens.

Measure Life 12 years 1104

Operation and Maintenance Impacts

n/a

1.

¹¹⁰² US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

¹¹⁰³ Navigant. 2015. *Incremental Cost Study Phase Four, Draft Report*. Burlington, MA.

¹¹⁰⁴ US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Page 488 of 507

Commercial Combination Ovens

Unique Measure Code(s): CI_KE_TOS_COMOV_0615

Effective Date: June 2015

End Date: TBD

Measure Description

A combination oven is a convection oven that includes the added capability to inject steam into the oven cavity and typically offers at least three distinct cooking modes. This measure applies to time of sale opportunities.

Definition of Baseline Condition

The baseline equipment is assumed to be a typical standard efficiency electric or gas combination oven.

Definition of Efficient Condition

The efficient equipment is assumed to be an ENERGY STAR qualified electric or gas combination oven. 1105

Annual Energy Savings Algorithm

kWh_{i,j} = (kWh_Cooking_{i,j} + kWh_Idle_{i,j}) x DAYS

kWh_Cooking_{i,j} = LB x E_{FOOD,j}/EFF_{i,j} x PCT_j

kWh_Idle_{i,j} = IDLE_{i,j} x (HOURS_{DAY} - LB/PC_{i,j}) x PCT_j

kWh_{i,j} = [LB x E_{FOOD,j}/EFF_{i,j} + IDLE_{i,j} x (HOURS_{DAY} - LB/PC_{i,j})] x PCT_j x

DAYS

kWh_{base} = kWh_{base,conv} + kWh_{base,steam}

kWh_{eff} = kWh_{eff,conv} + kWh_{eff,steam}

ΔkWh = kWh_{base} - kWh_{eff}

Where: 1106

_

¹¹⁰⁵ US EPA. January 2014. ENERGY STAR® Program Requirements Product Specification for Commercial Ovens Eligibility Criteria Version 2.1

Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.
http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equipment_calculator.xlsx

Page 489 of 507

i = either "base" or "eff" depending on whether the

calculation of energy consumption is being performed for

the baseline or efficient case, respectively.

j = cooking mode; either "conv" (i.e., convection) or

"steam"

 $kWh_Cooking_{i,j} = daily cooking energy consumption (kWh)$

 $kWh_Idle_{i,j} = daily idle energy consumption (kWh)$

kWh_{base} = the annual energy usage of the baseline equipment

calculated using baseline values

kWh_{eff} = the annual energy usage of the efficient equipment

calculated using efficient values

 $HOURS_{DAY}$ = average daily operating hours

= if average daily operating hours are unknown, assume

default of 12 hours/day.

DAYS = annual days of operation

= if annual days of operation are unknown, assume default

of 365 days.

 $E_{FOOD.conv}$ = ASTM Energy to Food (kWh/Ib); the amount of energy

absorbed by the food during convention mode cooking, per

pound of food

= 0.0732

 $E_{FOOD,steam}$ = ASTM Energy to Food (kWh/lb); the amount of energy

absorbed by the food during steam mode cooking, per

pound of food

= 0.0308

LB = Pounds of food cooked per day (Ib/day)

= if average pounds of food cooked per day is unknown,

assume default of 200 lbs/day.

EFF = Heavy load cooking energy efficiency (%)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

IDLE = Idle energy rate (kW)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

PC = Production capacity (lb/hr)

= see table below for default baseline values. If actual efficient values are unknown, assume default values from

table below.

 PCT_i = percent of food cooked in cooking mode j. Note: PCT_{conv} +

PCT_{steam} must equal 100%.

Page 490 of 507

= if percent of food cooked in cooking mode j is unknown, assume default of $PCT_{conv} = PCT_{steam} = 50\%$.

Electric Combination Oven Performance Metrics: Baseline and Efficient Values

		Baselin	e Model	Energy Effic	cient Model
	No. of	Convection		Convection	
Parameter	Pans	Mode	Steam Mode	Mode	Steam Mode
IDLE (kW)	< 15	1.320	5.260	0.08 x PANS	0.133 x
IDLE (KVV)	>= 15	2.280	8.710	+ 0.4989	PANS + 0.64
EFF	All	72%	49%	76%	55%
PC	< 15	79	126	119	177
FC	>= 15	166	295	201	349

Note: PANS = The number of steam table pans the combination oven is able to accommodate as per the ASTM F-1495-05 standard specification.

Summer Coincident Peak kW Savings Algorithm 1107

 $\Delta kW = \Delta kWh / (HOURS_{DAY} \times DAYS)$

Annual Fossil Fuel Savings

MMBtu_i = $[LB \times E_{FOOD}/EFF_i + IDLE_i \times (HOURS_{DAY} - LB/PC_i)] \times DAYS$

MMBtu_Cooking_{i,j} = LB x E_{FOOD,j}/EFF_{i,j} x PCT_j
MMBtu_Idle_{i,i} = IDLE_{i,i} x (HOURS_{DAY} - LB/PC_{i,i}) x PCT_i

 $\mathsf{MMBtu}_{\mathsf{i},\mathsf{j}} = [\mathsf{LB} \ \mathsf{x} \ \mathsf{E}_{\mathsf{FOOD},\mathsf{j}}/\mathsf{EFF}_{\mathsf{i},\mathsf{j}} + \mathsf{IDLE}_{\mathsf{i},\mathsf{j}} \ \mathsf{x} \ (\mathsf{HOURS}_{\mathsf{DAY}} - \mathsf{LB}/\mathsf{PC}_{\mathsf{i},\mathsf{j}})] \ \mathsf{x} \ \mathsf{PCT}_{\mathsf{j}}$

x DAYS

 $\begin{array}{ll} \text{MMBtu}_{base} & = kWh_{base,conv} + kWh_{base,steam} \\ \text{MMBtu}_{eff} & = kWh_{eff,conv} + kWh_{eff,steam} \end{array}$

 Δ MMBtu = MMBtu_{base} - MMBtu_{eff}

Where: 1108

¹¹⁰⁷ No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

Page 491 of 507

*MMBtu_Cooking*_i = daily cooking energy consumption (*MMBtu*)

*MMBtu_Idle*_i = daily idle energy consumption (*MMBtu*)

 $MMBtu_{base}$ = the annual energy usage of the baseline equipment

calculated using baseline values

MMBtu_{eff} = the annual energy usage of the efficient equipment

calculated using efficient values

 $E_{FOOD,conv}$ = ASTM Energy to Food (MMBtu/Ib); the amount of energy

absorbed by the food during convention mode cooking, per

pound of food

= 0.000250

 $E_{FOOD,steam}$ = ASTM Energy to Food (MMBtu/Ib); the amount of energy

absorbed by the food during steam mode cooking, per

pound of food = 0.000105

LB = Pounds of food cooked per day (lb/day)

= if average pounds of food cooked per day is unknown,

assume default of 250 lbs/day.

IDLE = Idle energy rate (MMBtu/h)

= see table below for default baseline values. If actual

efficient values are unknown, assume default values from

table below.

Gas Combination Oven Performance Metrics: Baseline and Efficient Values

		Baselin	e Model	Energy Effic	cient Model	
	No. of	Convection		Convection		
Parameter	Pans	Mode	Steam Mode	Mode	Steam Mode	
	< 15	0.008747	0.018656	0.000150 x	0.000200 x	
IDLE (MMBtu/h)	>= 15 and < 30	0.007823	0.024562	PANS +	PANS +	
(minibed, m)	>= 30	0.013000	0.043300	0.005425	0.006511	
EFF	All	52%	39%	56%	41%	
	< 15	125	195	124	172	
PC	>= 15 and < 30	176	211	210	277	
	>= 30	392	579	394	640	

ment_calculator.xlsx>

¹¹⁰⁸ Unless otherwise noted, all default assumption from US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment. http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equip

Page 492 of 507

Note: PANS = The number of steam table pans the combination oven is able to accommodate as per the ASTM F-1495-05 standard specification.

Annual Water Savings Algorithm n/a

Incremental Cost

The incremental cost for commercial combination ovens is assumed to be \$0¹¹⁰⁹

Measure Life 12 years 1110

Operation and Maintenance Impacts n/a

¹¹⁰⁹ US EPA. February 2015. Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.

http://www.energystar.gov/buildings/sites/default/uploads/files/commercial_kitchen_equip ment_calculator.xlsx> ¹¹¹⁰ Ibid.

Page 493 of 507

APPENDIX

A. Supporting Calculation Work Sheets

For each of the embedded excel work sheets below, double click to open the file and review the calculations.

- 1. MidAtlantic Lighting Adjustments and O&M.xls this contains 6 tabs; the first details the ISR and Measure Life adjustments, the second the CFL delta watts multiplier calculations, and the remaining tabs show the Operation and Maintenance calculations for RES CFL, RES Interior Fixture, RES Exterior Fixtures and C&I CFL.
- B. Recommendation for Process and Schedule for Maintenance and Update of TRM Contents
- C. Description of Unique Measure Codes
- D. Commercial & Industrial Lighting Operating Hours, Coincidence Factors, and Waste Heat Factors

Page 494 of 507

A. Supporting Calculation Work Sheets

Residential Lighting Markdown Impact Evaluation (2009)

(CT, MA, RI, VT)

p59

Table 5-21: Calculation of First-Year and Lifetime Installation Rates

Measure	Markdow	Measure	
	n	Life	Both
Total number of products	1,202	168	1,370
Number of products ever installed ^a	921	129	1,050
First-year installation rate	76.60%	76.80%	76.60%
Number of products likely to be installed in future ^b	250	37	287
Lifetime number of products to be installed ^c	1,171	166	1,337
Lifetime installation rate	97.40%	99.10%	97.60%

Initial Install Rate (From Empower Study)	0.88
Lifetime Install Rate (from 2009 RLW study)	0.97
Therefore 'future install'	0.09

initial product life (based on Jump et al report) 5.2 yrs

Impact Evaluation of the Massachusetts, Rhode Island, and Vermont 2003 Residential Lighting Programs Table 6-7: Reasons for Not Installing Products Purchased through the RLP (p67)

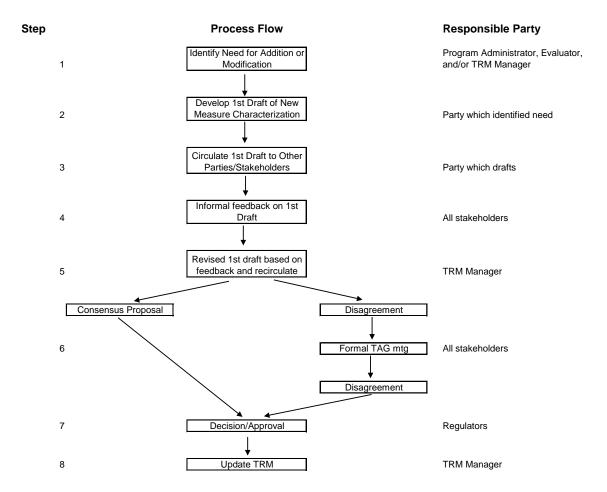
% of future installs to replace CFLs (bought as spares)	57%
% of future installs to replace incandescents	43%

Page 495 of 507

B. Recommendation for Process and Schedule for Maintenance and Update of TRM Contents

Once developed, the Mid-Atlantic TRM will benefit from an objective and thoughtful update process. Defining a process that coordinates with the needs of users, evaluators, and regulators is critical. Below we outline our preliminary proposal for a process for the update of information and recommendations on the coordination of the timing of this process with other critical activities.

Proposed TRM Update Process


Once a TRM has been developed, it is vital that it is kept up to date, amended, and maintained in a timely and effective manner. There are three main points in time when a TRM is most likely to require changes:

- 1. New measure additions As new technologies become cost effective, they will need to be characterized and added to the manual.
- 2. Existing measure updates Updates will be required for a number of reasons. Examples include: the federal standard for efficiency of a measure is increased; the qualification criteria are altered; the measure cost falls; or a new evaluation provides a better value of an assumption for a variable. In such cases, the changes must be flagged and appropriate changes made to the TRM.
- 3. Retiring existing measures When the economics of a measure become such that it is no longer cost effective, or the free rider rate is so high that it is not worth supporting, the measure should be retired.

It is important to maintain a record of changes made to the TRMs over time. It is therefore recommended to establish and maintain a Master Manual, containing all versions of each TRM in chronological order, and an abridged User Manual, in which only the current versions of active measures are included. Archived older information can be made available on a website or other accessible location.

The flowchart presented below outlines steps that will result in effective review and quality control for TRM updates.

TRM Update Process Flow Chart

Key Roles and Responsibilities

This process requires a number of different roles to ensure effectiveness, sufficient review, and independence. The specific parties who will hold these roles in the Mid-Atlantic TRM maintenance context will need to be identified by jurisdiction. The following list of key responsibilities is given as a starting place:

- Program administrators (utilities, MEA, SEU)
 - Identifies need for new or revised measure characterization (usually due to program changes or program/market feedback)
 - Researches and develops 1st draft measure characterizations when it identifies need

Page 497 of 507

- Develops 2nd draft measure characterizations following feedback on 1st draft from all parties
- Feedback on draft measure characterizations from other parties
- Participant in Technical Advisory Group (TAG) for formal discussion and dispute resolution when needed
- o Input to regulators if TAG process does not resolve all issues
- Independent TRM Manager (consultant or mutually agreed upon nominee)
 - Identifies need for revised measure characterization (usually based on knowledge of local or other relevant evaluation studies)
 - Researches and develops 1st draft measure characterizations when it identifies need
 - o Feedback on 1st draft measure characterizations from other parties
 - Develops 2nd draft measure characterizations following feedback on 1st draft from all parties
 - Leads Technical Advisory Group (TAG) for formal discussion and dispute resolution when needed
 - o Input to regulators if TAG process does not resolve all issues
 - Manages and updates TRM manuals

Evaluators

- o Identifies need for revised measure characterization (usually based on local evaluation studies it has conducted or managed)
- Input on draft measure characterizations developed by other parties
- Participates in TAG meetings when appropriate
- Performs program evaluation includes statewide market assessment and baseline studies, savings impact studies (to measure the change in energy and / or demand use attributed to energy efficiency), and other energy efficiency program evaluation activities
- Verifies annual energy and capacity savings claims of each program and portfolio
- Regulators/Commission staff
 - May serve as ultimate decision maker in any unresolved disputes between implementers, evaluators, and TRM Manager

Note that the process and responsibilities outlined above assume that the manager of the TRM is an entity independent from the program administrators. This is the approach the state of Ohio has recently adopted, with the Public Utilities Commission hiring a contractor to serve that function. Alternatively, the TRM could be managed by the Program Administrators themselves. That approach can also work very well as long as there is an independent party responsible for (1) reviewing and (2) either agreeing with proposed additions/changes or challenging such changes - with the regulators having final say regarding any disputes.

Page 498 of 507

The process outlined above also assumes that there are several potential stages of "give and take" on draft modifications to the TRM. At a minimum, there is at least one round of informal feedback and comment between the program administrators and the independent reviewer (TRM manager or otherwise). Other parties could be invited to participate in this process as well. In the event that such informal discussions do not resolve all issues, the participants may find it beneficial to establish a Technical Advisory Group (TAG) to provide a more formal venue for resolution of technical disputes prior to any submission to the regulators. This group would include representation from the program administrators, the evaluators (when deemed useful), the TRM Manager, and Commission staff. The mission of such a group would be to discuss and reach agreement on any unresolved issues stemming from new measure proposals, savings verifications, or evaluations. They could also review and comment on the methodology and associated assumptions underlying measure savings calculations and provide an additional channel for transparency of information about the TRM and the savings assessment process.

Coordination with Other Savings Assessment Activities

Although the TRM will be a critically important tool for both DSM planning and estimation of actual savings, it will not, by itself, ensure that reported savings are the same as actual savings. There are two principal reasons for this:

- The TRM itself does not ensure appropriate estimation of savings. One
 of the responsibilities of the Independent Program Evaluators will be to
 assess that the TRM has been used appropriately in the calculation of
 savings.
- 2. The TRM may have assumptions or protocols that new information suggests are outdated. New information that could inform the reasonableness of TRM assumptions or protocols can surface at any time, but they are particularly common as local evaluations or annual savings verification processes are completed. Obviously, the TRM should be updated to reflect such new information. However, it is highly likely that some such adjustments will be made too late to affect the annual savings estimate of a program administrator for the previous year. Thus, there may be a difference between savings estimates in annual compliance reports and the "actual savings" that may be considered acceptable from a regulatory perspective. However, such updates should be captured in as timely a fashion as possible.

Page 499 of 507

These two issues highlight the fact that the TRM needs to be integrated into a broader process that has two other key components: an annual savings verification process and on-going evaluation.

In our view, an annual savings verification process should have several key features.

- 1. It should include a review of data tracking systems used to record information on efficiency measures that have been installed. Among other things, this review should assess whether data appear to have been appropriately and accurately entered into the system.
- 2. It should include a review of all deemed savings assumptions underlying the program administrators' savings claims to ensure that they are consistent with the TRM.
- 3. It should include a detailed review of a statistically valid, random sample of custom commercial and industrial projects to ensure that custom savings protocols were appropriately applied. At a minimum, engineering reviews should be conducted; ideally, custom project reviews should involve some on-site assessments as well.
- 4. These reviews should be conducted by an independent organization with appropriate expertise.
- 5. The participants will need to have a process in place for quickly resolving any disputes between the utilities or program administrators on the one hand and the independent reviewer on the other.
- 6. The results of the independent review and the resolution of any disagreements should ideally be very transparent to stakeholders.

Such verification ensures that information is being tracked accurately and in a manner consistent with the TRM. However, as important as it is, verification does not ensure that reported savings are "actual savings". TRMs are never and can never be perfect. Even when the verification process documents that assumptions have been appropriately applied, it can also highlight questions that warrant future analysis that may lead to changes to the TRM. Put another way, evaluation studies are and always will be necessary to identify changes that need to be made to the TRM. Therefore, in addition to annual savings verification processes, evaluations will periodically be made to assess or update the underlying assumption values for critical components of important measure characterizations.

In summary, there should be a strong, sometimes cyclical relationship between the TRM development and update process, annual compliance reports, savings verification processes, and evaluations. As such, we recommend coordinating

Page 500 of 507

these activities. An example of the timeline established from such a coordinated process is given below.

In this example, it assumed that updates to the TRM occur only in the second half of the year. One option is to establish two specific update deadlines: one at the end of August and the other at the end of December. The first would ensure that the best available data are available for utility planning for the following year. The second would ensure that best available assumptions are in place prior to the start of the new program year. The rationale for not updating the TRM during the first half of the year is that time is usually devoted, in part, to documenting, verifying and approving savings claims from the previous year. For example, the program administrator will likely require two months to produce its annual savings claim for the previous year. An independent reviewer will then require two to three months to review and probe that claim, with considerable back and forth between the two parties being very common. Typically, final savings estimates for the previous year are not finalized and approved until June.

Needless to say, the definitive schedule for savings verification and TRM updating will need to be developed with considerable input from state regulators. This plan and timeline will be also informed by each region's Independent Program Evaluator and the EM&V plans they propose.

Page 501 of 507

Annual Verification and TRM Update Timeline (example)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
114:11:4.	anr sav	Draft nnual avings eport No TRN submitt during S		al		Draft new or updated TRMs developed and submitted to TRM Manager, participate in TAG						
Utility					SV ponse	Prior year data finalized	Technical Advisory Group (TAG negotiations and evaluation		-			
Evaluator				Saving rificat (SV)			negotiations and evaluation		'			
			No TRM review during SV			Refers need for TRM updates to TR Manager, provides input on TRMs						
TRM Manager/ Implementation staff				S		ake final savings ermination	dev by	eloped / utiliti	, Revie es, par	ew draf ticipat	ed TRM: ts prov e in TA ted TRI	vided NG,

C. Description of Unique Measure Codes

Each measure included in the TRM has been assigned a unique identification code. The code consists of a string of five descriptive categories connected by underscores, in the following format:

Sector_End Use_Program Type_Measure_MonthYear

A description of the abbreviations used in the codes is provided in the tables below:

SECTOR	
	Desidential
RS	Residential
CI	Commercial & Industrial
END USE	
LT	Lighting
RF	Refrigeration
HV	Heating, Ventilation, Air Conditioning
WT	Hot Water
LA	Laundry
SL	Shell (Building)
MO	Motors and Drives
KE	Commercial Kitchen Equipment
PL	Plug Load
PROGRAM	TYPE
TOS	Time of Sale
RTR	Retrofit
ERT	Early Retirement
INS	Direct Install
MEASURE	
CFLSCR	Compact Fluorescent Screw-In
CFLFIN	Compact Fluorescent Fixture, Interior
CFLFEX	Compact Fluorescent Fixture, Exterior
REFRIG	Refrigerator
FANMTR	Furnace Fan Motor
RA/CES	Window Air Conditioner Energy Star
RA/CT1	Window Air Conditioner Tier 1
CENA/C	Central Air Conditioner
SHWRHD	Low Flow Showerhead
FAUCET	Low Flow Faucet
HWWRAP	Water Tank Wrap
HPRSHW	Heat Pump Water Heater, Residential

Page 503 of 507

Clothes Washer, Energy Star
Clothes Washer, Tier 3
Window, Energy Star
High Performance T8 Lighting
T5 Lighting
Metal Halide Fixture, Interior
Metal Halide Fixture, Exterior
High Pressure Sodium Lighting
LED Exit Sign
Delamping
Occupancy Sensor, Wall box
Unitary Air Conditioning system
Efficient Motor
Variable Frequency Drive
Freezer
Heat Pump Water Heater, Commercial

Page 504 of 507

D. Commercial & Industrial Lighting Operating Hours, Coincidence Factors, and Waste Heat Factors

C&I Interior Lighting Operating Hours by Building Type 1111

Building Type	Sector	HOURS
Grocery	Large Commercial/Industrial & Small Commercial	7,134
Health	Large Commercial/Industrial & Small Commercial	3,909
Office	Large Commercial/Industrial	2,969
	Small Commercial	2,950
Other	Large Commercial/Industrial & Small Commercial	4,573
Retail	Large Commercial/Industrial	4,920
	Small Commercial	4,926
School	Large Commercial/Industrial & Small Commercial	2,575
Warehouse/Industrial	Large Commercial/Industrial	4,116
	Small Commercial	3,799
Unknown ¹¹¹²	Large Commercial/Industrial	2,575

Note: The "Other" building type should be used when the building type is known but not explicitly listed above. A description of the actual building type should be recorded in the project documentation.

¹¹¹¹ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 -May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014

1112 To encourage the use of building type-specific values, the assumed lighting operating hours

for unknown building types have been set equal to the lowest value from the table.

Page 505 of 507

C&I Interior Lighting Coincidence Factors by Building Type 1113

Building Type	Sector	CF _{SSP}	CF _{PJM}
Grocery	Large Commercial/Industrial & Small Commercial	0.96	0.96
Health	Large Commercial/Industrial & Small Commercial	0.8	0.79
Office	Large Commercial/Industrial	0.7	0.69
	Small Commercial	0.67	0.67
Other	Large Commercial/Industrial & Small Commercial	0.66	0.67
Retail	Large Commercial/Industrial	0.96	0.94
	Small Commercial	0.86	0.85
School	Large Commercial/Industrial & Small Commercial	0.50	0.42 ¹¹¹⁴
Warehouse/Industrial	Large Commercial/Industrial	0.7	0.72
	Small Commercial	0.68	0.7
Unknown ¹¹¹⁵	Large Commercial/Industrial	0.50	0.42

Note(s): 1) CF_{PJM} refers to the PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm). CF_{SSP} refers to Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday). 2) The "Other" building type should be used when the building type is known but not explicitly listed above. A description of the actual building type should be recorded in the project documentation.

Empower Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014

¹¹¹⁴ C&I Lighting Load Shape Project FINAL Report, KEMA, 2011

To encourage the use of building type-specific values, the assumed lighting coincidence factors for unknown building types have been set equal to the lowest values from the table.

Page 506 of 507

Waste Heat Factors for C&I Lighting - Known HVAC Types 1116

State, Utility	Building Type	Demand Waste Heat Factor (WHFd)		Heat Factor (WHFd) Annual Energy Waste Heat Factor Cooling/Heating Type (WHFe)				
		AC (Utility)	AC (PJM)	AC/ NonElec	AC/ ElecRes	Heat Pump	NoAC/ ElecRes ¹¹¹⁷	
Maryland, BGE	Office	1.36	1.32	1.10	0.85	0.94	0.75	
	Retail	1.27	1.26	1.06	0.83	0.95	0.77	
	School	1.44	1.44	1.10	0.81	0.96	0.71	
	Warehouse	1.23	1.24	1.02	0.75	0.89	0.73	
	Other	1.35	1.33	1.08	0.82	0.93	0.74	
Maryland, SMECO	Office	1.36	1.32	1.10	0.85	0.94	0.75	
	Retail	1.27	1.26	1.06	0.83	0.95	0.77	
	School	1.44	1.44	1.10	0.81	0.96	0.71	
	Warehouse	1.23	1.25	1.02	0.75	0.89	0.73	
	Other	1.35	1.33	1.08	0.82	0.93	0.74	
Maryland, Pepco	Office	1.36	1.32	1.10	0.85	0.94	0.75	
	Retail	1.27	1.26	1.06	0.83	0.95	0.77	
	School	1.44	1.44	1.10	0.81	0.96	0.71	
	Warehouse	1.23	1.25	1.02	0.75	0.89	0.73	
	Other	1.35	1.33	1.08	0.82	0.93	0.74	
Maryland, DPL	Office	1.35	1.32	1.10	0.85	0.94	0.75	
	Retail	1.27	1.26	1.06	0.83	0.95	0.77	
	School	1.44	1.44	1.10	0.81	0.96	0.71	
	Warehouse	1.22	1.23	1.02	0.75	0.89	0.73	

_

¹¹¹⁶ EmPOWER Maryland DRAFT Final Impact Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Commercial & Industrial Prescriptive & Small Business Programs, Navigant, March 31, 2014. Values for Washington, D.C. and Delaware assume values from Maryland, Pepco and Maryland, DPL, respectively.

¹¹¹⁷ Waste Heat Factors for "NoAC/ElecRes" estimated as at difference between "AC/ElecRes" and "AC/NonElec" plus one.

Page 507 of 507

State, Utility	Building Type	Demand Waste Heat Factor (WHFd)		1 Annual Engray Wasta Heat Eactor by				
		AC (Utility)	AC (PJM)	AC/ NonElec	AC/ ElecRes	Heat Pump	NoAC/ ElecRes ¹¹¹⁷	
	Other	1.34	1.32	1.08	0.82	0.93	0.74	
Mariland	Office	1.34	1.31	1.10	0.85	0.94	0.75	
Maryland, Potomac	Retail	1.27	1.25	1.06	0.83	0.95	0.77	
Edison	School	1.45	1.45	1.10	0.81	0.96	0.71	
	Warehouse	1.2	1.21	1.02	0.75	0.89	0.73	
	Other	1.33	1.31	1.08	0.82	0.93	0.74	
Ma alalia ada a	Office	1.36	1.32	1.10	0.85	0.94	0.75	
Washington, D.C., All	Retail	1.27	1.26	1.06	0.83	0.95	0.77	
	School	1.44	1.44	1.10	0.81	0.96	0.71	
	Warehouse	1.23	1.25	1.02	0.75	0.89	0.73	
	Other	1.35	1.33	1.08	0.82	0.93	0.74	
Delaware, All	Office	1.35	1.32	1.10	0.85	0.94	0.75	
	Retail	1.27	1.26	1.06	0.83	0.95	0.77	
	School	1.44	1.44	1.10	0.81	0.96	0.71	
	Warehouse	1.22	1.23	1.02	0.75	0.89	0.73	
	Other	1.34	1.32	1.08	0.82	0.93	0.74	

Note(s): The "Other" building type should be used when the building type is known but not explicitly listed above. A description of the actual building type should be recorded in the project documentation. If cooling and heating equipment types are unknown or the space is unconditioned, assume WHFd = WHFe = 1.0.