About NEEP

Northeast Energy Efficiency Partnerships Inc. (NEEP) was founded in 1996 as a non-profit whose mission is to serve the Northeast and Mid-Atlantic to accelerate energy efficiency as an essential part of demand-side solutions that enable a sustainable regional energy system.

The Mid-Atlantic Technical Reference Manual is a technical assistance project that originated in the Regional Evaluation, Measurement and Verification Forum (EM&V Forum). The EM&V Forum was facilitated by NEEP to support the transparency, role and credibility of energy efficiency and demand resource savings, costs and emission impacts in current and emerging energy and environmental policies and markets in the Northeast, New York, and the Mid-Atlantic region.

About Shelter Analytics

Shelter Analytics, LLC is dedicated to promoting energy efficiency through planning and integrated design concepts in programs, buildings and businesses. We combine our experience and integrity with innovative approaches to support and improve best-practice methods from planning through implementation.
Table of Contents

NEEP and The Regional EM&V Forum .. 8
Acknowledgements .. 8
Subcommittee for the Mid-Atlantic TRM ... 8

INTRODUCTION ... 9

- Context .. 10
- Approach .. 11
 - Task 1: Prioritization/Measure Selection. .. 11
 - Task 2: Development of Deemed Impacts. .. 12
 - Task 3: Development of Recommendations for Update. 13
 - Task 4: Delivery of Draft and Final Product. ... 14

- Use of the TRM .. 14
- Measure Cost Development and Use .. 18
 - Time of Sale and New Construction Incremental Costs 18
 - Retrofit and Full Costs .. 18
 - Early Replacement Incremental Costs .. 18

- TRM Update History ... 20

RESIDENTIAL MARKET SECTOR ... 21

- Lighting End Use ... 21
 - Solid State Lighting (LED) Recessed Downlight Luminaire 21
 - ENERGY STAR Integrated Screw Based SSL (LED) Lamp 30
 - Occupancy Sensor – Wall-Mounted ... 43
 - Connected Lighting ... 49

- Refrigeration End Use .. 54
 - Freezer .. 54
 - Refrigerator, Time of Sale .. 59
 - Refrigerator, Early Replacement .. 65
 - Refrigerator and Freezer, Early Retirement .. 69

- Heating Ventilation and Air Conditioning (HVAC) End Use 74
 - Central Furnace Efficient Fan Motor ... 74
 - Room Air Conditioner, Time of Sale .. 77
 - ENERGY STAR Central A/C .. 81
 - Air Source Heat Pump .. 88
 - Packaged Terminal Air Conditioners (PTAC) and Heat Pumps (PTHP) 99
 - Duct Sealing .. 106
 - Ductless Mini-Split Heat Pump ... 120
 - HE Gas Boiler ... 127
 - Condensing Furnace (gas) ... 130
Smart Thermostat ... 133
Room Air Conditioner, Early Replacement 140
Room Air Conditioner, Early Retirement / Recycling 145
Boiler Pipe Insulation ... 149
Boiler Reset Controls ... 152
Ground Source Heat Pumps .. 155
High Efficiency Bathroom Exhaust Fan 162
ENERGY STAR Ceiling Fan .. 165
Domestic Hot Water (DHW) End Use 170
Low Flow Shower Head ... 170
Faucet Aerators .. 174
Domestic Hot Water Tank Wrap .. 180
DHW Pipe Insulation .. 184
High Efficiency Gas Water Heater 187
Heat Pump Domestic Water Heater 191
Thermostatic Restrictor Shower Valve 199
Water Heater Temperature Setback 205
Appliance End Use .. 209
Clothes Washer .. 209
Clothes Washer, Early Replacement 219
Dehumidifier ... 229
Dehumidifier, Early Retirement / Recycling 232
ENERGY STAR Air Purifier/Cleaner 236
Clothes Dryer .. 239
Dishwasher .. 244
Shell Savings End Use ... 249
Air sealing ... 249
Attic/ceiling/roof insulation .. 257
Efficient Windows - Energy Star, Time of Sale 264
Crawl Space Insulation and Encapsulation 267
Pool Pump End Use .. 276
Pool pump-two speed .. 276
Pool pump-variable speed ... 279
Plug Load End Use ... 282
Tier 1 Advanced Power Strip ... 282
ENERGY STAR Air Cleaner .. 285
Room Air Conditioners (Upstream) 288
Retail Products Platform ... 291
ENERGY STAR Freezer ... 291
ENERGY STAR Clothes Dryer .. 295
ENERGY STAR Soundbar ... 298
ENERGY STAR Air Cleaner .. 299
ENERGY STAR Desktop Computer .. 302
ENERGY STAR Laptop Computer ... 304
ENERGY STAR Computer Monitor ... 305
ENERGY STAR Television ... 308

COMMERCIAL & INDUSTRIAL MARKET SECTOR ... 311

Lighting End Use .. 311
LED Exit Sign .. 311
Solid State Lighting (LED) Recessed Downlight Luminaires ... 315
Delamping .. 319
Occupancy Sensor – Wall-, Fixture-, or Remote-Mounted ... 323
Daylight Dimming Control ... 327
Advanced Lighting Design – Commercial .. 330
LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Luminaires and Retrofit Kits ... 345
LED High-Bay Luminaires and Retrofit Kits .. 350
LED High-Intensity Discharge Screw Base .. 353
LED 1x4, 2x2, and 2x4 Luminaires and Retrofit Kits .. 358
LED Parking Garage/Canopy Luminaires and Retrofit Kits .. 362
ENERGY STAR Integrated Screw Based SSL (LED) Lamp – Commercial 367
LED Four-pin based Lamp – Commercial .. 378
LED Refrigerated Case Lighting ... 382
Exterior LED Flood and Spot Luminaires ... 386
Low Wattage Four-Foot Linear Fluorescent Replacement Lamps ... 389
LED Four-Foot Linear Replacement Lamps .. 393

Heating Ventilation and Air Conditioning (HVAC) End Use ... 398
Unitary HVAC Systems .. 398
Ductless Mini-Split Heat Pump (DMSHP) ... 414
Variable Frequency Drive (VFD) for HVAC .. 421
Electric Chillers .. 430
Gas Boiler ... 438
Gas Furnace ... 442
Dual Enthalpy Economizer ... 446
AC Tune-Up ... 449
Smart Thermostat .. 452

Refrigeration End Use .. 456
ENERGY STAR Commercial Freezers ... 457
ENERGY STAR Commercial Refrigerator ... 460
Night Covers for Refrigerated Cases .. 463
Anti-Sweat Heater Controls ... 466
Evaporator Fan Electronically-Commutated Motor (ECM) Retrofit 469
Evaporator Fan Motor Controls .. 472
Hot Water End Use ... 475
C&I Heat Pump Water Heater ... 475
Pre-Rinse Spray Valves .. 479
Appliance End Use .. 482
Commercial Clothes Washer .. 482
Plug Load End Use .. 487
Tier 1 Advanced Power Strip ... 487
Commercial Kitchen Equipment End Use ... 489
Commercial Fryers .. 489
Commercial Steam Cookers ... 494
Commercial Hot Food Holding Cabinets ... 499
Commercial Griddles ... 502
Commercial Convection Ovens .. 506
Commercial Combination Ovens ... 510
A. RETIRED ... 516
B. Description of Unique Measure Codes .. 519
C. RETIRED ... 520
D. Commercial & Industrial Lighting Operating Hours and Coincidence Factors. 521
E. Commercial & Industrial Lighting Waste Heat Factors 526
F. Commercial & Industrial Full Load Cooling and Heating Hours........... 528
PREFACE

NEEP and The Regional EM&V Forum

Northeast Energy Efficiency Partnerships Inc. (NEEP) was founded in 1996 as a non-profit whose mission is to serve the Northeast and Mid-Atlantic to accelerate energy efficiency as an essential part of demand-side solutions that enable a sustainable regional energy system.

The Mid-Atlantic Technical Reference Manual is a technical assistance project that originated in the Regional Evaluation, Measurement and Verification Forum (EM&V Forum). The EM&V Forum was facilitated by NEEP to support the transparency, role and credibility of energy efficiency and demand resource savings, costs and emission impacts in current and emerging energy and environmental policies and markets in the Northeast, New York, and the Mid-Atlantic region. For more information, see http: www.neep.org/emv-forum.

Acknowledgements

This update of the Mid-Atlantic Technical Reference Manual (TRM) was prepared by Shelter Analytics. Bret Hamilton, project manager, was assisted by Glenn Reed of Energy Futures Group, Paul Scheckel of Parsec Energy, Keith Downes and Decker Ringo of Navigant Consulting.

Subcommittee for the Mid-Atlantic TRM

A special thanks and acknowledgment on behalf of the NEEP staff and project contractors is extended to this project’s subcommittee members, who have provided important input and guidance throughout the various phases of development of this TRM. This includes: Brent Barkett (Navigant Consulting), Brian Bloom (Potomac Energy), Eugene Bradford (Southern Maryland Electric Cooperative), Kim Byk (ICF), Joe Cohen (Pepco Holdings Inc.), Terese Decker (Navigant Consulting), April DesClos (Vermont Energy Investment Company), Marshall Duer-Balkind (D.C. Department of Energy and Environment), Drew Durkee (ICF), Karl Eser (Baltimore Gas and Electric), Scott Falvey (Maryland Department of Housing and Community Development), Dean Fisher (Maryland Public Service Commission), Salil Gogte (EcoMetric Consulting), Roger Huggins (Lockheed Martin), Dan Hurley (Maryland Public Service Commission), Jill
Krueger (Cadmus), Taresa Lawrence (D.C. Department of Energy and Environment), Jeff Loiter (Optimal Energy Inc.), Lance Loncke (D.C. Department of Energy and Environment), Joe Loper (Itron), Kristin McAlpine (GDS), Spencer McCune (Lockheed Martin Inc.), Ed Miller (Potomac Energy), Regina Montalban (Lockheed Martin Inc), Phani Pagadala (Itron), David Pirtle (Pepco Holdings Inc.), Jennifer Raley (Southern Maryland Electric Cooperative), Seth Rapoza (ICF), Eric Rundy (Potomac Energy), Jeff Shaw (Southern Maryland Electric Cooperative), Chris Siebens (Potomac Energy), Justin Spencer (Navigant Consulting), Jeff Staller (Itron), Bill Steigelman (Lockheed Martin Inc.), Robert Stephenson (Vermont Energy Investment Company), Mary Straub (Baltimore Gas and Electric), Rob Underwood (Delaware Department of Natural Resources and Environmental Control), John Walczyk (Cadmus), Christopher Walls (Baltimore Gas and Electric), William Wolf (Baltimore Gas and Electric), Lisa Wolfe (Potomac Energy).

INTRODUCTION

This update to the Technical Reference Manual is the outcome of a NEEP technical assistance project sponsored by Maryland, Delaware and the District of Columbia. The intent of the project was to develop and document in detail common assumptions for significant prescriptive residential and commercial/industrial electric energy efficiency measures savings. Measures were chosen by consensus of the subcommittee and project team. For each measure, the TRM includes either specific deemed values or algorithms¹ for calculating:

- Gross annual electric energy savings;
- Gross electric summer coincident peak demand savings;
- Gross annual fossil fuel energy savings (for electric efficiency measures that also save fossil fuels, and for certain measures that can save electricity or fossil fuels);
- Other resource savings if appropriate (e.g. water savings, O&M impacts);
- Incremental costs; and
- Measure lives.

The TRM is intended to be easy to use and to serve a wide range of important users and functions, including:

- **Utilities and efficiency Program Administrators** – for cost-effectiveness screening and program planning, tracking, and reporting.

¹ Typically, the algorithms provided contain a number of deemed underlying assumptions which when combined with some measure specific information (e.g. equipment capacity) produce deemed calculated savings values.
• Regulatory entities, independent program evaluators, and other parties – for evaluating the performance of efficiency programs relative to statutory goals and facilitating planning and portfolio review; and
• Markets, such as PJM’s Reliability Pricing Model (its wholesale capacity market) and future carbon markets – for valuing efficiency resources.

The TRM is intended to be a flexible and living document. To that end, NEEP, the project sponsors and the TRM authors work together to update it annually with additional measures, modifications to characterizations of existing measures and even removal of some measures when they are no longer relevant to regional efficiency programs.

Context

The Forum initiated this project as a benefit to both the Mid-Atlantic States and the overall Forum Region, for the following reasons:

• To improve the credibility and comparability of energy efficiency resources to support state and regional energy, climate change and other environmental policy goals;
• To remove barriers to the participation of energy efficiency resources in regional markets by making EM&V practices and savings assumptions more transparent, understandable and accessible;
• To reduce the cost of EM&V activities by leveraging resources across the region for studies of common interest (where a need for such studies has been identified); and
• To inform the potential development of national EM&V protocols.

This is the eighth generation document that has been prepared for the Mid-Atlantic sponsors, and one of few in the country to serve a multi-jurisdictional audience. For definitions of many energy efficiency terms and acronyms included in the TRM, users of this TRM may want to refer to the EMV Forum Glossary available at: http://neep.org/emv-forum/forum-products-and-guidelines.

It is also recognized that programs mature over time and more evaluation and market-research data have become available over the past few years. In addition, efficiency programs in the region are not identical and either the availability or the results of existing baseline studies and other sources of information can differ across organizations and jurisdictions. Also, different budgets and policy objectives exist, and states may have different EM&V requirements and practices. Given these
considerations, the contents of this TRM reflect the consensus agreement and best judgment of project sponsors, managers, and consultants on information that was most useful and appropriate to include within the time, resource, and information constraints of the study.

Approach

This section briefly identifies and describes the process used to develop the TRM. In addition, it provides an overview of some of the considerations and decisions involved in the development of estimates for the many parameters. The development of this TRM required a balance of effectiveness, functionality, and relevance with available sources and research costs.

It is helpful to keep in mind that each measure characterization has numerous components, including retrofit scenario, baseline consumption, annual energy savings, coincident peak demand savings, useful life, and incremental cost.

Thus, the project needed to research and develop literally hundreds of unique assumptions. It is further helpful to keep in mind that because the project served a multijurisdictional audience, it required data requests, review, and consensus decision-making by a subcommittee comprised of project sponsors and other stakeholders. The subcommittee was responsible for review and approval of the products generated in each of the tasks needed to complete the project.

Development of the TRM consisted of the following tasks:

Task 1: Prioritization/Measure Selection.

By design, this TRM focuses on priority prescriptive measures, due to a combination of project resource constraints and the recognition that typically 10 - 20% of a portfolio of efficiency measures (such as lighting, some cooling measures, efficient water heaters) likely account for the large majority (90% or more) of future savings claims from prescriptive measures (i.e., those measures effectively characterized by pre-determined incentive and deemed savings values or algorithms).

Measures are selected on the basis of projected or expected savings from program data by measure type expert judgment and review of other relevant criteria available from regulatory filings and the region’s Program Administrators. Note that some of the measures are variations on other measures (e.g. appliances delivered through a midstream promotional program design and appliances in retrofit programs). Because
gas measures were not common to all sponsors, these are not priority measures, but there is consensus that gas measures are appropriate to include. For those measures where fossil fuel savings occur in addition to electricity savings (for example the clothes washer measure), or where either electric or fossil fuel savings could be realized depending on the heating fuel used (for example domestic hot water conservation measures), appropriate MMBTU savings have been provided.

Task 2: Development of Deemed Impacts.

Development of the contents of the TRM proceeds in two stages. The first stage is research, analysis, and critical review of available information to inform the range of assumptions considered for each parameter and each measure included in the TRM. This is based on a comparative study of many secondary sources including existing TRMs from other jurisdictions, evaluation studies and other local, primary research and data, and information that was developed for the EMV Forum’s Common Methods Project.

The comparative analysis itself is not always as straightforward as it might initially seem because the measures and specific variables included in different jurisdictions’ TRMs are sometimes a little different from each other – in efficiency levels promoted, capacity levels considered, the design of program mechanisms for promoting the measures and various other factors. Thus, the comparative analysis of many assumptions requires calibration to common underlying assumptions. Wherever possible, such underlying assumptions – particularly for region-specific issues such as climate, codes and key baseline issues – are derived from the mid-Atlantic region.

The second stage is development of specific recommendations for specific assumptions or algorithms (informed by the comparative analysis), along with rationales and references for the recommendations. These recommended assumptions identify cases where calculation of savings is required and where options exist (for example two coincidence factor values are provided for central AC measures, based on two definitions of peak coincidence factors) for calculation of impact. They also recommend deemed values where consistency can or should be achieved. The following criteria are used in the process of reviewing and adopting the proposed assumptions and establishing consensus on the final contents of the TRM:

- **Credibility.** The savings estimates and any related estimates of the cost-effectiveness of efficiency investments are credible.
- **Accuracy and completeness.** The individual assumptions or calculation protocols are accurate, and measure characterizations capture the full range of effects on savings.
• **Transparency.** The assumptions are considered by a variety of stakeholders to be transparent – that is, widely known, widely accepted, and developed and refined through an open process that encourages and addresses challenges from a variety of stakeholders.

• **Cost efficiency.** The contents of the TRM addressed all inputs that were within the established project scope and constraints. Sponsors recognize that there are improvements and additions that can be made in future generations of this document.

Additional notes regarding the high level rationale for extrapolation for Mid-Atlantic estimates from the Northeast and other places are provided below under Use of the TRM.

Task 3: Development of Recommendations for Update.

The purpose of this task was to develop a recommended process for when and how information will be incorporated into the TRM in the future. This task assumes that the process of updating and maintaining the TRM is related to but distinct from processes for verification of annual savings claims by Program Administrators. It further assumes that verification remains the responsibility of individual organizations unlike the multi-sponsor, multi-jurisdictional TRM. The development of these recommendations was based on the following considerations:

- Review processes in other jurisdictions and newly available relevant research and data.

- Expected uses of the TRM. This assumes that the TRM will be used to conduct prospective cost-effectiveness screening of utility programs, to estimate progress towards goals and potentially to support bidding into capacity markets. Note that both the contents of the document and the process and timeline by which it is updated might need to be updated to conform to the PJM requirements, once sponsors have gained additional experience with the capacity market.

- Expected timelines required to implement updates to the TRM parameters and algorithms.

- Processes stakeholders envision for conducting annual reviews of utility program savings as well as program evaluations, and therefore what time frame TRM updates can accommodate these.
• Feasibility of merging or coordinating the Mid-Atlantic protocols with those of other States, such as Pennsylvania, New Jersey or entire the Northeast.

Task 4: Delivery of Draft and Final Product.
The final content of the TRM reflects the consensus approval of the results from Task 2 as modified following a peer review. By design, the final version of the TRM document is similar to other TRMs currently available, for ease of comparison and update and potential merging with others in the future.

Use of the TRM

As noted above, the TRM is intended to serve as an important tool to support rate-funded efficiency investments; for planning, implementation and assessment of success in meeting specific state goals. In addition, the TRM is intended to support the bidding of efficiency resources into capacity markets, such as PJM’s Reliability Pricing Model and in setting and tracking future environmental and climate change goals. It provides a common platform for the Mid-Atlantic stakeholders to characterize measures within their efficiency programs, analyze and meaningfully compare cost-effectiveness of measures and programs, communicate with policymakers about program details, and it can guide future evaluation and measurement activity and help identify priorities for investment in further study, needed either at a regional or individual organizational level.

The savings estimates are expected to serve as representative, recommended values, or ways to calculate savings based on program-specific information. All information is presented on a per measure basis. In using the measure-specific information in the TRM, it is helpful to keep the following notes in mind:

• Additional information about the program design is sometimes included in the measure description because program design can affect savings and other parameters.
• Savings algorithms are typically provided for each measure. For a number of measures, prescriptive values for each of the variables in the algorithm are provided along with the output from the algorithm. That output is the deemed savings. For other measures, prescriptive values are provided for only some of the variables in the algorithm, with the term “actual” or “actual installed” provided for the others. In those cases – which one might call “deemed
calculations” rather than “deemed savings” – users of the TRM are expected to use actual efficiency program data (e.g. capacities or rated efficiencies of central air conditioners) in the formula to compute savings. Note that the TRM typically provides example calculations for measures requiring “actual” values. These are for illustrative purposes only.

- All estimates of savings are annual savings and are assumed to be realized for each year of the measure life (unless otherwise noted).
- Unless otherwise noted, measure life is defined to be “the life of an energy consuming measure, including its equipment life and measure persistence (not savings persistence)” (EMV Forum Glossary). Conceptually it is similar to expected useful life, but the results are not necessarily derived from modeling studies, and many are from a report completed for New England program administrators’ and regulators’ State Program Working Group that is currently used to support the New England Forward Capacity Market M&V plans.
- Where deemed values for savings are provided, these represent average savings that could be expected from the average measures that might be installed in the region during the current program year.
- For measures that are not weather-sensitive, peak savings are estimated whenever possible as the average of savings between 2 pm and 6 pm across all summer weekdays (i.e. PJM’s EE Performance Hours for its Reliability Pricing Model). Where possible for cooling measures, we provide estimates of peak savings in two different ways. The primary way is to estimate peak savings during the most typical peak hour (assumed here to be 5 p.m.) on days during which system peak demand typically occurs (i.e., the hottest summer weekdays). This is most indicative of actual peak benefits. The secondary way – typically provided in a footnote – is to estimate peak savings as it is measured for non-cooling measures: the average between 2 pm and 6 pm across all summer weekdays (regardless of temperature). The second way is presented so that values can be bid into the PJM RPM.
- Wherever possible, savings estimates and other assumptions are based on mid-Atlantic data. However, a number of assumptions – including assumptions regarding peak coincidence factors – are based on sources from other regions, often adjusted for climate or other known regional differences.
- While this information is not perfectly transferable, due to differences in definitions of peak periods as well as geography, climate and customer mix, it
was used because it was the most transferable and usable source available at the time.2

- Users will note that the TRM presents engineering equations for most measures. These were judged to be desirable because they convey information clearly and transparently, and they are widely accepted in the industry. Unlike simulation model results, they also provide flexibility and opportunity for users to substitute locally specific information and to update some or all parameters as they become available on an ad hoc basis. One limitation is that certain interactive effects between end uses, such as how reductions in waste heat from many efficiency measures impacts space conditioning, are not universally captured in this version of the TRM.3

- For some of the whole-building program designs that are being planned or implemented in the Mid-Atlantic, simulation modeling may be needed to estimate savings.

- In general, the baselines included in the TRM are intended to represent average conditions in the Mid-Atlantic. Some are based on data from the Mid-Atlantic, such as household consumption characteristics provided by the Energy Information Administration. Some are extrapolated from other areas, when Mid-Atlantic data are not available. Some are based on code.

- The TRM anticipates the effects of changes in efficiency standards for measures as appropriate, specifically lighting and motors.

The following table outlines the terms used to describe the assumed baseline conditions for each measure. The third portion of each measure code for each measure described in this TRM includes the abbreviation of the program type for which the characterization is intended:

<table>
<thead>
<tr>
<th>Baseline Condition</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Sale (TOS)</td>
<td>Definition: A program in which the customer is incented to purchase or install higher efficiency equipment than if the program had not existed. This may include retail rebate (coupon) programs, upstream buydown programs, online store programs, contractor based programs, or CFL giveaways as examples. May include replacement or existing equipment at the end of it’s life (i.e., replace on burnout), or purchase of new equipment. In cases where a new construction characterization isn’t explicitly provided, the TOS characterization is typically appropriate. Baseline = New standard efficiency or code compliant equipment.</td>
</tr>
</tbody>
</table>

3 They are captured for lighting and some motor-related measures.
Baseline Condition	Attributes

Baseline Condition	Attributes
Baseline Condition | Attributes
Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice.
Example: Appliance rebate

New Construction (NC) | Definition: A program that intervenes during building design to support the use of more-efficient equipment and construction practices.
Baseline = Building code or federal standards.
Efficient Case = The program’s level of building specification
Example: Building shell and mechanical measures

Retrofit (RF) | Definition: A program that upgrades or enhances existing equipment.
Baseline = Existing equipment or the existing condition of the building or equipment. A single baseline applies over the measure’s life.
Efficient Case = Post-retrofit efficiency of equipment.
Example: Air sealing, insulation, and controls.

Early Replacement (EREP) | Definition: A program that replaces existing, operational equipment.
Baseline = Dual; it begins as the existing equipment and shifts to new baseline equipment after the remaining life of the existing equipment is over.
Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice.
Example: Refrigerators and freezers.

Early Retirement (ERET) | Definition: A program that retires inefficient, operational duplicative equipment or inefficient equipment that might otherwise be resold.
Baseline = The existing equipment, which is retired and not replaced.
Efficient Case = Assumes zero consumption since the unit is retired.
Example: Appliance recycling.

Direct Install (DI) | Definition: A program where measures are installed during a site visit.
Baseline = Existing equipment.
Efficient Case = New, premium efficiency equipment above federal and state codes and standard industry practice.
Example: Lighting and low-flow hot water measures

Going forward, the project sponsors can use this TRM, along with other Forum products on common EM&V terminology, guidelines on common evaluation methods, and common reporting formats, along with the experience gained from implementation of the efficiency programs to inform decisions about what savings assumptions should be updated and how.

4 The criteria that are used to determine whether equipment is “operational” vary among jurisdictions and there is no related industry standard practice. This TRM provides assumptions for estimating savings and costs for early replacement measures, but does not address this threshold question of whether a measure should be considered early replacement.
Measure Cost Development and Use

Measure costs are calculated differently depending upon the program type, discussed above, used to promote a given measure. These calculations are summarized below.

Time of Sale and New Construction Incremental Costs
Calculations of Time of Sale and New Construction incremental costs in the Mid-Atlantic TRM are generally the difference between the measure equipment and labor costs and the baseline equipment and labor costs. In most cases, the measure and baseline labor costs are equal and so the time of sale incremental cost is simply the difference between the baseline and measure equipment costs. In general, no discounting of future costs is needed since all costs are incurred at the time of project installation.

Retrofit and Full Costs
Retrofit measure incremental costs and full costs are equal to the total measure costs. Generally, no discounting of future costs is needed since all costs are incurred at the time of project installation. Retrofit measures generally comprise efficiency enhancement such as building shell measures, HVAC tune ups, etc. Full cost values may be needed to estimate program costs for programs that pay all or a percentage of project costs.

Early Replacement Incremental Costs
Calculation of early replacement incremental costs in the Mid-Atlantic TRM includes two components:

1. The discounted future costs that would have been incurred when the replaced equipment would have needed to be replaced had it not been replaced early needs to be subtracted from the initial measure costs; and
2. The present value costs associated with purchasing the high efficiency equipment today while the existing equipment is still operational.

The calculations are provided in Itron, Mid-Atlantic TRM Version 7.5 Incremental Costs Update, 2017 at:

http://www.neep.org/initiatives/emv-forum/forum-products

The methods and rationale are discussed in Evergreen Economics, Michals Energy and Phil Wilhems, Early Replacement Measures Study Final Phase II Research Report,
TRM Update History

<table>
<thead>
<tr>
<th>Version</th>
<th>Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>October 2010</td>
</tr>
<tr>
<td>1.2</td>
<td>March 2011</td>
</tr>
<tr>
<td>2.0</td>
<td>July 2011</td>
</tr>
<tr>
<td>3.0</td>
<td>January 2013</td>
</tr>
<tr>
<td>4.0</td>
<td>June 2014</td>
</tr>
<tr>
<td>5.0</td>
<td>June 2015</td>
</tr>
<tr>
<td>6.0</td>
<td>May 2016</td>
</tr>
<tr>
<td>7.0</td>
<td>May 2017</td>
</tr>
<tr>
<td>7.5</td>
<td>October 2017</td>
</tr>
<tr>
<td>8.0</td>
<td>May 2018</td>
</tr>
</tbody>
</table>
RESIDENTIAL MARKET SECTOR

Lighting End Use

Solid State Lighting (LED) Recessed Downlight Luminaire

Unique Measure Code: RS_LT_TOS_SSLDWN_0415, RS_LT_EREP_SSLDWN_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This measure describes savings from the purchase and installation of a Solid State Lighting (LED) Recessed Downlight luminaire in place of an incandescent downlight lamp/luminaire (i.e. time of sale). The SSL downlight should meet the ENERGY STAR Luminaires Version 2.0 specification\(^5\). The characterization of this measure should not be applied to other types of LEDs.

Note, this measure assumes the baseline is a Bulged Reflector (BR) lamp. This lamp type is generally the cheapest and holds by far the largest market share for this fixture type.

The measure provides assumptions for two markets (Residential and Multi-Family).

Definition of Baseline Condition
The baseline is the purchase and installation of a standard BR30-type incandescent downlight light bulb.

Definition of Efficient Condition
The efficient condition is the purchase and installation of an ENERGY STAR Solid State Lighting (LED) Recessed Downlight luminaire.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \left(\frac{(\text{WattsBase} - \text{WattsEE})}{1,000}\right) \times \text{ISR} \times \text{HOURS} \times (\text{WHFe}_{\text{Heat}} + (\text{WHFe}_{\text{Cool}} - 1))
\]

\(^5\) ENERGY STAR specification can be viewed here: https://www.energystar.gov/sites/default/files/asset/document/Luminaires%20V2%20Final.pdf
Where:

\[
\text{WattsBase} = \text{Connected load of baseline lamp} \\
= \text{Based on lumens of the LED – find the equivalent baseline wattage from the table below. If unknown assume 65W.} \quad 6 \\
\text{The table also shows the baseline shift from the EISA backstop taking effect in 2020. See the “Baseline Adjustment” section below for how to apply the adjustment factors.} \quad 7
\]

<table>
<thead>
<tr>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>2017-2019 WattsBase</th>
<th>2020+ WattsBase</th>
<th>Baseline Shift (ENERGY STAR>=90 CRI)</th>
<th>Baseline Shift (ENERGY STAR<90 CRI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>449</td>
<td>40</td>
<td>9</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>450</td>
<td>499</td>
<td>45</td>
<td>10</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>500</td>
<td>649</td>
<td>50</td>
<td>14</td>
<td>10%</td>
<td>13%</td>
</tr>
<tr>
<td>650</td>
<td>1419</td>
<td>65</td>
<td>23</td>
<td>12%</td>
<td>16%</td>
</tr>
</tbody>
</table>

\[
\text{WattsEE} = \text{Connected load of efficient lamp} \\
= \text{Actual. If unknown assume 9.2W} \quad 8
\]

\[
\text{ISR} = \text{In Service Rate or percentage of units rebated that get installed.} \\
= 1.0 \quad 9
\]

\[
\text{HOURS} = \text{Average hours of use per year}
\]

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Daily Hours</th>
<th>Annual Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>1.86</td>
<td>679 \quad 10</td>
</tr>
</tbody>
</table>

6 Baseline wattage based on common 65 Watt BR30 incandescent bulb (e.g. http://www.destinationlighting.com/storeitem.jhtml?iid=16926)

7 See ‘Mid-Atlantic TRM V7.5 ESTAR SSL Lumen Equivalence.xlsx’ for details. The Minimum Lamp Efficacy Requirements in ENERGY STAR Product Specification for Lamps (Light Bulbs) V2.0 vary by Color Rendering Index (CRI).

8 Energy Efficient wattage based on 12 Watt LR6 Downlight from LLF Inc. Adjusted by ratio of lm/w in ENERGY STAR V2.0 compared to ENERGY STAR V1.2 specification.

9 Based upon recommendation in NEEP EMV Emerging Tech Research Report.

10 Based on Navigant Consulting, “EmPOWER Residential Lighting Program: 2016 Residential Lighting Inventory and Hours of Use Study” August 31, 2017, page 13. This assumption is a product of metered CFLs and LEDs. To date there has not been sufficient data available to provide a separate LED hours assumption, and this should be reviewed in future years.
Installation Location

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Daily Hours</th>
<th>Annual Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi Family Common Areas</td>
<td>16.3</td>
<td>5,950(^{11})</td>
</tr>
<tr>
<td>Unknown</td>
<td>1.86</td>
<td>679</td>
</tr>
</tbody>
</table>

\(^{11}\) Multifamily common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area “Non-Area Specific” assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., “Massachusetts Multifamily Program Impact Analysis”, July 2012, p 2-4.

\(^{12}\) The value is estimated at 1.087 (calculated as 1 + (0.33 / 3.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 3.8 COP (from the current federal minimum of 13 SEER), converted to COP = SEER/3.412 = 3.8COP.

\(^{13}\) The value is estimated at 1.077 (calculated as 1 + (0.89*(0.33 / 3.8))). Based on assumption that 89% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.).

\(WHFe_{\text{cool}}\) = Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

<table>
<thead>
<tr>
<th></th>
<th>WHFe(_{\text{cool}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building with cooling</td>
<td>1.087(^{12})</td>
</tr>
<tr>
<td>Building without cooling or exterior</td>
<td>1.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>1.077(^{13})</td>
</tr>
</tbody>
</table>

\(WHFe_{\text{heat}}\) = Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating – see calculation of heating penalty in that section).

\[WHFe_{\text{heat}} = 1 - \left(\frac{HF}{\eta_{\text{heat}}} \times \%\text{ElecHeat}\right)\]

If unknown assume 0.899\(^{14}\)

\(HF\) = Heating Factor or percentage of light savings that must be heated

\[HF = 47\%^{15}\] for interior or unknown location

\(^{14}\) Calculated using defaults; 1 + ((0.47/1.74) * 0.375) = 0.899

\(^{15}\) This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.
= 0% for exterior or unheated location

\(\eta_{\text{Heat}} \) = Efficiency in COP of Heating equipment = actual. If not available, use\(^{16}\):

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>(\eta_{\text{Heat}}) (COP Estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2006 - 2014</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>8.2</td>
<td>2.40</td>
</tr>
<tr>
<td>Resistance</td>
<td>N/A</td>
<td>N/A</td>
<td>1.00</td>
</tr>
<tr>
<td>Unknown</td>
<td>N/A</td>
<td>N/A</td>
<td>1.74(^{17})</td>
</tr>
</tbody>
</table>

\(\%\text{ElecHeat} \) = Percentage of home with electric heat

<table>
<thead>
<tr>
<th>Heating fuel</th>
<th>%\text{ElecHeat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>0%</td>
</tr>
<tr>
<td>Unknown</td>
<td>37.5(^{18})</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption
Residential interior and in-unit Multi Family

\[\Delta k\text{Wh} = \left(\left(65 - 9.2\right) / 1,000\right) \times 1.0 \times 679 \times (0.899 + (1.077 - 1)) \]

= 37.0 kWh

Multi Family Common Areas

\[\Delta k\text{Wh} = \left(\left(65 - 9.2\right) / 1,000\right) \times 1.0 \times 5950 \times (0.899 + (1.077 - 1)) \]

= 324 kWh

Summer Coincident Peak kW Savings Algorithm

\(^{16}\) These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

\(^{17}\) Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Average efficiency of heat pump is based on assumption 50% are units from before 2006 and 50% after.

\(^{18}\) Based on KEMA baseline study for Maryland.
\[\Delta kW = \frac{(Watts_{Base} - Watts_{EE})}{1000} \times ISR \times WHFd \times CF \]

Where:

\[WHFd = \text{Waste Heat Factor for Demand to account for cooling savings from efficient lighting} \]

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Type</th>
<th>Coincidence Factor CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>Utility Peak CF</td>
<td>0.059<sup>21</sup></td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.058<sup>22</sup></td>
</tr>
<tr>
<td>Multi Family Common Areas</td>
<td>PJM CF</td>
<td>0.86<sup>23</sup></td>
</tr>
<tr>
<td>Unknown</td>
<td>Utility Peak CF</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption

\[\Delta kW_{PJM} = \frac{(65 - 9.2)}{1,000} \times 1.0 \times 1.17 \times 0.058 \]

\[= 0.0038 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel):

¹⁹ The value is estimated at 1.19 (calculated as 1 + (0.66 / 3.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

²⁰ The value is estimated at 1.17 (calculated as 1 + (0.89 * 0.66 / 3.52)).

²¹ Based on Navigant Consulting “EmPOWER Residential Lighting Program: 2016 Residential Lighting Inventory and Hours of Use Study” August 31, 2017, page 15.

²² Ibid.

²³ Consistent with value currently used for EmPOWER Maryland Programs as of October 1, 2017. Derived from C&I common area lighting coincidence.
\[\Delta \text{MMBTU Penalty}^{24} = - (((\text{WattsBase} - \text{WattsEE}) / 1000) \times \text{ISR} \times \text{Hours} \times \text{HF} \times 0.003412) / \eta_{\text{Heat}}) \times \%\text{FossilHeat} \]

Where:

- \(\text{HF} \) = Heating Factor or percentage of light savings that must be heated
 - \(= 47\%^{25} \) for interior or unknown location
 - \(= 0\% \) for exterior or unheated location
- \(0.003412 \) = Converts kWh to MMBTU
- \(\eta_{\text{Heat}} \) = Efficiency of heating system
 - \(= 80\%^{26} \)
- \(\%\text{FossilHeat} \) = Percentage of home with non-electric heat

<table>
<thead>
<tr>
<th>Heating fuel</th>
<th>%\text{FossilHeat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>0%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>100%</td>
</tr>
<tr>
<td>Unknown</td>
<td>62.5%^{27}</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption

A luminaire in a home with 75% AFUE gas furnace:

\[\Delta \text{MMBTU Penalty} = - (((65 - 9.2)/1000) \times 1.0 \times 679 \times 0.47 \times 0.003412/0.75) \times 1.0 \]

\[= - 0.08 \text{ MMBTU} \]

If home heating fuel is unknown:

\[\Delta \text{MMBTU Penalty} = - (((65 - 9.2)/1000) \times 1.0 \times 679 \times 0.47 \times 0.003412/0.80) \times 0.625 \]

24 Negative value because this is an increase in heating consumption due to the efficient lighting.
25 This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.
26 Minimum federal standard for residential furnaces.
27 Based on KEMA baseline study for Maryland.
Annual Water Savings Algorithm
n/a

Incremental Cost
The lifecycle NPV incremental cost for time of sale replacements is $4.55, based on a baseline incandescent BR lamp cost of $3.65 and an LED BR Lamp cost of $8.20. Early replacements should use the full installed cost of $8.20.

Measure Life
The measure life is assumed to be 20 yrs for Residential and Multi Family in-unit, and 8.4 years for Multi Family common areas for downlights featuring inseparable components, and 4.2 years for downlights with replaceable parts.

Operation and Maintenance Impacts
The levelized baseline replacement cost over the lifetime of the SSL is calculated (see MidAtlantic Lighting adjustments and O&M_042015.xls). The key assumptions used in this calculation are documented below:

<table>
<thead>
<tr>
<th>BR-type Incandescent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement Cost</td>
</tr>
<tr>
<td>Component Life<sup>30</sup> (years)</td>
</tr>
<tr>
<td>Residential interior and in-unit</td>
</tr>
<tr>
<td>Multi Family or unknown.</td>
</tr>
</tbody>
</table>

²⁸ Cost assumptions are adapted from 2016 4th Quarter data provided by Lighttracker Inc. The information from Lighttracker is based in part on data reported by IRI through its Advantage service for, and as interpreted solely by, Lighttracker Inc. IRI disclaims liability of any kind arising from the use of this information. The information from Lighttracker is also based in part on data from Nielsen through its Strategic Planner and Homescan Services for the lighting category for the 52-week period ending approximately on December 31, 2016, for the Maryland and U.S. markets and Expanded All Outlets Combined (xAOC) and Total Market Channels. Copyright © 2016, Nielsen.

²⁹ The ENERGY STAR Spec for SSL Recessed Downlights requires luminaires to maintain >=70% initial light output for 25,000 hours in an indoor application for separable luminaires and 50,000 for inseparable luminaires. Measure life is capped at 20 years.

³⁰ Based on lamp life / assumed annual run hours.

³¹ Assumes rated life of BR incandescent bulb of 2000 hours, based on product review. Lamp life is therefore 2000/920 = 2.17 years.
The calculated net present value of the baseline replacement costs is $18.69 for Residential interior and in-unit Multi Family $70 for downlights installed in Multifamily common areas.

Baseline Adjustment

To account for the EISA “backstop” going into effect in 2020, the savings for this measure should be reduced to account for increased baseline efficacy requirements. As of 1/1/2020, the EISA backstop requires that all general service lamps meet or exceed an efficacy requirement of 45 lumens per watt. Further, the definition of general service lamps was broadened by two Final Rules published by the DOE on 1/19/2017 to effectively cover all common lamp types. Therefore, for selected lamp types, the annual savings as of 1/1/2020 should be adjusted downward to account for the increased baselines. Consistent with the ENERGY STAR V2.0 specifications, the baseline watts table above shows the calculated savings adjustments for two CRI tiers. Using the appropriate adjustment factor based on the baseline lamp type and ENERGY STAR LED CRI, the energy savings are calculated as follows:

\[\text{Post 1/1/2020 } \Delta \text{kWh} = \Delta \text{kWh} \times \text{Baseline Shift} \]

Similarly, adjusted summer coincident peak kW savings and annual fossil fuel savings are calculated as follows:

\[\text{Post 1/1/2020 } \Delta \text{kW} = \Delta \text{kW} \times \text{Baseline Shift} \]

\[\text{Post 1/1/2020 } \Delta \text{MMBTUPenalty} = \Delta \text{MMBTUPenalty} \times \text{Baseline Shift} \]

Illustrative example – do not use as default assumption

Residential interior and in-unit Multi Family with CRI=90

\[\text{32} \text{ Calculated as } 2000/5950 = 0.34 \text{ years.} \]

\[\text{34} \text{ To simplify the calculations, this algorithm assumes that the pre-2020 baseline lamp would need to be replaced in 2020.} \]
Post 1/1/2020 \(\Delta kWh = 50.1 \text{ kWh} \) (as calculated above) * 12%
\[= 6.0 \text{ kWh} \]

Therefore, assuming this lamp is installed in 2018 and has a measure life of 20 years, the adjusted lifetime savings would be:
\[\Delta kWh_{\text{Lifetime}} = 2 \times 50.1 \text{ kWh} + 18 \times 6 \text{ kWh} = 208.2 \text{ kWh} \]

Alternatively, the Post 1/1/2020 savings may be estimated by substituting the “2020+ WattsBase” value from the lumen equivalence table above into the appropriate savings algorithm.

Illustrative example – do not use as default assumption

Residential interior and in-unit Multi Family with CRI=90

Post 1/1/2020 \(\Delta kWh = ((WattsBase - WattsEE) / 1,000) \times \text{ISR} \times \text{HOURS} \times \text{WHFe}_{\text{Heat}} + (\text{WHFe}_{\text{Cool}} - 1)) \]
\[= ((23 - 9.2) / 1,000) \times 1.0 \times 920 \times (0.899 + (1.077 - 1)) \]
\[= 12.4 \text{ kWh} \]

Therefore, assuming this lamp is installed in 2018 and has a measure life of 20 years, the adjusted lifetime savings would be:
\[\Delta kWh_{\text{Lifetime}} = 2 \times 50.1 \text{ kWh} + 18 \times 12.4 \text{ kWh} = 323.4 \text{ kWh} \]
ENERGY STAR Integrated Screw Based SSL (LED) Lamp

Unique Measure Code: RS_LT_TOS_SSLDWN_0518, RS_LT_EREP_SSLDWN_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure describes savings from the purchase and installation of an ENERGY STAR Integrated Screw Based SSL (LED) Lamp in place of an incandescent lamp.

The measure provides assumptions for two markets (Residential and Multi-Family).

Definition of Baseline Condition
For time of sale, the baseline wattage is assumed to be an incandescent or EISA compliant (where applicable) bulb installed in a screw-base socket. Note that the baseline will be EISA compliant bulbs for all categories to which EISA applies. If the in-situ lamp wattage is known and lower than the EISA mandated maximum wattage (where applicable), the baseline wattage should be assumed equal to the in situ lamp wattage.

Definition of Efficient Condition
The high efficiency wattage is assumed to be an ENERGY STAR qualified Integrated Screw Based SSL (LED) Lamp. The ENERGY STAR V2.0 specifications can be viewed here: http://1.usa.gov/1QJFLgL

Annual Energy Savings Algorithm
\[\Delta \text{kWh} = \left(\frac{\text{WattsBase} - \text{WattsEE}}{1000} \right) \times \text{ISR} \times \text{HOURS} \times \left(\frac{\text{WHFe}_{\text{Heat}}}{\text{WHFe}_{\text{Cool}}} + (\text{WHFe}_{\text{Cool}} - 1) \right) \]

Where: For all lamps EXCEPT: PAR, MR and MRX

- \(\text{WattsBase} \) = Based on lumens of the LED – find the equivalent baseline wattage from the table below. The table also shows the baseline shift from the EISA backstop taking effect in 2020. See the “Baseline Adjustment” section below for how to apply the adjustment factors.

36 See ‘Mid-Atlantic TRM V7.5 ESTAR SSL Lumen Equivalence.xlsx’ for details. The Minimum Lamp Efficacy Requirements in ENERGY STAR Product Specification for Lamps (Light Bulbs) V2.0 vary by Color Rendering Index (CRI).
<table>
<thead>
<tr>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>2017-2019 WattsBase</th>
<th>2020+ WattsBase</th>
<th>Baseline_Shift (ENERGY STAR CRI>=90)</th>
<th>Baseline_Shift (ENERGY STAR CRI<90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>309</td>
<td>25</td>
<td>25</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>310</td>
<td>749</td>
<td>29</td>
<td>12</td>
<td>20%</td>
<td>23%</td>
</tr>
<tr>
<td>750</td>
<td>1049</td>
<td>43</td>
<td>20</td>
<td>24%</td>
<td>28%</td>
</tr>
<tr>
<td>1050</td>
<td>1489</td>
<td>53</td>
<td>28</td>
<td>29%</td>
<td>33%</td>
</tr>
<tr>
<td>1490</td>
<td>2600</td>
<td>72</td>
<td>46</td>
<td>38%</td>
<td>43%</td>
</tr>
<tr>
<td>2601</td>
<td>3300</td>
<td>150</td>
<td>66</td>
<td>22%</td>
<td>25%</td>
</tr>
<tr>
<td>3301</td>
<td>3999</td>
<td>200</td>
<td>200</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>4000</td>
<td>6000</td>
<td>300</td>
<td>300</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

†S Shape <=749 lumens and T Shape <=749 lumens or T>10" length

| 250 | 309 | 25 | 25 | 100% | 100% |
| 310 | 749 | 40 | 12 | 13% | 15% |

Decorative, Medium Screw Base (G Shape) †see exceptions below

250	309	25	25	100%	100%
310	749	29	12	17%	17%
750	1049	43	20	21%	21%
1050	1300	53	26	23%	23%

‡G16-1/2, G25, G30 <=499 lumens

250	309	25	25	100%	100%
310	349	25	7	11%	11%
350	499	40	9	9%	9%

‡G Shape with diameter >=5"

250	349	25	25	100%	100%
350	499	40	40	100%	100%
500	574	60	60	100%	100%
575	649	75	75	100%	100%
650	1099	100	100	100%	100%
1100	1300	150	150	100%	100%

Decorative, Medium Screw Base (B, BA, C, CA, DC, and F, and ST) †see exceptions below

70	89	10	10	100%	100%
90	149	15	15	100%	100%
150	299	25	25	100%	100%
300	309	40	40	100%	100%

*B, BA, CA, and F <=499 lumens

<p>| 70 | 89 | 10 | 10 | 100% | 100% |
| 90 | 149 | 15 | 15 | 100% | 100% |
| 150 | 299 | 25 | 25 | 100% | 100% |
| 300 | 309 | 40 | 40 | 100% | 100% |</p>
<table>
<thead>
<tr>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>2017-2019 Watts Base</th>
<th>2020+ Watts Base</th>
<th>Baseline_Shift (ENERGY STAR CRI>=90)</th>
<th>Baseline_Shift (ENERGY STAR CRI<90)</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>499</td>
<td>40</td>
<td>9</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Omnidirectional, Intermediate Screw Base Lamps (A, BT, P, PS, S or T) (†see exceptions below)</td>
<td>250</td>
<td>309</td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>749</td>
</tr>
<tr>
<td>†S Shape that have a first number symbol <= 12.5 and T Shape lamps with first number symbol <= 8 and nominal overall length <12”</td>
<td>250</td>
<td>309</td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>749</td>
</tr>
<tr>
<td>†G Shape with first numeral less than 12.5 or with diameter >=5”</td>
<td>250</td>
<td>349</td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>499</td>
</tr>
<tr>
<td>Decorative, Intermediate Screw Base (G Shape) (‡see exceptions below)</td>
<td>70</td>
<td>89</td>
<td>10</td>
<td>10</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>499</td>
</tr>
<tr>
<td>Decorative, Candelabra Screw Base (B, BA, C, CA, DC, and F, and ST)</td>
<td>250</td>
<td>309</td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>749</td>
</tr>
<tr>
<td>Omnidirectional, Candelabra Screw Base Lamps (A, BT, P, PS, S or T) (†see exceptions below)</td>
<td>750</td>
<td>1049</td>
<td>60</td>
<td>20</td>
<td>15%</td>
</tr>
<tr>
<td>†S Shape that have a first number symbol <= 12.5 and T Shape with first number symbol <= 8 and nominal overall length <12”</td>
<td>250</td>
<td>309</td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>750</td>
<td>1049</td>
</tr>
<tr>
<td>Decorative, Candelabra Screw</td>
<td>250</td>
<td>309</td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>310</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>499</td>
</tr>
<tr>
<td>Base (G Shape) (‡see exceptions below)</td>
<td>Lower Lumen Range</td>
<td>Upper Lumen Range</td>
<td>2017-2019 WattsBase</td>
<td>2020+ WattsBase</td>
<td>Baseline_Shift (ENERGY STAR CRI>=90)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>500</td>
<td>574</td>
<td>60</td>
<td>12</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>‡G Shape with first numeral less than 12.5 or with diameter >=5"</td>
<td>250</td>
<td>349</td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>499</td>
<td>40</td>
<td>40</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>574</td>
<td>60</td>
<td>60</td>
<td>100%</td>
</tr>
<tr>
<td>Decorative, Candelabra Screw Base (B, BA, C, CA, DC, and F, and ST)</td>
<td>70</td>
<td>89</td>
<td>10</td>
<td>10</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>149</td>
<td>15</td>
<td>15</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>299</td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>309</td>
<td>40</td>
<td>40</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>499</td>
<td>40</td>
<td>9</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>699</td>
<td>60</td>
<td>13</td>
<td>8%</td>
</tr>
<tr>
<td>Directional, Medium Screw Base, w/diameter <=2.25"</td>
<td>400</td>
<td>449</td>
<td>40</td>
<td>9</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>499</td>
<td>45</td>
<td>10</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>649</td>
<td>50</td>
<td>13</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>1199</td>
<td>65</td>
<td>20</td>
<td>11%</td>
</tr>
<tr>
<td>Directional, Medium Screw Base, R, ER, BR, BPAR or similar bulb shapes w/ diameter >2.5" (**see exceptions below)</td>
<td>640</td>
<td>739</td>
<td>40</td>
<td>15</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>740</td>
<td>849</td>
<td>45</td>
<td>18</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>1179</td>
<td>50</td>
<td>22</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>1180</td>
<td>1419</td>
<td>65</td>
<td>29</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>1420</td>
<td>1789</td>
<td>75</td>
<td>36</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td>1790</td>
<td>2049</td>
<td>90</td>
<td>43</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td>2579</td>
<td>100</td>
<td>51</td>
<td>22%</td>
</tr>
<tr>
<td></td>
<td>2580</td>
<td>3300</td>
<td>120</td>
<td>65</td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td>3301</td>
<td>3429</td>
<td>120</td>
<td>120</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>3430</td>
<td>4270</td>
<td>150</td>
<td>150</td>
<td>100%</td>
</tr>
<tr>
<td>Directional, Medium Screw Base, R, ER, BR, BPAR or similar bulb shapes with medium screw bases w/ diameter > 2.26" and ≤ 2.5" (**see exceptions below)</td>
<td>540</td>
<td>629</td>
<td>40</td>
<td>13</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>719</td>
<td>45</td>
<td>15</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>720</td>
<td>999</td>
<td>50</td>
<td>19</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1199</td>
<td>65</td>
<td>24</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1519</td>
<td>75</td>
<td>30</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>1520</td>
<td>1729</td>
<td>90</td>
<td>36</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>1730</td>
<td>2189</td>
<td>100</td>
<td>44</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>2190</td>
<td>2899</td>
<td>120</td>
<td>56</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td>2900</td>
<td>3300</td>
<td>120</td>
<td>69</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>3301</td>
<td>3850</td>
<td>150</td>
<td>150</td>
<td>100%</td>
</tr>
</tbody>
</table>
Lower Lumen Range | Upper Lumen Range | 2017-2019 WattsBase | 2020+ WattsBase | Baseline_Shift (ENERGY STAR CRI>=90) | Baseline_Shift (ENERGY STAR CRI<90)
--- | --- | --- | --- | --- | ---
ER30, BR30, BR40, or ER40
400 | 449 | 40 | 9 | 7% | 10%
450 | 499 | 45 | 10 | 7% | 10%
500 | 649-1179 | 50 | 14 | 10% | 13%
BR30, BR40, or ER40
650 | 1419 | 65 | 23 | 12% | 16%
R20
400 | 449 | 40 | 9 | 7% | 10%
450 | 719 | 45 | 13 | 10% | 13%
All reflector lamps below lumen ranges specified above
200 | 299 | 20 | 20 | 100% | 100%
300 | 399-639 | 30 | 9 | 10% | 13%
Rough service, shatter resistant, 3-way incandescent, and vibration service
250 | 309 | 25 | 25 | 100% | 100%
310 | 749 | 40 | 12 | 13% | 15%
750 | 1049 | 60 | 20 | 15% | 18%
1050 | 1489 | 75 | 28 | 18% | 21%
1490 | 2600 | 100 | 46 | 23% | 27%
2601 | 3300 | 150 | 66 | 22% | 25%
3301 | 3999 | 200 | 200 | 100% | 100%
4000 | 6000 | 300 | 300 | 100% | 100%

WattsBase for PAR, MR, and MRX Lamp Types:
For highly focused directional lamps, Center Beam Candle Power (CBCP) and beam angle measurements are needed for accurate estimate of the equivalent baseline wattage. The formula below is based on the Energy Star Center Beam Candle Power tool. If CBCP and beam angle information are not available or if the equation below returns a negative value (or undefined), use the manufacturer’s recommended baseline wattage equivalent. The WattsBase algorithm below is for reference.

$$\text{WattsBase} = 375.1 - 4.355(D) - \sqrt{227800 - 937.9(D) - 0.9903(D^2)} - 1479(BA) - 12.02(D \times BA) + 14.69(BA^2) - 16720 \times \ln(CBCP)$$

Where:

37 http://www.energystar.gov/ia/products/lighting/iledl/IntLampCenterBeamTool.zip
38 The Energy Star Center Beam Candle Power tool does not accurately model baseline wattages for lamps with certain bulb characteristic combinations - specifically for lamps with very high CBCP.
39 Illinois TRM V6 Vol.3 P.245
D = Bulb diameter (e.g. for PAR20 D = 20)

BA = Beam angle

CBCP = Center beam candle power

The result of the Energy Star calculator or equation above should be rounded DOWN to the nearest wattage established by Energy Star:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Permitted Wattages</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>20, 35, 40, 45, 50, 60, 75</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>30S</td>
<td>40, 45, 50, 60, 75</td>
</tr>
<tr>
<td>30L</td>
<td>50, 75</td>
</tr>
<tr>
<td>38</td>
<td>40, 45, 50, 55, 60, 65, 75, 85, 90, 100, 120, 150, 250</td>
</tr>
</tbody>
</table>

\[
\text{WattsEE} = \text{Actual LED wattage}
\]

\[
\text{ISR} = \text{In Service Rate or percentage of units rebated that get installed.}
\]

\[
\text{ISR} = 0.98^{41}
\]

\[
\text{HOURS} = \text{Average hours of use per year}
\]

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Daily Hours</th>
<th>Annual Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>1.86</td>
<td>679^{42}</td>
</tr>
<tr>
<td>Multi Family Common Areas</td>
<td>16.3</td>
<td>5,950^{43}</td>
</tr>
</tbody>
</table>

^{40} Ib.

^{41} First year ISR of 0.9 (EMPOWER MD Lighting Study, EY5). Assume lifetime ISR of 0.99 (2006-2008 California Residential Lighting Evaluations, and used in the Uniform Methods Project). Assume half of bulbs not installed in year one are installed in year two, and the other half in year three. Using a discount rate of 5%, this gives 0.90 + 0.045 * 0.95 + 0.045 * 0.95² = 0.98

^{42} Based on Navigant Consulting, “EmPOWER Residential Lighting Program: 2016 Residential Lighting Inventory and Hours of Use Study” August 31, 2017, page 13. This assumption is a product of metered CFLs and LEDs. To date there has not been sufficient data available to provide a separate LED hours assumption, and this should be reviewed in future years.

^{43} Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area “Non-Area Specific” assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., “Massachusetts Multifamily Program Impact Analysis”, July 2012, p 2-4.
WHFeCool

$WHFe_{Cool} = \textit{Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.}$

<table>
<thead>
<tr>
<th></th>
<th>Building with cooling</th>
<th>Building without cooling or exterior</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHFeCool</td>
<td>1.087</td>
<td>1.0</td>
<td>1.077</td>
</tr>
</tbody>
</table>

WHFeHeat

$WHFe_{Heat} = \textit{Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating – see calculation of heating penalty in that section).}$

$$= 1 - \left(\frac{HF}{\eta_{Heat}} \times \%\text{ElecHeat}\right) \text{If unknown assume 0.899}$$

$HF = \textit{Heating Factor or percentage of light savings that must be heated}$

- $= 47\%$ for interior or unknown location
- $= 0\%$ for exterior or unheated location

45 “Unknown” assumes a residential interior or in-unit multifamily application.

46 The value is estimated at 1.087 (calculated as $1 + \left(\frac{0.33}{3.8}\right)$). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 3.8 COP (from the current federal minimum of 13 SEER, converted to COP = SEER/3.412 = 3.8 COP).

47 The value is estimated at 1.077 (calculated as $1 + \left(0.89\times\frac{0.33}{3.8}\right)$). Based on assumption that 89% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.).

48 Calculated using defaults; $1 + \left(\frac{0.47}{1.74} \times 0.375\right) = 0.899$

49 This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.
ηHeat $= \text{Efficiency in COP of Heating equipment} = \text{actual. If not available, use}^{50}$:

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>ηHeat (COP Estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2006 - 2014</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>8.2</td>
<td>2.40</td>
</tr>
<tr>
<td>Resistance</td>
<td>N/A</td>
<td>N/A</td>
<td>1.00</td>
</tr>
<tr>
<td>Unknown</td>
<td>N/A</td>
<td>N/A</td>
<td>1.7451</td>
</tr>
</tbody>
</table>

%ElecHeat $= \text{Percentage of home with electric heat}$

<table>
<thead>
<tr>
<th>Heating fuel</th>
<th>%ElecHeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>0%</td>
</tr>
<tr>
<td>Unknown</td>
<td>37.5%52</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption

A 10W 550 lumen LED directional lamp with medium screw bases diameter ≤2.25" is installed in a residential interior location.

\[
\Delta kWh = \frac{(50 - 10)}{1,000} \times 0.98 \times 679 \times (0.899 + (1.077 - 1))
\]

= 26.0 kWh

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \frac{(\text{WattsBase} - \text{WattsEE})}{1000} \times \text{ISR} \times \text{WHFd} \times \text{CF}
\]

Where:

50 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

51 Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Assume heat pump baseline of 7.7 HSPF.

52 Based on KEMA baseline study for Maryland.
WHFd = Waste Heat Factor for Demand to account for cooling savings from efficient lighting

<table>
<thead>
<tr>
<th></th>
<th>WHFd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building with cooling</td>
<td>1.19(^{53})</td>
</tr>
<tr>
<td>Building without cooling or exterior</td>
<td>1.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>1.17(^{54})</td>
</tr>
</tbody>
</table>

CF = Summer Peak Coincidence Factor for measure

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Type</th>
<th>Coincidence Factor (CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>Utility Peak CF</td>
<td>0.059(^{55})</td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.058(^{56})</td>
</tr>
<tr>
<td>Multi Family Common Areas</td>
<td>PJM CF</td>
<td>0.86(^{57})</td>
</tr>
<tr>
<td>Exterior</td>
<td>PJM CF</td>
<td>0.018(^{58})</td>
</tr>
<tr>
<td>Unknown</td>
<td>Utility Peak CF</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption

A 10W 550 lumen LED directional lamp with medium screw bases diameter <=2.25" is installed in a residential interior location.

\[
\Delta kW_{PJM} = ((50 - 10)/1,000) * 0.98 * 1.17 * 0.058
\]

\[
= 0.0027 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm

53 The value is estimated at 1.19 (calculated as \(1 + (0.66 / 3.8)\)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

54 The value is estimated at 1.18 (calculated as \(1 + (0.89 * 0.66 / 3.8)\)).

55 Based on Navigant Consulting “EmPOWER Residential Lighting Program: 2016 Residential Lighting Inventory and Hours of Use Study” August 31, 2017, page 15

56 Ibid.

57 Consistent with value currently used for EmPOWER Maryland Programs as of October 1, 2017. Derived from C&I common area lighting coincidence.

58 Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.
Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel):

$$\Delta \text{MMBTUPenalty} = - \left(\frac{(Watts\text{Base} - Watts\text{EE})}{1000} \times ISR \times \text{Hours} \times HF \times 0.003412}{\eta \text{Heat}} \times \%\text{FossilHeat} \right)$$

Where:

- HF = Heating Factor or percentage of light savings that must be heated
 - $47\%^{59}$ for interior or unknown location
 - 0% for exterior or unheated location
- 0.003412 = Converts kWh to MMBTU
- ηHeat = Efficiency of heating system
 - $80\%^{60}$
- $\%\text{FossilHeat}$ = Percentage of home with non-electric heat

<table>
<thead>
<tr>
<th>Heating fuel</th>
<th>$%\text{FossilHeat}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>0%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>100%</td>
</tr>
<tr>
<td>Unknown</td>
<td>62.5%61</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption

A 10W 550 lumen LED directional lamp with medium screw bases diameter <=2.25” is installed in a residential interior location with unknown heating fuel.

$$\Delta \text{MMBTUPenalty} = - \left(\frac{(50 - 10)}{1,000} \times 0.98 \times 679 \times 0.47 \times \frac{0.003412}{0.80} \times 0.625 \right)$$

$$= -0.033 \text{ MMBTU}$$

Annual Water Savings Algorithm

n/a

Incremental Cost

59 This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

60 Minimum federal standard for residential furnaces.

61 Based on KEMA baseline study for Maryland.
If the implementation strategy allows the collection of actual costs, or an appropriate average, then that should be used. If not, the lifecycle NPV incremental costs for time of sale replacements are provided below.\(^6\)

<table>
<thead>
<tr>
<th>Category</th>
<th>Time of Sale Incremental Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>$2.52</td>
</tr>
<tr>
<td>Globe</td>
<td>$3.36</td>
</tr>
<tr>
<td>Reflector</td>
<td>$2.40</td>
</tr>
<tr>
<td>A Lamp</td>
<td>$2.03</td>
</tr>
<tr>
<td>Candelabra</td>
<td>$5.29</td>
</tr>
</tbody>
</table>

Measure Life

The tables below show the assumed measure life for ENERGY STAR Version 2.0.

<table>
<thead>
<tr>
<th>Measure Life, Energy Star V2.0</th>
<th>Rated Life(^6)</th>
<th>Residential interior, in-unit or unknown</th>
<th>Multi Family Common Areas</th>
<th>Exterior</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnidirectional</td>
<td>15,000</td>
<td>16.3</td>
<td>2.5</td>
<td>9.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Decorative</td>
<td>15,000</td>
<td>16.3</td>
<td>2.5</td>
<td>9.1</td>
<td>13.6</td>
</tr>
<tr>
<td>Directional</td>
<td>15,000(^6)</td>
<td>16.3</td>
<td>2.5</td>
<td>9.1</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Operation and Maintenance Impacts

To account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the LED is calculated (see ‘ESTAR Integrated Screw SSL Lamp_042817.xls’). The key assumptions used in this calculation are documented below:

<table>
<thead>
<tr>
<th>Replacement Cost Unknown</th>
<th>EISA 2012-2014 Compliant</th>
<th>EISA 2020 Compliant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1.70</td>
<td>$3.12</td>
</tr>
<tr>
<td>Replacement Cost, Globe</td>
<td>$1.74</td>
<td>$6.56</td>
</tr>
</tbody>
</table>

\(^6\) Adapted from analysis provided by Apex Analytics LLC in April 2018.

\(^6\) The ENERGY STAR Spec v2.0 for Integrated Screw Based SSL bulbs requires lamps to maintain >=70% initial light output for 15,000 hrs. Lifetime capped at 20 years.

\(^6\) ENERGY STAR V2.1 specifications reduce rated life requirements to 15,000 hours for directional lamps.
The calculation results in the following assumptions of equivalent annual baseline replacement cost:

<table>
<thead>
<tr>
<th>Bulb Type</th>
<th>Indoor</th>
<th>Multi-Family Common area</th>
<th>Exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>$2.02</td>
<td>$18.64</td>
<td>$6.23</td>
</tr>
<tr>
<td>Globe</td>
<td>$5.96</td>
<td>$21.07</td>
<td>$13.56</td>
</tr>
<tr>
<td>Reflector</td>
<td>$4.71</td>
<td>$46.48</td>
<td>$14.79</td>
</tr>
<tr>
<td>A Lamp</td>
<td>$5.47</td>
<td>$19.57</td>
<td>$12.48</td>
</tr>
<tr>
<td>Candelabra</td>
<td>$4.56</td>
<td>$14.19</td>
<td>$10.16</td>
</tr>
</tbody>
</table>

Baseline Adjustment

To account for the EISA “backstop” going into effect in 2020, the savings for this measure should be reduced to account for increased baseline efficacy requirements. As of 1/1/2020, the EISA backstop requires that all general service lamps meet or exceed an efficacy requirement of 45 lumens per watt. Further, the definition of general service lamps was broadened by two Final Rules published by the DOE on 1/19/2017 to effectively cover all common lamp types. Therefore, for selected lamp types, the annual savings as of 1/1/2020 should be adjusted downward to account for the increased baselines. Consistent with the ENERGY STAR V2.0 specifications, the baseline watts table above shows the calculated savings adjustments for two CRI tiers. Using the appropriate adjustment factor based on the baseline lamp type and ENERGY STAR LED CRI, the energy savings are calculated as follows:

\[
\text{Post 1/1/2020 } \Delta \text{kWh}^{66} = \Delta \text{kWh} \times \text{Baseline_Shift}
\]

66 To simplify the calculations, this algorithm assumes that the pre-2020 baseline lamp would need to be replaced in 2020.
Similarly, adjusted summer coincident peak kW savings and annual fossil fuel savings are calculated as follows:

\[
\text{Post 1/1/2020 } \Delta kW = \Delta kW \times \text{Baseline}_\text{Shift} \\
\text{Post 1/1/2020 } \Delta \text{MMBTUPenalty} = \Delta \text{MMBTUPenalty} \times \text{Baseline}_\text{Shift}
\]

Illustrative example – do not use as default assumption

A 10W 550 lumen LED directional lamp with medium screw bases diameter <=2.25" and CRI=90 is installed in a residential interior location.

\[
\text{Post 1/1/2020 } \Delta \text{kWh} = 35.2 \text{ kWh (as calculated above) } \times 8% \\
= 2.8 \text{ kWh}
\]

Therefore, assuming this lamp is installed in 2018 and has a measure life of 16.3 years, the adjusted lifetime savings would be:

\[
\Delta \text{kWh}_{\text{Lifetime}} = 2 \times 35.2 \text{ kWh} + 14.3 \times 2.8 \text{ kWh} = 110.6 \text{ kWh}
\]

Alternatively, the Post 1/1/2020 savings may be estimated by substituting the “2020+ WattsBase” value from the lumen equivalence table above into the appropriate savings algorithm.

Illustrative example – do not use as default assumption

A 10W 550 lumen LED directional lamp with medium screw bases diameter <=2.25" and CRI=90 is installed in a residential interior location.

\[
\text{Post 1/1/2020 } \Delta \text{kWh} = \left(\frac{(\text{WattsBase}_{2020+} - \text{WattsEE})}{1000} \right) \times \text{ISR} \times \text{HOURS} \times (\text{WHFe}_{\text{Heat}} + (\text{WHFe}_{\text{Cool}} - 1)) \\
= \left(\frac{(13 -10)}{1,000} \right) \times 0.98 \times 920 \times (0.899 + (1.077 - 1)) \\
= 2.6 \text{ kWh}
\]

Therefore, assuming this lamp is installed in 2018 and has a measure life of 16.3 years, the adjusted lifetime savings would be:

\[
\Delta \text{kWh}_{\text{Lifetime}} = 2 \times 35.2 \text{ kWh} + 14.3 \times 2.6 \text{ kWh} = 107.6 \text{ kWh}
\]
Occupancy Sensor – Wall-Mounted

Unique Measure Code(s): RS_LT_RF_OSWALL_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure defines the savings associated with installing a wall-mounted occupancy sensor that switches lights off after a brief delay when it does not detect occupancy.

Definition of Baseline Condition
The baseline condition is lighting that is controlled with a manual switch.

Definition of Efficient Condition
The efficient condition is lighting that is controlled with an occupancy sensor. It is assumed that the controlled load is a mix of efficient and inefficient lighting.

Annual Energy Savings Algorithm

$$\Delta k\text{Wh} = kW_{\text{connected}} \times \text{HOURS} \times SVG_{\text{e}} \times ISR \times (WH_{\text{Fe,Heat}} + (WH_{\text{Fe,Cool}} - 1))$$

Where:
$$kW_{\text{connected}} = \text{Actual kW lighting load connected to control for direct install measures or other situations where the connected load is known. If kW_{\text{connected}} is not known, then use the following default assumptions.}$$

<table>
<thead>
<tr>
<th>Number of lamps in space with control (A)</th>
<th>Average lamp wattage (B)</th>
<th>kW_{\text{connected}} (AxB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8<sup>67</sup></td>
<td>0.034<sup>68</sup></td>
<td>0.230</td>
</tr>
</tbody>
</table>

⁶⁸ Connecticut LED Lighting Study Report (R154). Average connected wattage of lamps in dining room, living space, bedroom, bathroom, and kitchen spaces.
HOURS = Average hours of use per day. If space type is known, then use average of efficient and inefficient hours of use below\(^{69}\):

<table>
<thead>
<tr>
<th>Lamp Type</th>
<th>Average HOU of Efficient and Inefficient Lamps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attic</td>
<td>0.4</td>
</tr>
<tr>
<td>Basement</td>
<td>2.6</td>
</tr>
<tr>
<td>Bathroom</td>
<td>1.3</td>
</tr>
<tr>
<td>Bedroom</td>
<td>1.3</td>
</tr>
<tr>
<td>Closet</td>
<td>0.3</td>
</tr>
<tr>
<td>Crawl Space</td>
<td>1.1</td>
</tr>
<tr>
<td>Dining Room</td>
<td>1.6</td>
</tr>
<tr>
<td>Exterior</td>
<td>1.3</td>
</tr>
<tr>
<td>Garage</td>
<td>0.9</td>
</tr>
<tr>
<td>Hall</td>
<td>1.4</td>
</tr>
<tr>
<td>Kitchen</td>
<td>3.5</td>
</tr>
<tr>
<td>Laundry</td>
<td>1.4</td>
</tr>
<tr>
<td>Living Room</td>
<td>1.9</td>
</tr>
<tr>
<td>Mechanical</td>
<td>0.2</td>
</tr>
<tr>
<td>Office</td>
<td>3.2</td>
</tr>
<tr>
<td>Other</td>
<td>0.9</td>
</tr>
</tbody>
</table>

If space type is not known, then assume:

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Daily Hours</th>
<th>Annual Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>1.66(^{70})</td>
<td>604(^{71})</td>
</tr>
</tbody>
</table>

\(^{70}\) Based on Navigant Consulting, “EmPOWER Residential Lighting Program: 2016 Residential Lighting Inventory and Hours of Use Study” August 31, 2017, page 13. This assumption is an average of the hours of use for efficient lamps (CFLs and LEDs at 679 hrs./yr.) and inefficient lamps (529 hrs./yr.).

\(^{71}\) Based on Navigant Consulting, “EmPOWER Residential Lighting Program: 2016 Residential Lighting Inventory and Hours of Use Study” August 31, 2017, page 13. This assumption is an average of the hours of use for efficient lamps (CFLs and LEDs at 679 hrs./yr.) and inefficient lamps (529 hrs./yr.).
<table>
<thead>
<tr>
<th>Multi Family Common Areas</th>
<th>16.3</th>
<th>5,950<sup>72</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>1.66<sup>73</sup></td>
<td>604<sup>74</sup></td>
</tr>
</tbody>
</table>

SVGe

= Percentage of annual lighting energy saved by lighting control; determined on a site-specific basis or using default below.

= 30%⁷⁵

ISR

= In Service Rate or percentage of units rebated that get installed

= 1.00⁷⁶

WHFe_{Heat}

= Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating – see calculation of heating penalty in that section).

= 1 - ((HF / ηHeat) * %ElecHeat)

If unknown assume 0.899⁷⁷

HF

= Heating Factor or percentage of light savings that must be heated

= 47%⁷⁸ for interior or unknown location

= 0% for exterior or unheated location

ηHeat

= Efficiency in COP of Heating equipment

⁷³ “Unknown” assumes a residential interior or in-unit multifamily application.

⁷⁶ Calculated using defaults; 1 + ((0.47/1.74) * 0.375) = 0.899

⁷⁷ Calculated using defaults; 1 + ((0.47/1.74) * 0.375) = 0.899

⁷⁸ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.
= actual. If not available, use79:

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>ηHeat (COP Estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2006 - 2014</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>8.2</td>
<td>2.40</td>
</tr>
<tr>
<td>Resistance</td>
<td>N/A</td>
<td>N/A</td>
<td>1.00</td>
</tr>
<tr>
<td>Unknown</td>
<td>N/A</td>
<td>N/A</td>
<td>1.7480</td>
</tr>
</tbody>
</table>

\%\text{ElecHeat} = Percentage of homes with electric heat

<table>
<thead>
<tr>
<th>Heating fuel</th>
<th>%\text{ElecHeat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>0%</td>
</tr>
<tr>
<td>Unknown</td>
<td>37.5%81</td>
</tr>
</tbody>
</table>

\text{WHF_{E_{Cool}}} = Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.

<table>
<thead>
<tr>
<th>\text{WHF_{E_{Cool}}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building with cooling</td>
</tr>
<tr>
<td>Building without cooling or exterior</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
</tbody>
</table>

79 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 and again in 2015 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

80 Calculation assumes 59\% Heat Pump and 41\% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Assume heat pump baseline of 7.7 HSPF.

81 Based on KEMA Maryland Energy Baseline Study. Feb 2011

82 The value is estimated at 1.087 (calculated as 1 + (0.33 / 3.8)). Based on cooling loads decreasing by 33\% of the lighting savings (average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC), assuming typical cooling system operating efficiency of 3.8 COP (from the current federal minimum of 13 SEER), converted to COP = SEER/3.412 = 3.8 COP.

83 The value is estimated at 1.077 (calculated as 1 + (0.89*(0.33 / 3.8))). Based on assumption that 89\% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.).
Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = kW_{\text{connected}} \times SVGd \times ISR \times WHFd \times CF \]

Where:

- \(SVGd \) = Percentage of lighting demand saved by lighting control; determined on a site-specific basis or using default below.
 \(= 30\%^{84} \)
- \(WHFd \) = Waste Heat Factor for Demand to account for cooling savings from efficient lighting

<table>
<thead>
<tr>
<th>WHFd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building with cooling</td>
</tr>
<tr>
<td>Building without cooling or exterior</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
</tbody>
</table>

- \(CF \) = Summer Peak Coincidence Factor for measure

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Type</th>
<th>Coincidence Factor (CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>Utility Peak CF</td>
<td>0.059(^{87})</td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.058(^{88})</td>
</tr>
<tr>
<td>Multi Family Common Areas</td>
<td>PJM CF</td>
<td>0.86(^{89})</td>
</tr>
<tr>
<td>Exterior</td>
<td>PJM CF</td>
<td>0.018(^{90})</td>
</tr>
<tr>
<td>Unknown</td>
<td>Utility Peak CF</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Annual Fossil Fuel Savings Algorithm

- Assumed to be the same as the energy savings percentage (SVGe).
- The value is estimated at 1.19 (calculated as \(1 + (0.66 / 3.8) \)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).
- The value is estimated at 1.18 (calculated as \(1 + (0.89 \times 0.66 / 3.8) \)).
- Based on Navigant Consulting “EmPOWER Residential Lighting Program: 2016 Residential Lighting Inventory and Hours of Use Study” August 31, 2017, page 15
- Ibid.
- Consistent with value currently used for EmPOWER Maryland Programs as of October 1, 2017. Derived from C&I common area lighting coincidence.
- Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.
Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel):

$$\Delta \text{MMBTUPenalty} = \frac{kW_{\text{connected}} \times \text{HOURS} \times \text{SVGe} \times \text{ISR} \times \text{HF} \times 0.003412}{\eta_{\text{Heat}}}/$$

Where:

- HF = Heating Factor or percentage of light savings that must be heated
 - $47\%^{91}$ for interior or unknown location
 - 0% for exterior or unheated location
- 0.003412 = Converts kWh to MMBTU
- η_{Heat} = Efficiency of heating system
 - $80\%^{92}$
- $\%\text{FossilHeat}$ = Percentage of home with non-electric heat

<table>
<thead>
<tr>
<th>Heating fuel</th>
<th>$%\text{FossilHeat}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>0%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>100%</td>
</tr>
<tr>
<td>Unknown</td>
<td>62.5%93</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this retrofit measure is assumed to be $25 for per control.94

Measure Life

91 This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

92 Minimum federal standard for residential furnaces.

93 Based on KEMA Maryland Energy Baseline Study. Feb 2011.

94 Costs are from 3/28/18 webscraping of homedepot.com for Landsdowne, MD.
The measure life is assumed to be 10 years.95

Operation and Maintenance Impacts

n/a

Connected Lighting

Unique Measure Code(s): RS_LT_RF_CL_0518

Effective Date: May 2018

End Date: TBD

Measure Description

This measure defines the savings associated with connected lighting that allows for remote user control through a smart device and/or smart hub.

Definition of Baseline Condition

The baseline condition is the efficient, i.e., LED non-connected version of the lamp.

Definition of Efficient Condition

The efficient condition is lighting that is controlled by a smart device and/or home energy hub. The savings for this measure are the estimated incremental control savings compared to a non-connected efficient lamp. Savings come from both reduced hours of operation and from dimming.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \text{WattsEE} \times \text{HOURS} \times \text{SVGe} \times \text{ISR} \times (\text{WHF}_{\text{heat}} + (\text{WHF}_{\text{cool}} - 1)) + \text{Standby}_{\text{kWh}}
\]

Where:

\[
\text{WattsEE} = \text{Actual LED wattage.}
\]

\[
\text{HOURS} = \text{Average hours of use per year:}
\]

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Daily Hours</th>
<th>Annual Hours</th>
</tr>
</thead>
</table>

Residential interior and in-unit Multi Family

<table>
<thead>
<tr>
<th>Index</th>
<th>Value hairy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>1.86</td>
</tr>
<tr>
<td>Multi Family Common Areas</td>
<td>16.3</td>
</tr>
<tr>
<td>Unknown</td>
<td>1.86</td>
</tr>
<tr>
<td>Total</td>
<td>679^96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Value hairy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi Family Common Areas</td>
<td>5,950^97</td>
</tr>
</tbody>
</table>

Notes

- **SVGe** = Percentage of annual lighting energy saved by lighting control; determined on a site-specific basis or using default below.

 = 0.49^99

- **ISR** = In Service Rate or percentage of units rebated that get installed.

 = 0.98^100

- **WHF_{heat}** = Waste Heat Factor for Energy to account for electric heating savings from reducing waste heat from efficient lighting (if fossil fuel heating – see calculation of heating penalty in that section).

 = 1 - ((HF / η_{Heat}) * %ElecHeat)

 If unknown assume 0.899^101

^97 Multi family common area lighting assumption is 16.3 hours per day (5950 hours per year) based on Focus on Energy Evaluation, ACES Deemed Savings Desk Review, November 2010. This estimate is consistent with the Common Area “Non-Area Specific” assumption (16.2 hours per day or 5913 annually) from the Cadmus Group Inc., “Massachusetts Multifamily Program Impact Analysis”, July 2012, p 2-4.

^98 “Unknown” assumes a residential interior or in-unit multifamily application.

^99 Average of two studies. Navigant Consulting. Department of Energy Solid-State Lighting Program. Energy Savings Estimates of Solid-State Lighting in General Illumination Lighting Applications. September 2016. This study estimates a 71% energy savings from connected lighting in residential applications. (Table F-4). Efficiency Vermont. Smart Lighting & Smart Hub. DIY Install: Does it Yield. August 2016. This study estimates reductions in hours of use of up to 27%. Additionally, the metering study saw significant amounts of dimming of lamps that were on non-dimming circuits, but did not quantify the savings associated with this consumer action.

^100 First year ISR of 0.9 (EMPOWER MD Lighting Study, EY5). Assume lifetime ISR of 0.99 (2006-2008 California Residential Lighting Evaluations, and used in the Uniform Methods Project). Assume half of bulbs not installed in year one are installed in year two, and the other half in year three. Using a discount rate of 5%, this gives 0.90 + 0.045 * 0.95 + 0.045 * 0.95^2 = 0.98

^101 Calculated using defaults; 1 + ((0.47/1.74) * 0.375) = 0.899
\[HF = \text{Heating Factor or percentage of light savings that must be heated} \]
\[= 47\%^{102} \text{ for interior or unknown location} \]
\[= 0\% \text{ for exterior or unheated location} \]

\[\eta_{\text{Heat}} = \text{Efficiency in COP of Heating equipment} \]
\[= \text{actual. If not available, use}^{103}. \]

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>(\eta_{\text{Heat}}) (COP Estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2006 - 2014</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>8.2</td>
<td>2.40</td>
</tr>
<tr>
<td>Resistance</td>
<td>N/A</td>
<td>N/A</td>
<td>1.00</td>
</tr>
<tr>
<td>Unknown</td>
<td>N/A</td>
<td>N/A</td>
<td>1.74^{104}</td>
</tr>
</tbody>
</table>

\[\%_{\text{ElecHeat}} = \text{Percentage of home with electric heat} \]

<table>
<thead>
<tr>
<th>Heating fuel</th>
<th>%_{\text{ElecHeat}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>0%</td>
</tr>
<tr>
<td>Unknown</td>
<td>37.5%^{105}</td>
</tr>
</tbody>
</table>

\[WHF_{\text{Cool}} = \text{Waste Heat Factor for Energy to account for cooling savings from reducing waste heat from efficient lighting.} \]

Building with cooling: \(WHF_{\text{Cool}} = 1.087^{106} \)

102 This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

103 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 and again in 2015 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

104 Calculation assumes 59% Heat Pump and 41% Resistance which is based upon data from Energy Information Administration, 2009 Residential Energy Consumption Survey. Assume heat pump baseline of 7.7 HSPF.

105 Based on KEMA Maryland Energy Baseline Study. Feb 2011

106 The value is estimated at 1.087 (calculated as 1 + (0.33 / 3.8)). Based on cooling loads decreasing by 33% of the lighting savings (average result from REMRate modeling of several
Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = kW_{connected} \times SVGd \times ISR \times WHFd \times CF \]

Where:

- **SVGd** = Percentage of lighting demand saved by lighting control; determined on a site-specific basis or using default below.

 \[= 0.49^{110} \]

- **WHFd** = Waste Heat Factor for Demand to account for cooling savings from efficient lighting

<table>
<thead>
<tr>
<th>WHFd</th>
<th>Buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building with cooling</td>
<td>1.19(^{111})</td>
</tr>
<tr>
<td>Building without cooling or exterior</td>
<td>1.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>1.17(^{112})</td>
</tr>
</tbody>
</table>

- **CF** = Summer Peak Coincidence Factor for measure

107 The value is estimated at 1.077 (calculated as 1 + (0.89*(0.33 / 3.8))). Based on assumption that 89% of homes have central cooling (based on KEMA Maryland Energy Baseline Study. Feb 2011.).

109 Lockheed Martin Energy. op. cit. p32.

110 See footnote 4.

111 The value is estimated at 1.19 (calculated as 1 + (0.66 / 3.8)). See footnote relating to WHFe for details. Note the 66% factor represents the Residential cooling coincidence factor calculated by dividing average load during the peak hours divided by the maximum cooling load (i.e. consistent with the PJM coincident definition).

112 The value is estimated at 1.18 (calculated as 1 + (0.89 * 0.66 / 3.8)).
Installation Location

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Coincidence Factor (CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>Utility Peak CF</td>
<td>0.059<sup>113</sup></td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.058<sup>114</sup></td>
</tr>
<tr>
<td>Multi Family Common Areas</td>
<td>PJM CF</td>
<td>0.86<sup>115</sup></td>
</tr>
<tr>
<td>Exterior</td>
<td>PJM CF</td>
<td>0.018<sup>116</sup></td>
</tr>
<tr>
<td>Unknown</td>
<td>Utility Peak CF</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Annual Fossil Fuel Savings Algorithm

Heating Penalty if Fossil Fuel heated home (if heating fuel is unknown assume 62.5% of homes heated with fossil fuel):

\[
\Delta \text{MMBTUPenalty} = \frac{\text{kWconnected} \times \text{HOURS} \times \text{SVGe} \times \text{ISR} \times \text{HF} \times 0.003412}{\eta_{\text{Heat}}} \]

Where:

- \(\text{HF} \) = Heating Factor or percentage of light savings that must be heated
 - 47%¹¹⁷ for interior or unknown location
 - 0% for exterior or unheated location
- 0.003412 = Converts kWh to MMBTU
- \(\eta_{\text{Heat}} \) = Efficiency of heating system
 - 80%¹¹⁸
- \(\% \text{FossilHeat} \) = Percentage of home with non-electric heat

¹¹³ Based on Navigant Consulting “EmPOWER Residential Lighting Program: 2016 Residential Lighting Inventory and Hours of Use Study” August 31, 2017, page 15

¹¹⁴ Ibid.

¹¹⁵ Consistent with value currently used for EmPOWER Maryland Programs as of October 1, 2017. Derived from C&I common area lighting coincidence.

¹¹⁶ Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.

¹¹⁷ This means that heating loads increase by 47% of the lighting savings. This is based on the average result from REMRate modeling of several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC.

¹¹⁸ Minimum federal standard for residential furnaces.
Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this retrofit measure is assumed to be $11.120

Measure Life

The measure life is assumed to be 15 years.121

Operation and Maintenance Impacts

n/a

Refrigeration End Use

Freezer

Unique Measure Code(s): RS_RF_TOS_FREEZER_0414
Effective Date: June 2014
End Date: TBD

Measure Description

A freezer meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard (NAECA). Energy usage specifications are

119 Based on KEMA Maryland Energy Baseline Study. Feb 2011
120 Based on the difference between an LED A-lamp (See LED lamp characterization above) and a connected LED. The latter cost of $14.99 is from Lockheed Martin Energy. op. cit. p49.
121 ENERGY STAR lifetime minimum requirement for a 15,000-hour A-lamp LED at 679 hrs./yr. ENERGY STAR Program Requirements. Product Specification for Lamps (Light Bulbs). Eligibility Criteria 2.1. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Lamps%20V2.1%20Final%20Specification.pdf. While the Maryland HOU estimate yields a 22-year lifetime, this value has been derated to account for obsolescence and removal prior to technical end-of-life.
defined in the table below (note, AV is the freezer Adjusted Volume and is calculated as 1.73*Total Volume).122

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Volume (cubic feet)</th>
<th>Federal Baseline Maximum Energy Usage in kWh/year123</th>
<th>ENERGY STAR Maximum Energy Usage in kWh/year124</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright Freezers with Manual Defrost</td>
<td>7.75 or greater</td>
<td>5.57*AV + 193.7</td>
<td>5.01*AV + 174.3</td>
</tr>
<tr>
<td>Upright Freezers with Automatic Defrost</td>
<td>7.75 or greater</td>
<td>8.62*AV + 228.3</td>
<td>7.76*AV + 205.5</td>
</tr>
<tr>
<td>Chest Freezers and all other Freezers except Compact Freezers</td>
<td>7.75 or greater</td>
<td>7.29*AV + 107.8</td>
<td>6.56*AV + 97.0</td>
</tr>
<tr>
<td>Compact Upright Freezers with Manual Defrost</td>
<td>< 7.75 and <=36 inches in height</td>
<td>8.65*AV + 225.7</td>
<td>7.79*AV + 203.1</td>
</tr>
<tr>
<td>Compact Upright Freezers with Automatic Defrost</td>
<td>< 7.75 and <=36 inches in height</td>
<td>10.17*AV + 351.9</td>
<td>9.15*AV + 316.7</td>
</tr>
<tr>
<td>Compact Chest Freezers</td>
<td>< 7.75 and <=36 inches in height</td>
<td>9.25*AV + 136.8</td>
<td>8.33*AV + 123.1</td>
</tr>
</tbody>
</table>

\textbf{Definition of Baseline Condition}

The baseline equipment is assumed to be a model that meets the federal minimum standard for energy efficiency. The standard varies depending on the size and configuration of the freezer (chest freezer or upright freezer, automatic or manual defrost) and is defined in the table above.

\textbf{Definition of Efficient Condition}

The efficient equipment is defined as a freezer meeting the efficiency

122 http://www.energystar.gov/ia/products/appliances/refrig/NAECA_calculation.xls?c827-f746
123 http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43
specifications of ENERGY STAR, as defined below and calculated above:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Volume</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Size Freezer</td>
<td>7.75 cubic feet or greater</td>
<td>At least 10% more energy efficient than the minimum federal government standard (NAECA).</td>
</tr>
<tr>
<td>Compact Freezer</td>
<td>Less than 7.75 cubic feet and 36 inches or less in height</td>
<td>At least 10% more energy efficient than the minimum federal government standard (NAECA).</td>
</tr>
</tbody>
</table>

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \text{kWh}_{\text{Base}} - \text{kWh}_{\text{ESTAR}}
\]

Where:

\[
\text{kWh}_{\text{BASE}} = \text{Baseline kWh consumption per year as calculated in algorithm provided in table above.}
\]

\[
\text{kWh}_{\text{ESTAR}} = \text{ENERGY STAR kWh consumption per year as calculated in algorithm provided in table above.}
\]

Illustrative example – do not use as default assumption

A 12 cubic foot Upright Freezer with Manual Defrost:

\[
\Delta \text{kWh} = (5.57 \times (12 \times 1.73) + 193.7) - (5.01 \times (12 \times 1.73) + 174.3) \\
= 309.3 - 278.3 \\
= 31.0 \text{ kWh}
\]

If volume is unknown, use the following default values, which gives a total savings of 41.2 kWh:
Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \frac{(\Delta kWh/8760)}{\text{TAF} \times \text{LSAF}}
\]

Where:
- TAF = Temperature Adjustment Factor
 - = 1.23 \(^{127}\)
- LSAF = Load Shape Adjustment Factor
 - = 1.15 \(^{128}\)

\(^{125}\) Volume is based on ENERGY STAR Calculator assumption of 16.14 ft\(^3\) average volume, converted to Adjusted volume by multiplying by 1.73.

\(^{127}\) Temperature adjustment factor based on Blasnik, Michael, “Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study”, July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space. Although this evaluation is based upon refrigerators only it is considered a reasonable estimate of the impact of cycling on freezers and gave exactly the same result as an alternative methodology based on Freezer eShape data.

Illustrative example – do not use as default assumption
A 12 cubic foot Upright Freezer with Manual Defrost:

$$\Delta kW = \frac{31.0}{8760} \times 1.23 \times 1.15$$

$$= 0.005 \text{ kW}$$

If volume is unknown, use the following default values:

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Assumptions after September 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright Freezers with Manual Defrost</td>
<td>0.0057</td>
</tr>
<tr>
<td>Upright Freezers with Automatic Defrost</td>
<td>0.0076</td>
</tr>
<tr>
<td>Chest Freezers and all other Freezers except Compact Freezers</td>
<td>0.0050</td>
</tr>
<tr>
<td>Compact Upright Freezers with Manual Defrost</td>
<td>0.0075</td>
</tr>
<tr>
<td>Compact Upright Freezers with Automatic Defrost</td>
<td>0.0103</td>
</tr>
<tr>
<td>Compact Chest Freezers</td>
<td>0.0064</td>
</tr>
</tbody>
</table>

If configuration is unknown assume 0.0067 kW.

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV time of sale incremental cost for this measure is $12.14 for an
upright freezer and $6.62 for a chest freezer129.

Measure Life

The measure life is assumed to be 12 years130.

Operation and Maintenance Impacts

n/a

Refrigerator, Time of Sale

Unique Measure Code(s): RS_RF_TOS_REFRIG_0414

Effective Date: TBD

Measure Description

This measure relates to the purchase and installation of a new refrigerator meeting either ENERGY STAR or Consortium for Energy Efficiency (CEE) TIER 2 or TIER 3 specifications (defined as requiring $\geq 10\%$, $\geq 15\%$ or $\geq 20\%$ less energy consumption than an equivalent unit meeting federal standard requirements respectively). The algorithms for calculating Federal Baseline consumption are provided below.131 Adjusted Volume is calculated as the fresh volume + (1.63 * Refrigerator Volume). This is a time of sale measure characterization.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Federal Baseline Maximum Energy Usage in kWh/year132</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Refrigerators and Refrigerator-freezers with manual defrost</td>
<td>6.79AV + 193.6</td>
</tr>
<tr>
<td>2. Refrigerator-Freezer--partial automatic defrost</td>
<td>7.99AV + 225.0</td>
</tr>
</tbody>
</table>

129 Based on the Freezer TSD Life-Cycle Cost and Payback Analysis found in Table 8.2.7 Standard-Size Freezers: Average Consumer Cost in 2014, available at: \url{http://www.regulations.gov/contentStreamer?documentId=EERE-2008-BT-STD-0012-0128&disposition=attachment&contentType=pdf}

130 Energy Star Freezer Calculator; \url{http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43}

131 Maximum consumption for ENERGY STAR, CEE Tier 2, and CEE Tier 3 can be calculated by multiplying the federal requirements by 90\%, 85\%, and 80\%, respectively.

132 \url{http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43}
Product Category

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Federal Baseline Maximum Energy Usage in kWh/year<sup>132</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Refrigerator-Freezers--automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigerators--automatic defrost</td>
<td>8.07AV + 233.7</td>
</tr>
<tr>
<td>4. Refrigerator-Freezers--automatic defrost with side-mounted freezer without through-the-door ice service</td>
<td>8.51AV + 297.8</td>
</tr>
<tr>
<td>5. Refrigerator-Freezers--automatic defrost with bottom-mounted freezer without through-the-door ice service</td>
<td>8.85AV + 317.0</td>
</tr>
<tr>
<td>6. Refrigerator-Freezers--automatic defrost with top-mounted freezer with through-the-door ice service</td>
<td>8.40AV + 385.4</td>
</tr>
<tr>
<td>7. Refrigerator-Freezers--automatic defrost with side-mounted freezer with through-the-door ice service</td>
<td>8.54AV + 432.8</td>
</tr>
</tbody>
</table>

Definition of Baseline Condition

The baseline condition is a new refrigerator meeting the minimum federal efficiency standard for refrigerator efficiency as presented above.

Definition of Efficient Condition

The efficient condition is a new refrigerator meeting either the ENERGY STAR or CEE TIER 2 or TIER 3 efficiency standards as presented above.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \text{kWhBASE} \times \text{ES}
\]

Where:

- \(\text{kWhBASE} \) = Annual energy consumption of baseline unit as calculated in algorithm provided in table above.
- \(\text{ES} \) = Annual energy savings of energy efficient unit. ES is 10% for Energy Star Units, 15% for CEE Tier 2 Units, and 20% for CEE Tier 3 Units.

Illustrative example – do not use as default assumption
A 14 cubic foot Energy Star Refrigerator and 6 cubic foot Freezer, with automatic defrost with side-mounted freezer without through-the-door ice service:

$$\Delta \text{kWh} = ((4.91 \times (14 + (6 \times 1.63))) + 507.5) \times (0.10)$$
$$= 624.3 \times 0.10$$
$$= 62.4 \text{ kWh}$$

If volume is unknown, use the following defaults, based on an assumed Adjusted Volume of 25.8133:

<table>
<thead>
<tr>
<th>Product Category</th>
<th>New Baseline UEC_{BASE}</th>
<th>New Efficient UEC_{EE}</th>
<th>(\Delta \text{kWh})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENERGY STAR</td>
<td>CEE T2</td>
<td>CEE T3</td>
</tr>
<tr>
<td>1. Refrigerators and Refrigerator-Freezeers with manual defrost</td>
<td>368.8</td>
<td>331.9</td>
<td>313.5</td>
</tr>
<tr>
<td>2. Refrigerator-Freezer--partial automatic defrost</td>
<td>431.1</td>
<td>388.0</td>
<td>366.5</td>
</tr>
<tr>
<td>3. Refrigerator-Freezer--automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigerators--automatic defrost</td>
<td>441.9</td>
<td>397.7</td>
<td>375.6</td>
</tr>
<tr>
<td>4. Refrigerator-Freezer--automatic defrost with side-mounted freezer without through-the-door ice service</td>
<td>517.4</td>
<td>465.6</td>
<td>439.8</td>
</tr>
<tr>
<td>5. Refrigerator-Freezer--automatic defrost with bottom-mounted freezer without through-the-door ice service</td>
<td>545.3</td>
<td>490.8</td>
<td>463.5</td>
</tr>
<tr>
<td>6. Refrigerator-Freezer--automatic defrost with top-mounted freezer with through-the-door ice service</td>
<td>602.1</td>
<td>541.9</td>
<td>511.8</td>
</tr>
<tr>
<td>7. Refrigerator-Freezer--automatic defrost with side-mounted freezer with through-the-door ice service</td>
<td>653.1</td>
<td>587.8</td>
<td>555.2</td>
</tr>
</tbody>
</table>

133 Volume is based on the ENERGY STAR calculator average assumption of 14.75 ft3 fresh volume and 6.76 ft3 freezer volume.
If product category shares are unknown assume annual energy savings of 51.1 kWh for ENERGY STAR, 76.7 kWh for CEE T2, and 102.2 kWh for CEE Tier 3.

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = (\Delta kWh/8760) \times TAF \times LSAF \]

Where:

- **TAF** = Temperature Adjustment Factor
 - 1.23

- **LSAF** = Load Shape Adjustment Factor
 - 1.15

If volume is unknown, use the following defaults:

<table>
<thead>
<tr>
<th>Product Category</th>
<th>ΔkW</th>
<th>ENERGY STAR</th>
<th>CEE T2</th>
<th>CEE T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Refrigerators and Refrigerator-freezers with manual defrost</td>
<td>0.006</td>
<td>0.009</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>2. Refrigerator-Freezer--partial automatic defrost</td>
<td>0.007</td>
<td>0.010</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>3. Refrigerator-Freezers--automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigerators--automatic defrost</td>
<td>0.007</td>
<td>0.011</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>4. Refrigerator-Freezers--automatic defrost with side-mounted freezer without through-the-door ice service</td>
<td>0.008</td>
<td>0.013</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>5. Refrigerator-Freezers--automatic defrost with bottom-mounted freezer without through-the-door ice service</td>
<td>0.009</td>
<td>0.013</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td>6. Refrigerator-Freezers--automatic defrost with top-mounted freezer with through-the-door ice service</td>
<td>0.010</td>
<td>0.015</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>7. Refrigerator-Freezers--automatic defrost with side-mounted freezer with through-the-door ice service</td>
<td>0.011</td>
<td>0.016</td>
<td>0.021</td>
<td></td>
</tr>
</tbody>
</table>

If product category is unknown assume 0.008 kW for ENERGY STAR and 0.012 kW for CEE Tier 2, and 0.016 kW for CEE Tier 3.

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is shown below. If configuration is unknown, assume an incremental cost of $10 for Energy Star, $33 for CEE Tier 2 and $44 for CEE Tier 3.\(^{137}\)

\(^{137}\) Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, *2010 - 2012 WO017 Ex Ante Measure Cost Study*, conducted for the California Public Utility
<table>
<thead>
<tr>
<th>Product Category</th>
<th>Energy Star</th>
<th>CEE Tier 2</th>
<th>CEE Tier 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Refrigerators and Refrigerator-freezers with manual defrost</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2. Refrigerator-Freezer--partial automatic defrost</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3. Refrigerator-Freezers--automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigerators--automatic defrost</td>
<td>$10</td>
<td>$33</td>
<td>$44</td>
</tr>
<tr>
<td>4. Refrigerator-Freezers--automatic defrost with side-mounted freezer without through-the-door ice service</td>
<td>$13</td>
<td>$39</td>
<td>$52</td>
</tr>
<tr>
<td>5. Refrigerator-Freezers--automatic defrost with bottom-mounted freezer without through-the-door ice service</td>
<td>$15</td>
<td>$41</td>
<td>$55</td>
</tr>
<tr>
<td>6. Refrigerator-Freezers--automatic defrost with top-mounted freezer with through-the-door ice service</td>
<td>$18</td>
<td>$45</td>
<td>$60</td>
</tr>
<tr>
<td>7. Refrigerator-Freezers--automatic defrost with side-mounted freezer with through-the-door ice service</td>
<td>$20</td>
<td>$49</td>
<td>$66</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 12 Years.138

Operation and Maintenance Impacts

n/a

138 Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA.

Refrigerator, Early Replacement

Unique Measure Code(s): RS_RF_RERP_REFREG_0414
Effective Date: July 2014
End Date: TBD

Measure Description

This measure relates to the early removal of an existing inefficient Refrigerator unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR or CEE Tier 2 or 3 qualifying unit. This measure is suitable for a Low Income or a Home Performance program.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

Definition of Baseline Condition

The baseline condition is the existing inefficient refrigerator unit for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new replacement unit meeting the minimum federal efficiency standard.

Definition of Efficient Condition

The efficient condition is a new refrigerator meeting either the ENERGY STAR, CEE TIER 2, or CEE Tier 3 efficiency standards (defined as 10%, 15%, or 20% above federal standards respectively).

Annual Energy Savings Algorithm

Remaining life of existing unit (first 4 years)

\[\Delta \text{kWh} = \text{kWhEXIST} - \text{kWhEE} \]

Remaining measure life (next 8 years)

\[\Delta \text{kWh} = \text{kWhBASE} - \text{kWhEE} \]

139 Assumed to be 1/3 of the measure life.
Where:

\[\text{kWh}_{\text{EXIST}} = \text{Annual energy consumption of existing unit} \]
\[= 1146 \] \(^{140}\)

\[\text{kWh}_{\text{BASE}} = \text{Annual energy consumption of new baseline unit} \]
\[= 511.7 \] \(^{141}\)

\[\text{kWh}_{\text{EE}} = \text{Annual energy consumption of ENERGY STAR unit} \]
\[= 460.8 \] \(^{142}\)

Or

\[\text{kWh}_{\text{CEE T2}} = \text{Annual energy consumption of CEE Tier 2 unit} \]
\[= 435.2 \] \(^{143}\)

Or

\[\text{kWh}_{\text{CEE T3}} = \text{Annual energy consumption of CEE Tier 3 unit} \]
\[= 409.4 \]

<table>
<thead>
<tr>
<th>Efficient unit specification</th>
<th>First 4 years ΔkWh</th>
<th>Remaining 8 years ΔkWh</th>
<th>Equivalent Mid Life Savings Adjustment (after 4 years)</th>
<th>Equivalent Weighted Average Annual Savings(^{144})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY STAR</td>
<td>685.2</td>
<td>50.9</td>
<td>7.4%</td>
<td>304.7</td>
</tr>
<tr>
<td>CEE T2</td>
<td>710.8</td>
<td>76.5</td>
<td>10.8%</td>
<td>330.3</td>
</tr>
<tr>
<td>CEE T3</td>
<td>736.6</td>
<td>102.3</td>
<td>13.9%</td>
<td>356.0</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

\(^{140}\) Based on EmPower 2011 Interim Evaluation Report Chapter 5: Lighting and Appliances, Table 15, p33. This suggests an average UEC of 1,146kWh.

\(^{142}\) kWh assumptions based on using the ENERGY STAR algorithms in each product class and calculating a weighted average of the different configurations.

\(^{143}\) kWh assumptions based on 15% less than baseline consumption and calculating a weighted average of the different configurations.

\(^{144}\) These values are provided in case the utility screening tool does not allow for this mid life baseline adjustment. The values are determined by calculating the Net Present Value of the 12 year annual savings values and finding the equivalent annual savings that produces the same result. The Real Discount Rate of 5.0% is used.
\[
\Delta kW = \frac{\Delta kWh}{8760} \times TAF \times LSAF
\]

Where:

- **TAF** = Temperature Adjustment Factor
 \[= 1.23\] \[145\]
- **LSAF** = Load Shape Adjustment Factor
 \[= 1.15\] \[146\]

<table>
<thead>
<tr>
<th>Efficient unit specification</th>
<th>First 4 years (\Delta kW)</th>
<th>Remaining 8 years (\Delta kW)</th>
<th>Equivalent Mid Life Savings Adjustment (after 4 years)</th>
<th>Equivalent Weighted Average Annual Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY STAR</td>
<td>0.111</td>
<td>0.008</td>
<td>7.4%</td>
<td>0.049</td>
</tr>
<tr>
<td>CEE T2</td>
<td>0.115</td>
<td>0.012</td>
<td>10.8%</td>
<td>0.054</td>
</tr>
<tr>
<td>CEE T3</td>
<td>0.119</td>
<td>0.017</td>
<td>13.9%</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this early replacement measure is shown below. If configuration is unknown, assume an incremental cost of $341 for Energy Star, $365 for CEE Tier 2, and $376 for CEE Tier 3.\[147\]

147 Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 W0017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA
Product Category

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Energy Star</th>
<th>CEE Tier 2</th>
<th>CEE Tier 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Refrigerators and Refrigerator-freezers with manual defrost</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2. Refrigerator-Freezer--partial automatic defrost</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3. Refrigerator-Freezers--automatic defrost with top-mounted freezer without through-the-door ice service and all-refrigerators--automatic defrost</td>
<td>$341</td>
<td>$365</td>
<td>$376</td>
</tr>
<tr>
<td>4. Refrigerator-Freezers--automatic defrost with side-mounted freezer without through-the-door ice service</td>
<td>$262</td>
<td>$287</td>
<td>$300</td>
</tr>
<tr>
<td>5. Refrigerator-Freezers--automatic defrost with bottom-mounted freezer without through-the-door ice service</td>
<td>$494</td>
<td>$520</td>
<td>$534</td>
</tr>
<tr>
<td>6. Refrigerator-Freezers--automatic defrost with top-mounted freezer with through-the-door ice service</td>
<td>$542</td>
<td>$569</td>
<td>$584</td>
</tr>
<tr>
<td>7. Refrigerator-Freezers--automatic defrost with side-mounted freezer with through-the-door ice service</td>
<td>$466</td>
<td>$495</td>
<td>$511</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 12 Years.

Operation and Maintenance Impacts

n/a

Refrigerator and Freezer, Early Retirement

Unique Measure Code(s): RS_RF_ERET_REFRIG_0414, RS_RF_ERET_FREEZE_0414
Effective Date: June 2014
End Date: TBD

Measure Description
This measure involves the removal of an existing inefficient refrigerator from service, prior to its natural end of life (early retirement). The program should target refrigerators with an age greater than 10 years, though it is expected that the average age will be greater than 20 years based on other similar program performance. Savings are calculated for the estimated energy consumption during the remaining life of the existing unit.

Definition of Baseline Condition
The existing refrigerator baseline efficiency is based upon evaluation of a number of existing programs and evaluations.

Definition of Efficient Condition
The existing inefficient refrigerator is removed from service and not replaced.

Annual Energy Savings Algorithm

Refrigerators:
Energy savings for retired refrigerators are based upon a linear regression model using the following coefficients:

<table>
<thead>
<tr>
<th>Independent Variable Description</th>
<th>Estimate Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.80460</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.02107</td>
</tr>
<tr>
<td>Pre-1990 (=1 if manufactured pre-1990)</td>
<td>1.03605</td>
</tr>
</tbody>
</table>

149 This measure assumes a mix of primary and secondary refrigerators will be replaced. By definition, the refrigerator in a household’s kitchen that satisfies the majority of the household’s demand for refrigeration is the primary refrigerator. One or more additional refrigerators in the household that satisfy supplemental needs for refrigeration are referred to as secondary refrigerators.

150 Note that the hypothetical nature of this measure implies a significant amount of risk and uncertainty in developing the energy and demand impact estimates.

151 Memo from Navigant Consulting to EmPOWER Maryland utilities, Appliance Recycling Program, Regression Modeling Analysis, Evaluation Year 6, July 12, 2016.
ΔkWh = [0.80460 + (Age * 0.02107) + (Pre-1990 * 1.03605) + (Size * 0.05930) + (Single-Door * -1.75138) + (Side-by-side * 1.11963) + (Primary * 0.55990) + (HDD/365.25 * Unconditioned * -0.04013) + (CDD/365.25 * Unconditioned * 0.02622)] * 365.25 * Part Use

Where:

\[HDD = \text{Heating Degree Days} \]

\[= \text{dependent on location. Use actual for location or defaults below}\]^{152}

\[CDD = \text{Cooling Degree Days} \]

\[= \text{dependent on location. Use actual for location or defaults below}\]^{153}

<table>
<thead>
<tr>
<th>Location</th>
<th>Heating Degree Days (65°F set point)</th>
<th>HDD / 365.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>4,298</td>
<td>11.8</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>4,529</td>
<td>12.4</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>3,947</td>
<td>10.8</td>
</tr>
</tbody>
</table>

^{152} The 10-year average annual heating degree day value is calculated for each location, using a balance point of 65 degrees as used in the EmPower Appliance Recycling Evaluation.

^{153} Ibid.
Location	Cooling Degree Days (65°F set point)	CDD / 365.25
Wilmington, DE | 1,162 | 3.2
Baltimore, MD | 1,266 | 3.5
Washington, DC | 1,431 | 3.9

Part Use Factor = To account for those units that are not running throughout the entire year as reported by the customer. Default of 0.95 for refrigerators and 0.86 for freezers.\(^{154}\)

Illustrative example – can be used as default assumption only if required data tracking is not available.

Using participant population mean values from BGE EY4 and default part use factor:

\[
\Delta \text{kWh} = \left[0.80460 + (18.61 \times 0.02107) + (0.20 \times 1.03605) + (19.43 \times 0.05930) + (0.02 \times -1.75138) + (0.34 \times 1.11963) + (0.64 \times 0.55990) + (2.91 \times -0.04013) + (0.77 \times 0.02622) \right] \times 365.25 \times 0.95 \\
= 1,098 \text{ kWh}
\]

Freezers:

Energy savings for freezers are based upon a linear regression model using the following coefficients\(^{155}\):

<table>
<thead>
<tr>
<th>Independent Variable Description</th>
<th>Estimate Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.95470</td>
</tr>
<tr>
<td>Age (years)</td>
<td>0.0453</td>
</tr>
<tr>
<td>Pre-1990 (=1 if manufactured pre-1990)</td>
<td>0.54341</td>
</tr>
<tr>
<td>Size (cubic feet)</td>
<td>0.12023</td>
</tr>
</tbody>
</table>

\(^{154}\) Based on EmPower DRAFT EY6 Participant Survey Results: Appliance Recycling Program Report

\(^{155}\) Memo from Navigant Consulting to EmPOWER Maryland utilities, Appliance Recycling Program, Regression Modeling Analysis, Evaluation Year 6, July 12, 2016.
<table>
<thead>
<tr>
<th>Chest Freezer Configuration (=1 if chest freezer)</th>
<th>0.29816</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interaction: Located in Unconditioned Space x HDD/365.25</td>
<td>-0.03148</td>
</tr>
<tr>
<td>Interaction: Located in Unconditioned Space x CDD/365.25</td>
<td>0.08217</td>
</tr>
</tbody>
</table>

\[
\Delta \text{kWh} = \begin{bmatrix} -0.95470 + (\text{Age} \times 0.04536) + (\text{Pre-1990} \times 0.54341) + (\text{Size} \times 0.12023) + (\text{Chest Freezer} \times 0.29816) + (\text{HDDs/365.25} \times (\text{Unconditioned} \times -0.03148) + (\text{CDDs/365.25} \times \text{Unconditioned} \times 0.08217)) \end{bmatrix} \times 365.25 \times \text{Part Use Factor}
\]

Illustrative example – can be used as default assumption only if required data tracking is not available.

Using participant population mean values from BGE EY4 and default part use factor:

\[
\Delta \text{kWh} = \begin{bmatrix} -0.95470 + (23.79 \times 0.04536) + (0.46 \times 0.54341) + (15.86 \times 0.12023) + (0.21 \times 0.29816) + (6.83 \times -0.03148) + (1.80 \times 0.08217)) \end{bmatrix} \times 365.25 \times 0.86
\]

\[= 715 \text{ kWh}\]

Summer Coincident Peak kW Savings Algorithm

\[
\Delta \text{kW} = (\Delta \text{kWh}/8760) \times \text{TAF} \times \text{LSAF}
\]

Where:

\[
\text{TAF} = \text{Temperature Adjustment Factor} = 1.23\;^{156}
\[
\text{LSAF} = \text{Load Shape Adjustment Factor} = 1.066\;^{157}
\]

\[^{156} \text{Temperature adjustment factor based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space.}\]

\[^{157} \text{Daily load shape adjustment factor also based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study",} \]
Illustrative example – can be used as default assumption only if required data tracking is not available.

Using participant population mean values from BGE EY4 and default part use factor:

Refrigerator:
\[\Delta kW = \frac{1098}{8760} \times 1.23 \times 1.066 \]
\[= 0.164 \text{ kW} \]

Freezer:
\[\Delta kW = \frac{715}{8760} \times 1.23 \times 1.066 \]
\[= 0.107 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
The incremental cost for this measure is the actual cost associated with the removal and recycling of the secondary refrigerator.

Measure Life
The measure life is assumed to be 8 Years.\(^\text{158}\)

Operation and Maintenance Impacts
n/a

\(^{158}\) KEMA “Residential refrigerator recycling ninth year retention study”, 2004.
Heating Ventilation and Air Conditioning (HVAC) End Use

Central Furnace Efficient Fan Motor

Unique Measure Code(s): RS_HV_RF_FANMTR_0518, RS_HV_TOS_FANMTR_0518

Effective Date: May 2018
End Date: TBD

Measure Description

This measure involves the installation of a high efficiency brushless permanent magnet fan motor (BPM or ECM), hereafter referred to as “efficient fan motor”. This measure could apply to fan motors installed with a furnace or with a central air conditioning unit and could apply when retrofitting an existing unit or installing a new one.

If a new unit is installed, the program should require that it meet ENERGY STAR efficiency criteria in order to qualify for the incentive. Savings estimations below relate only to the changes in energy use associated with an upgrade to an efficient fan motor. These changes include a kWh savings due to reduction in fan power, and a heating fuel penalty because fan waste heat energy contributes to heating the air stream.

For homes that install an efficient furnace fan and have central A/C, both the cooling and heating savings values should be included.

Circulation mode savings should also be attributed to this measure to capture operational savings that occur outside of heating and cooling modes. Note that circulation mode savings is calculated separately from heating and cooling savings.

When an efficient fan motor is installed as part of a new HVAC system, and savings are claimed based on thermal efficiency of that system, then do not claim fan motor savings separately as motor heating and cooling energy savings are captured in the SEER and HSPF.

Definition of Baseline Condition

A standard low-efficiency permanent split capacitor (PSC) fan motor.

Definition of Efficient Condition

A high efficiency brushless permanent magnet fan motor (BPM or ECM).

Annual Energy Savings Algorithm

Annual kWh savings = Heating Season kWh Savings + Cooling Season kWh Savings + Circulation mode kWh

Heating Season kWh Savings from efficient fan motor = 168.9

Cooling Season kWh Savings from efficient fan motor is calculated using the following algorithm:

\[\text{cooling kWh savings} = \Delta kW \times EFLH_{cool} \]

Where:
\[\Delta kW = 0.182 \]
\[EFLH_{cool} = \text{technology and location specific value from tables below} \]

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLHcool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>524</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>542</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>681</td>
</tr>
</tbody>
</table>

Central AC EFLHcool

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLHcool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>719</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>744</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>935</td>
</tr>
</tbody>
</table>

Air Source Heat Pump EFLHcool

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLHcool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>719</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>744</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>935</td>
</tr>
</tbody>
</table>

159 Final_EmPOWER_EY5 HVAC ECM Memo_09-10-15.docx
161 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CAC.xls)
163 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (744 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CAC.xls)
Circulation mode is when the HVAC fan is operational for ventilation only. Savings is calculated by multiplying the circulation mode run time in hours by the ΔkW between the baseline and efficient motors.

Heating Season fuel energy penalty:

$$\text{Additional heating fuel (MMBTU)} = \frac{\Delta kW_{\text{ECM Heating}}}{\text{AFUE} \times 293.1}$$

Where:

$\Delta kW_{\text{ECM Heating}} = 168.9\text{kWh of electrical savings during heating mode}$

$\text{AFUE} = \text{Installed Furnace AFUE}$

$293.1 = \text{Constant for conversion from kWh to MMBTU}$

Example of heating fuel penalty when ECM motor is retrofitted into an 85% AFUE furnace:

$$\text{additional annual MMBTU} = \frac{168.9}{(.85 \times 293.1)} = .68\text{ MMBTU}$$

Summer Coincident Peak kW Savings Algorithm

$\Delta kW = 0$ \(^{165}\)

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental costs for this measure are provided below.\(^{166}\)

\(^{166}\) Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, *2010* -
Incremental Costs Central Furnace Efficient Fan Motor

<table>
<thead>
<tr>
<th>Time of Sale</th>
<th>Retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$98</td>
<td>$287</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 18 years. *Error! Bookmark not defined.*

Operation and Maintenance Impacts

n/a

Room Air Conditioner, Time of Sale

Unique Measure Code(s): RS_HV_TOS_RA/CES_0414, RS_HV_TOS_RA/CT2_0414

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the purchase (time of sale) and installation of a room air conditioning unit that meets the ENERGY STAR minimum qualifying efficiency specifications presented below. Note that if the AC unit is connected to a network in a way to enable it to respond to energy related commands, it gets a 5% extra CEER allowance. In these instances, the efficient CEER would be 0.95 multiplied by the appropriate CEER from the table below.

<table>
<thead>
<tr>
<th>Product Type and Class (BTU/hour)</th>
<th>Federal Standard with louvered sides (CEER)</th>
<th>Federal Standard without louvered sides (CEER)</th>
<th>ENERGY STAR with louvered sides (CEER)</th>
<th>ENERGY STAR without louvered sides (CEER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Reverse Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 8,000</td>
<td>11.0</td>
<td>10.0</td>
<td>12.1</td>
<td>11.0</td>
</tr>
<tr>
<td>8,000 to 10,999</td>
<td>10.9</td>
<td>9.6</td>
<td>12.0</td>
<td>10.6</td>
</tr>
<tr>
<td>11,000 to 13,999</td>
<td>10.9</td>
<td>9.5</td>
<td>12.0</td>
<td>10.5</td>
</tr>
<tr>
<td>14,000 to 19,999</td>
<td>10.7</td>
<td>9.3</td>
<td>11.8</td>
<td>10.2</td>
</tr>
</tbody>
</table>

2012 W0017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA
Definition of Baseline Condition

The baseline condition is a window AC unit that meets the minimum federal efficiency standards presented above.

Definition of Efficient Condition

The efficient condition is a window AC unit that meets the ENERGY STAR v4.0.

Annual Energy Savings Algorithm

\[
\Delta \text{kWH} = \left(\text{Hours} \times \text{BTU/hour} \times \left(\frac{1}{\text{CEERbase}} - \frac{1}{\text{CEERee}} \right) \right) / 1000
\]

Where:

- **Hours** = Run hours of Window AC unit
 - = 325 \(^{167}\)
- **BTU/hour** = Size of rebated unit
 - When available, the actual size of the rebated unit should be used in the calculation. In the absence of this data, the following default value can be used:
 - = 8500 \(^{168}\)

\(^{167}\) VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI: http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at 31%. Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC.

\(^{168}\) Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.
Using deemed values above:

\[\Delta kWH = (325 \times 8500 \times (1/10.9 - 1/12)) / 1000 \]
\[= 23.2 \text{ kWh} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \text{BTU/hour} \times (1/\text{CEERbase} - 1/\text{CEERee})/1000 \times CF \]

Where:

\[CF = \text{Summer Peak Coincidence Factor for measure} \]
\[CF_{SSP} = \text{Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday)} \]
\[= 0.31 \]
\[CF_{PJM} = \text{PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather} \]
\[= 0.3 \]

Using deemed values above:

\[\Delta kW_{SSP} \]

169 Minimum Federal Standard for most common Room AC type – 8000-14,999 capacity range with louvered sides.
170 Minimum qualifying for ENERGY STAR most common Room AC type – 8000-14,999 capacity range with louvered sides.
171 Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.
\[
\Delta k_{W, PJM} = (8500 * (1/10.9 - 1/12)) / 1000 * 0.30 = 0.021 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is $20.

Measure Life

The measure life is assumed to be 12 years.

Operation and Maintenance Impacts
n/a

173 Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 *WO017 Ex Ante Measure Cost Study*, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA

ENERGY STAR Central A/C

Unique Measure Code(s): RS_HV_TOS_CENA/C_0518, RS_HV_EREP_CENA/C_0518
Effective Date: May 2018
End Date: TBD

Measure Description

This measure relates to the installation of a new Central Air Conditioning ducted split system meeting ENERGY STAR efficiency standards presented below.

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>SEER Rating</th>
<th>EER Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Standard</td>
<td>14</td>
<td>11.8(^{175})</td>
</tr>
<tr>
<td>ENERGY STAR</td>
<td>15</td>
<td>12.5</td>
</tr>
</tbody>
</table>

This measure could relate to:

a) Time of Sale – the installation of a new Central AC system meeting ENERGY STAR specifications replacing an existing unit at the end of its useful life or the installation of a new system in a new home. Most units bought at a store receiving prescriptive incentives are considered time of sale.

b) Early Replacement – the early removal of an existing, functioning unit prior to its natural end of life and replacement with an ENERGY STAR unit. Savings are calculated between existing unit and efficient unit consumption during the assumed remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Comprehensive building efficiency improvements will reduce load, and may lead to downsizing of space conditioning equipment. To properly account for these interactive effects, energy modeling should be performed and those results should be used for savings attribution in place of savings algorithms shown here. Effects of HVAC downsizing can be attributed to either weatherization or HVAC, but not both.

\(^{175}\) The Federal Standard does not include an EER requirement, so it is approximated with the conversion formula from Wassmer, M. 2003 thesis referenced below.
Definition of Baseline Condition

The baseline condition for the Time of Sale is a central air conditioning ducted split system that meets the minimum Federal standards as presented above.

The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the new, efficient equipment measure life. If the existing equipment efficiency is unknown, use the prevailing federal efficiency standard based on age per table below for split systems.

Note that to be characterized as early replacement, the age of the unit must not exceed the measure life of 18 years.

<table>
<thead>
<tr>
<th>Manufacture Date</th>
<th>SEER</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1993 through January 2006</td>
<td>10.0</td>
</tr>
<tr>
<td>February 2006 through December 2014</td>
<td>13.0</td>
</tr>
<tr>
<td>After January 1 2015</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Definition of Efficient Condition

The efficient condition is a central air conditioning ducted split system that meets the ENERGY STAR standards presented above.

Annual Energy Savings Algorithm

Time of Sale:

\[
\Delta kWH = \text{Hours} \times \frac{\text{BTUHexist} / \text{SEERbase}}{1000} - \frac{\text{BTUHee} / \text{SEERee}}{1000}
\]

Early replacement\(^{177}\):

\[
\Delta kWH \text{ for remaining life of existing unit:} = \text{Hours} \times \left(\frac{\text{BTU}_{\text{exist}}}{\text{SEER}_{\text{exist}}} - \frac{\text{BTU}_{\text{ee}}}{\text{SEER}_{\text{ee}}} \right) \times 1000
\]

\[
\Delta kWH \text{ for balance of measure life:} = \text{Hours} \times \left(\frac{\text{BTU}_{\text{exist}}}{\text{SEER}_{\text{base}}} - \frac{\text{BTU}_{\text{ee}}}{\text{SEER}_{\text{ee}}} \right) \times 1000
\]

Where:

- \(\text{Hours}\) = Full load cooling hours
- Dependent on location as below:

<table>
<thead>
<tr>
<th>Location</th>
<th>Run Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>524</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>542</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>681</td>
</tr>
</tbody>
</table>

- \(\text{BTU}_{\text{exist}}\) = Size of existing equipment in BTU/hour (tons x 12,000 BTU/hr)
- \(\text{BTU}_{\text{ee}}\) = Actual installed
- \(\text{BTU}_{\text{ee}}\) = Size of new efficient equipment in BTU/hour (tons x 12,000 BTU/hr)
- \(\text{SEER}_{\text{base}}\) = Seasonal Energy Efficiency Ratio Efficiency of baseline unit

\(^{177}\) The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new base to efficient savings)/(existing to efficient savings).

\(^{178}\) Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

SEERexist = Seasonal Energy Efficiency Ratio of existing unit (kBTU/kWh)
Use actual SEER rating where it is possible to measure or reasonably estimate. If unknown assume 11.1

SEERee = Seasonal Energy Efficiency Ratio Efficiency of ENERGY STAR unit
Actual installed

Illustrative example – do not use as default assumption

Time of Sale example: a 3-ton, 14 SEER unit upgraded from lower efficiency to higher, with an equivalent sized unit with SEER rating of 15 in Baltimore:

\[\Delta kWH = 542 \times \left(\frac{36000}{14} - \frac{36000}{15} \right) / 1000 \]

= 93 kWh

Early Replacement example where there is a “right-sizing” adjustment allowing for a lesser capacity system (note that the algorithm is the same regardless of pre/post capacity): a 3-ton, 11 SEER unit replaced with a 2-ton with SEER rating of 15 in Baltimore:

\[\Delta kWH (f \text{ remaining life}) = 542 \times \left(\frac{36000}{11} - \frac{24000}{15} \right) / 1000 \]

= 907 kWh

\[\Delta kWH (\text{through end of life}) = 542 \times \left(\frac{36000}{14} - \frac{24000}{15} \right) / 1000 \]

= 526 kWh

180 Minimum Federal Standard.
Summer Coincident Peak kW Savings Algorithm

Time of Sale:

\[\Delta kW = \frac{(BTUHexists x 1/EERbase) - (BTUHee x 1/EERee)}{1000 \times CF} \]

Early replacement:

\[\Delta kW \text{ for remaining life of existing unit (remaining life):} \]

\[\Delta kW = \frac{(BTUHexists x 1/EERexists) - (BTUHee x 1/EERee)}{1000 \times CF} \]

\[\Delta kW \text{ for remaining measure life (through end of life):} \]

\[\Delta kW = \frac{(BTUHexists x 1/EERbase) - (BTUHee x 1/EERee)}{1000 \times CF} \]

Where:

- \(EERbase \) = Energy Efficiency Ratio Efficiency of baseline unit
- \(EERexists \) = EER Efficiency of existing unit
- \(EERee \) = Energy Efficiency Ratio Efficiency of ENERGY STAR unit
- \(CF_{SSP} \) = Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday)
- \(CF_{PJM} \) = PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather

182 Based on SEER of 11, using a formula to give 9.9 EER. The Federal Standard does not include an EER requirement, so it is approximated with this formula: \((-0.02 \times SEER^2) + (1.12 \times SEER)\). See Wassmer, M. (2003), “A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations,” Master’s Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

183 Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.
Illustrative example – do not use as default assumption.

Time of Sale example: a 3-ton unit with efficient EER rating of 12.5 upgraded from lower efficiency to higher, with same size unit:

\[\Delta kW_{SSP} = \frac{(36000 \times \frac{1}{11.8}) - (36000 \times \frac{1}{12.5})}{1000} \times 0.69 \]

\[= 0.12 \text{ kW} \]

\[\Delta kW_{PJM} = \frac{(36000 \times \frac{1}{11.8}) - (36000 \times \frac{1}{12.5})}{1000} \times 0.66 \]

\[= 0.11 \text{ kW} \]

Early Replacement example where there is a “right-sizing” adjustment allowing for a lesser capacity system (note that the algorithm is the same regardless of pre/post capacity): an existing 3-ton unit with EER 9.9 is replaced by a 2-ton unit with EER rating of 12.5 in Baltimore:

\[\Delta kW \] for remaining life of existing unit:

\[\Delta kW_{SSP} = \frac{(36000 \times \frac{1}{9.9}) - (24000 \times \frac{1}{12.5})}{1000} \times 0.69 \]

\[= 1.18 \text{ kW} \]

\[\Delta kW_{PJM} = \frac{(36000 \times \frac{1}{9.9}) - (24000 \times \frac{1}{12.5})}{1000} \times 0.66 \]

\[= 0.113 \text{ kW} \]

\[\Delta kW \] for remaining measure life:

\[\Delta kW_{SSP} = \frac{(36000 \times \frac{1}{11.8}) - (24000 \times \frac{1}{12.5})}{1000} \times 0.69 \]

\[= 0.78 \text{ kW} \]

\[\Delta kW_{PJM} = \frac{(36000 \times \frac{1}{11.8}) - (24000 \times \frac{1}{12.5})}{1000} \times 0.66 \]

\[= 0.78 \text{ kW} \]

\[= 0.66 \]

Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.
\[= 0.75 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm

\[\text{n/a} \]

Annual Water Savings Algorithm

\[\text{n/a} \]

Incremental Cost

An ECM fan motor is required for a CAC to achieve 16 SEER or higher. If the air handler for the CAC unit is attached to an existing furnace (common), the existing forced air system can be retrofitted either with an ECM motor or by replacing the existing furnace with a new 80 AFUE gas furnace that includes an ECM motor.\(^\text{185}\)

The lifecycle NPV incremental costs per ton for this measure are provided below:\(^\text{186}\)

<table>
<thead>
<tr>
<th>SEER</th>
<th>Time of Sale</th>
<th>Early Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAC Alone</td>
<td>CAC w/ECM</td>
</tr>
<tr>
<td>16</td>
<td>$199</td>
<td>$376</td>
</tr>
<tr>
<td>17</td>
<td>$298</td>
<td>$476</td>
</tr>
<tr>
<td>18</td>
<td>$397</td>
<td>$575</td>
</tr>
<tr>
<td>19</td>
<td>$497</td>
<td>$674</td>
</tr>
<tr>
<td>20</td>
<td>$596</td>
<td>$774</td>
</tr>
<tr>
<td>21</td>
<td>$695</td>
<td>$873</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 18 years.\(^\text{187}\)

\(^\text{185}\) Contractors may be reluctant to retrofit ECM fans due to concerns about compatibility and voiding manufacturer warranties.

\(^\text{186}\) Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, *2010 - 2012 WO017 Ex Ante Measure Cost Study*, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA

Remaining life of existing equipment is assumed to be 6 years unless otherwise known.

Operation and Maintenance Impacts

n/a

Air Source Heat Pump

Unique Measure Code: RS_HV_TOS_ASHP_0518, RS_HV_EREP_ASHP_0518,

Effective Date: May 2018

End Date: TBD

Measure Description

This measure relates to the installation of a new Air Source Heat Pump split system meeting ENERGY STAR efficiency standards presented below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>HSPF</th>
<th>SEER Rating</th>
<th>EER Rating189</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Standard as of 1/1/2015</td>
<td>8.2</td>
<td>14</td>
<td>11.8190</td>
</tr>
<tr>
<td>ENERGY STAR</td>
<td>8.5</td>
<td>15</td>
<td>12.5</td>
</tr>
</tbody>
</table>

This measure could relate to:

a) Time of Sale – the installation of a new Air Source Heat Pump system meeting ENERGY STAR specifications replacing an existing unit at the end of its useful life or the installation of a new system in a new home. Most units bought at a store receiving prescriptive incentives are considered time of sale.

188 Assumed to be one third of the effective useful life.

189 HSPF, SEER and EER refer to Heating Seasonal Performance Factor, Seasonal Energy Efficiency Ratio, and Energy Efficiency Ratio, respectively.

190 The Federal Standard does not include an EER requirement, so it is approximated with this formula:
-

\[
-0.02 \times \text{SEER}^2 + (1.12 \times \text{SEER})
\]

b) Early Replacement – the early removal of existing functioning electric heating and cooling heat pump system prior to its natural end of life and replacement with an ENERGY STAR unit. Dual baseline savings are calculated between existing unit and efficient unit consumption during the assumed remaining life of the existing unit, and between new baseline unit and efficient unit consumption for the remainder of the measure life.

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Comprehensive building efficiency improvements will reduce load and may lead to downsizing of space conditioning equipment. To properly account for these interactive effects, energy modeling should be performed and those results should be used for savings attribution in place of savings algorithms shown here. Effects of HVAC downsizing can be attributed to either weatherization or HVAC, but not both.

Definition of Baseline Condition

The baseline condition for the Time of Sale measure is an Air Source Heat Pump split system that meets the minimum Federal standards defined above.

The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline of the same equipment type for the remainder of the new, efficient equipment measure life as provided in the table below.

Note that to be characterized as early replacement, the age of the unit must not exceed the measure life of 18 years.

<table>
<thead>
<tr>
<th>Existing Equipment Type</th>
<th>HSPF</th>
<th>SEER Rating</th>
<th>EER Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHP</td>
<td>8.2</td>
<td>14</td>
<td>11.8</td>
</tr>
<tr>
<td>Electric Resistance and Central AC</td>
<td>3.41</td>
<td>14</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Definition of Efficient Condition

The efficient condition is an Air Source Heat Pump split system that meets the ENERGY STAR standards defined above or other specifications as determined by the programs.
Annual Energy Savings Algorithm

Annual energy savings is the sum of heating and cooling savings.

Time of Sale:

\[
\Delta kWH = EFLH_{cool} \times \left(\frac{BTUH_{exist} / SEER_{base}}{1000} \right) - \left(\frac{BTUH_{ee} / SEER_{ee}}{1000} \right) + EFLH_{heat} \times \left(\frac{BTUH_{exist} / HSPF_{base}}{1000} \right) - \left(\frac{BTUH_{ee} / HSPF_{ee}}{1000} \right)
\]

Early replacement\(^{191}\):

\[
\Delta kWH \text{ for remaining life of existing unit:}
\]

\[
\Delta kWH = EFLH_{cool} \times \left(\frac{BTUH_{exist} / SEER_{exist}}{1000} \right) - \left(\frac{BTUH_{ee} / SEER_{ee}}{1000} \right) + EFLH_{heat} \times \left(\frac{BTUH_{exist} / HSPF_{exist}}{1000} \right) - \left(\frac{BTUH_{ee} / HSPF_{ee}}{1000} \right)
\]

\[
\Delta kWH \text{ for remaining measure life:}
\]

\[
\Delta kWH = EFLH_{cool} \times \left(\frac{BTUH_{exist} / SEER_{basereplace}}{1000} \right) - \left(\frac{BTUH_{ee} / SEER_{ee}}{1000} \right) + EFLH_{heat} \times \left(\frac{BTUH_{exist} / HSPF_{basereplace}}{1000} \right) - \left(\frac{BTUH_{ee} / HSPF_{ee}}{1000} \right)
\]

Where:

\(^{191}\) The two equations are provided to show how savings are determined during the initial phase of the measure (existing to efficient) and the remaining phase (new baseline to efficient). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new base to efficient savings)/(existing to efficient savings).
EFLHcool = Full Load Cooling Hours
= Dependent on location as below:

<table>
<thead>
<tr>
<th>Location</th>
<th>FLHcool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>719192</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>744193</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>935</td>
</tr>
</tbody>
</table>

BTUH_{exist} = Cooling capacity of existing Air Source Heat Pump (tons x 12,000BTU/hr)
= Actual

BTUH_{ee} = Cooling capacity of new, efficient Air Source Heat Pump (tons x 12,000BTU/hr)
= Actual

SEER_{base} = Seasonal Energy Efficiency Ratio of baseline Air Source Heat Pump
= 14194

SEER_{exist} = Seasonal Energy Efficiency Ratio of existing cooling system (kBTU/kWh)
= Use actual SEER rating where it is possible to measure or reasonably estimate. If not, assume the following dependent on type of existing cooling system:

192 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (744 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

194 Minimum federal standard
Existing Cooling System

<table>
<thead>
<tr>
<th>Existing Equipment Type</th>
<th>SEERexist<sup>195</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Source Heat Pump or Central AC</td>
<td>11</td>
</tr>
<tr>
<td>No central cooling<sup>196</sup></td>
<td>Make ‘1/SEERexist’ = 0</td>
</tr>
</tbody>
</table>

¹⁹⁶ If there is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

¹⁹⁷ Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E’s full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator. (https://www.energystar.gov/sites/default/files/asset/document/ASHP_Sav_Calc.xls)
$BTUH_{exist} = \text{Heating capacity of existing Air Source Heat Pump (tons x 12,000BTU/hr)}$

$BTUH_{ee} = \text{Heating capacity of new, efficient Air Source Heat Pump (tons x 12,000BTU/hr)}$

$HSPF_{base} = \text{Heating Seasonal Performance Factor of baseline Air Source Heat}$

$HSPF_{exist} = \text{Heating System Performance Factor of existing heating system (kBTU/kWh)}$

$HSPF_{base} = 8.2^{199}$

$HSPF_{exist} = \text{Use actual HSPF rating where it is possible to measure or reasonably estimate. If not available, use reference the table below:}$

<table>
<thead>
<tr>
<th>Age</th>
<th>HSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 2006</td>
<td>6.8</td>
</tr>
<tr>
<td>2006 - 2014</td>
<td>7.7</td>
</tr>
<tr>
<td>2015 - present</td>
<td>8.2</td>
</tr>
<tr>
<td>Electric Resistance</td>
<td>3.41201</td>
</tr>
</tbody>
</table>

199 Minimum Federal Standard

200 HSPF ratings for Heat Pumps account for the seasonal average efficiency of the units and are based on testing within zone 4 which encompasses all of the Mid Atlantic region. There should therefore be no reason to adjust the rated HSPF for geographical/climate variances.

201 Electric resistance has a COP of 1.0 which equals 1/0.293 = 3.41 HSPF
\[HSPFee = \text{Heating Seasonal Performance Factor of efficient Air Source Heat Pump} \]
\[= \text{Actual} \]
\[HSPFbasereplace = \text{Baseline Heating System Performance Factor of same, new equipment type as existing (kBTU/kWh)} \]

<table>
<thead>
<tr>
<th>Existing Equipment Type</th>
<th>HSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHP</td>
<td>8.2</td>
</tr>
<tr>
<td>Electric Resistance and Central AC</td>
<td>3.41</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption

Time of Sale example: a 3-ton unit with a SEER rating of 15 and HSPF of 8.5 upgraded from lower efficiency to higher, with an equivalent sized unit in Baltimore, MD:

\[
\Delta kWh = 744 \times ((36,000/14) - (36,000/15))/1,000 \\
+ 866 \times ((36,000/7.7) - (36,000/8.5))/1,000 \\
= 509 \text{ kWh}
\]

Early Replacement example where there is a “right-sizing” adjustment allowing for a lesser capacity system (note that the algorithm is the same regardless of pre/post capacity): a 2-ton heat pump with a SEER rating of 15 and HSPF of 8.5 in Baltimore, MD is installed replacing an existing working 3 ton Central AC system with a SEER rating of 11 and electric resistance heating:

\[
\Delta kWh \text{ (reming life)} = \\
744 \times ((36,000/11) - (24,000/15))/1,000 \\
+ 866 \times ((36,000/3.41) - (24,000/8.5))/1,000 \\
= 7,942 \text{ kWh}
\]

\[
\Delta kWh \text{ (through end of life)} = \\
744 \times ((36,000/14) - (24,000/15))/1,000 \\
+ 866 \times ((36,000/3.41) - (24,000/8.5))/1,000
\]
= 7,420 kWh

Summer Coincident Peak kW Savings Algorithm

Time of Sale:

\[
\Delta kW = \frac{(BTUHCexist \times 1 / EERbase) - (BTUHCee \times 1 / EERee)}{1000 \times CF}
\]

Early replacement:

\[
\Delta kW \text{ for remaining life of existing unit:}
\]

\[
\Delta kW = \frac{(BTUHCexist \times 1 / EERexist) - (BTUHCee \times 1 / EERee)}{1000 \times CF}
\]

\[
\Delta kW \text{ for remaining measure life:}
\]

\[
\Delta kW = \frac{(BTUHCexist \times 1 / EERbasereplace) - (BTUHee \times 1 / EERee)}{1000 \times CF}
\]

Where:

\(EERbase \) = Energy Efficiency Ratio (EER) of Baseline Air Source Heat Pump

\(= 11.8^{202} \)

\(EERexist \) = Energy Efficiency Ratio of existing cooling system (kBTU/hr / kW)

= Use actual EER rating where it is possible to measure or reasonably estimate. If EER unknown but SEER available

^{202} The federal Standard does not currently include an EER component. The value is approximated based on the SEER standard (14) and equals EER 11.8. To perform this calculation we are using this formula: \((-0.02 \times SEER^2) + (1.12 \times SEER)\) (from Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder).
convert using the equation:
\[
EER = (-0.02 \times SEER^2) + (1.12 \times SEER)^{203}
\]

If SEER rating unavailable, use:

<table>
<thead>
<tr>
<th>Existing Cooling System</th>
<th>EERexist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Source Heat Pump or Central AC</td>
<td>9.9</td>
</tr>
<tr>
<td>No central cooling(^{204})</td>
<td>Make ‘1/EERexist’ = 0</td>
</tr>
</tbody>
</table>

\[
EER_{ee} = \text{Energy Efficiency Ratio (EER) of Efficient Air Source Heat Pump}
\]
\[
EER_{basereplace} = \text{Actual}
\]

<table>
<thead>
<tr>
<th>Existing Equipment Type</th>
<th>EER Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHP</td>
<td>11.8</td>
</tr>
<tr>
<td>Electric Resistance and Central AC</td>
<td>11.8</td>
</tr>
</tbody>
</table>

\[
CF_{SSP} = \text{Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday)}
\]
\[
= 0.69^{205}
\]
\[
CF_{PJM} = \text{PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather}
\]
\[
= 0.66^{206}
\]

Illustrative example – do not use as default assumption

Time of Sale example: a 3-ton unit with EER rating of 11.8 upgraded from lower efficiency to higher, by a 2-ton unit with an EER of 12.5 in Baltimore, MD:

\(^{204}\) If there is no central cooling in place but the incentive encourages installation of a new ASHP with cooling, the added cooling load should be subtracted from any heating benefit.

\(^{205}\) Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.

\(^{206}\) Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.
\[\Delta kW_{SSP} = \frac{(36,000 \times 1/11.8) - (24,000 \times 1/12.5)}{1,000} \times 0.69 \]

\[= 0.78kW \]

Early Replacement example where there is a “right-sizing” adjustment allowing for a lesser capacity system (note that the algorithm is the same regardless of pre/post capacity): a 2-ton unit with an EER rating of 12.5 in Baltimore, MD is installed replacing an existing working 3-ton Central AC system with an EER rating of 9.9 and electric resistance heating:

\[\Delta kW_{SSP} = \frac{(36,000 \times 1/9.9) - (24,000 \times 1/12.5)}{1,000} \times 0.69 \]

\[= 1.18\ kW \]

\[\Delta kW \] for remaining life of existing unit (remaining life):

\[\Delta kW_{SSP} = \frac{(36,000 \times 1/11.8) - (24,000 \times 1/12.5)}{1,000} \times 0.69 \]

\[= 0.78kW \]

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

The lifecycle NPV incremental costs per ton for this measure are provided below:\(^{207}\)

\(^{207}\) Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, *2010 - 2012 WO017 Ex Ante Measure Cost Study*, conducted for the California Public Utility
A table showing SEER values, time of sale, and early replacement costs:

<table>
<thead>
<tr>
<th>SEER</th>
<th>Time of Sale</th>
<th>Early Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>$394</td>
<td>$943</td>
</tr>
<tr>
<td>17</td>
<td>$591</td>
<td>$1,140</td>
</tr>
<tr>
<td>18</td>
<td>$788</td>
<td>$1,337</td>
</tr>
<tr>
<td>19</td>
<td>$985</td>
<td>$1,535</td>
</tr>
<tr>
<td>20</td>
<td>$1,182</td>
<td>$1,732</td>
</tr>
<tr>
<td>21</td>
<td>$1,379</td>
<td>$1,929</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 18 years\(^{208}\). Remaining life of existing equipment is assumed to be 6 years\(^{209}\) unless otherwise known.

Operation and Maintenance Impacts

n/a

\(^{209}\) Assumed to be one third of the effective useful life.
Packaged Terminal Air Conditioners (PTAC) and Heat Pumps (PTHP)

Unique Measure Code(s): RS_HV_TOS_PTAC_0518, RS_HV_ER_PTAC_0518
Effective Date: May 2018
End Date: TBD

Measure Description

This measure documents savings associated with the installation of new packaged terminal AC and packaged terminal heat pumps exceeding baseline efficiency criteria in place of an existing system or a new standard efficiency system of the same capacity. This measure does not cover ductless mini-split units. This measure applies to time of sale, new construction, and early replacement opportunities, primarily for multifamily buildings.

Definition of Baseline Condition

Time of Sale or New Construction: The baseline condition is a new system meeting minimum efficiency standards as presented in the 2012 International Energy Conservation Code (IECC 2012) and the 2015 International Energy Conservation Code (IECC 2015) (see table “Baseline Efficiencies by System Type and Unit Capacity” below) or federal standards where more stringent than local energy codes. Note that due to federal standards scheduled to take effect on January 1, 2018, baseline requirements for some equipment classes differ over time.

Early Replacement: The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the measure life.

Definition of Efficient Condition

The efficient condition is a PTAC or PTHP system of the same type as the baseline system exceeding baseline efficiency levels.

210 Commercial energy code baseline requirements for Washington, D.C. and Delaware are currently consistent with IECC 2012 (Delaware currently uses ASHRAE 90.1-2010, but the HVAC system requirements are consistent with IECC 2012), whereas Maryland’s baseline requirements are consistent with IECC 2015.
Baseline Efficiencies by System Type and Unit Capacity

<table>
<thead>
<tr>
<th>Size Category (Cooling Capacity)</th>
<th>Subcategory</th>
<th>Baseline Condition (Federal Standards)(^{211})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaged Terminal Air Conditioners(^{212,213})</td>
<td>All Capacities</td>
<td>New Construction (Standard Size)(^{214})</td>
</tr>
<tr>
<td></td>
<td>All Capacities</td>
<td>Replacement (Non-Standard Size)</td>
</tr>
<tr>
<td>Packaged Terminal Heat Pumps(^{215,216})</td>
<td>All Capacities</td>
<td>New Construction (Standard Size)</td>
</tr>
<tr>
<td></td>
<td>All Capacities</td>
<td>Replacement (Non-Standard Size)</td>
</tr>
</tbody>
</table>

Notes: 1) All cooling mode efficiency ratings in the table above assume electric resistance heating section type (or none). Subtract 0.2 from each baseline efficiency rating value if unit has heating section other than electric resistance.

Annual Energy Savings Algorithm
Packaged Terminal Air Conditioners (PTACs)

\(^{212}\) Replacement unit shall be factory labeled as follows: “MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS.” Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width.

\(^{213}\) “Cap” = The rated cooling capacity of the project in BTU/h. If the unit’s capacity is less than 7,000 BTU/h, use 7,000 BTU/h in the calculation. If the unit’s capacity is greater than 15,000 BTU/h, use 15,000 BTU/h in the calculations.

\(^{214}\) Federal standard as presented for this equipment type is effective January 1, 2017. This standard is consistent with IECC 2015 and ASHRAE 90.1-2013 requirements and is recommended as a consistent regional baseline.

\(^{215}\) Replacement unit shall be factory labeled as follows: “MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS.” Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width.

\(^{216}\) “Cap” = The rated cooling capacity of the project in BTU/h. If the unit’s capacity is less than 7,000 BTU/h, use 7,000 BTU/h in the calculation. If the unit’s capacity is greater than 15,000 BTU/h, use 15,000 BTU/h in the calculations.
Time of Sale:

For all PTACs, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) as follows:
\[\Delta k\text{Wh}_{\text{COOL}} = \left(\frac{\text{BTU}}{\text{h} \times 1000} \right) \times \left(\frac{1}{\text{EER}_{\text{BASE}}} - \frac{1}{\text{EER}_{\text{EE}}} \right) \times \text{EFLH}_{\text{C}}. \]

Early Replacement\footnote{217}:

For all PTACs, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) as follows:

\[\Delta k\text{Wh} \text{ for remaining life of existing unit (i.e., measure life less the age of the existing equipment):} \]
\[= \left(\frac{\text{BTU}}{\text{h} \times 1000} \right) \times \left(\frac{1}{\text{EER}_{\text{EXIST}}} - \frac{1}{\text{EER}_{\text{EE}}} \right) \times \text{EFLH}_{\text{C}}. \]

\[\Delta k\text{Wh} \text{ for remaining measure life (i.e., measure life less the remaining life of existing unit):} \]
\[= \left(\frac{\text{BTU}}{\text{h} \times 1000} \right) \times \left(\frac{1}{\text{EER}_{\text{BASE}}} - \frac{1}{\text{EER}_{\text{EE}}} \right) \times \text{EFLH}_{\text{C}}. \]

Packaged Terminal Heat Pumps (PTHPs)

Time of Sale:

For all PTHPs, the energy savings are calculated using the Energy Efficiency Ratio (EER) and Coefficient of Performance (COP) as follows:

\[\Delta k\text{Wh} = \Delta k\text{Wh}_{\text{COOL}} + \Delta k\text{Wh}_{\text{HEAT}}. \]
\[\Delta k\text{Wh}_{\text{COOL}} = \left(\frac{\text{BTU}}{\text{h} \times 1000} \right) \times \left(\frac{1}{\text{EER}_{\text{BASE}}} - \frac{1}{\text{EER}_{\text{EE}}} \right) \times \text{EFLH}_{\text{C}}. \]
\[\Delta k\text{Wh}_{\text{HEAT}} = \left(\frac{\text{BTU}}{\text{h} \times 3412} \right) \times \left(\frac{1}{\text{COP}_{\text{BASE}}} - \frac{1}{\text{COP}_{\text{EE}}} \right) \times \text{EFLH}_{\text{H}}. \]

Early Replacement\footnote{218}:

\footnotetext{217}{The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.}

\footnotetext{218}{The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.}
For all PTHPs, the energy savings are calculated using the Energy Efficiency Ratio (EER) and Coefficient of Performance (COP) as follows:

\[
\Delta k\text{Wh for remaining life of existing unit (i.e., measure life less the age of the existing equipment):} \\
\Delta k\text{Wh} = \Delta k\text{Wh}_{\text{COOL}} + \Delta k\text{Wh}_{\text{HEAT}}. \\
\Delta k\text{Wh}_{\text{COOL}} = (BTU/h_{\text{COOL}}/1000) \times ((1/EER_{\text{EXIST}}) - (1/EER_{\text{EE}})) \times \text{EFLH}_{\text{C}}. \\
\Delta k\text{Wh}_{\text{HEAT}} = (BTU/h_{\text{HEAT}}/3412) \times ((1/COE_{\text{EXIST}}) - (1/COE_{\text{EE}})) \times \text{EFLH}_{\text{H}}.
\]

\[
\Delta k\text{Wh for remaining measure life (i.e., measure life less the remaining life of existing unit):} \\
\Delta k\text{Wh} = \Delta k\text{Wh}_{\text{COOL}} + \Delta k\text{Wh}_{\text{HEAT}}. \\
\Delta k\text{Wh}_{\text{COOL}} = (BTU/h_{\text{COOL}}/1000) \times ((1/EER_{\text{BASE}}) - (1/EER_{\text{EE}})) \times \text{EFLH}_{\text{C}}. \\
\Delta k\text{Wh}_{\text{HEAT}} = (BTU/h_{\text{HEAT}}/3412) \times ((1/COE_{\text{BASE}}) - (1/COE_{\text{EE}})) \times \text{EFLH}_{\text{H}}.
\]

Where:

- \(\Delta k\text{Wh}_{\text{COOL}} \) = Annual cooling season electricity savings (kWh).
- \(\Delta k\text{Wh}_{\text{HEAT}} \) = Annual heating season electricity savings (kWh).
- \(BTU/h_{\text{COOL}} \) = Cooling capacity of equipment in BTU/hour.
 = Actual Installed.
- \(BTU/h_{\text{HEAT}} \) = Heating capacity of equipment in BTU/hour.
 = Actual Installed.
- \(SEER_{\text{EE}} \) = SEER of efficient unit.
 = Actual Installed.
- \(SEER_{\text{BASE}} \) = SEER of baseline unit.
 = Based on IECC 2012 or IECC 2015 for the installed capacity. See table above.
- \(SEER_{\text{EXIST}} \) = SEER of the existing unit.
 = Actual.
- \(HSPF_{\text{EE}} \) = HSPF of efficient unit.
 = Actual Installed.
- \(HSPF_{\text{BASE}} \) = HSPF of baseline unit.
 = Based on IECC 2012 or IECC 2015 for the installed capacity. See table above.
- \(HSPF_{\text{EXIST}} \) = HSPF of the existing unit.
\[IEER_{EE} = IEER \text{ of efficient unit.} \]
\[= \text{Actual.} \]
\[IEER_{BASE} = IEER \text{ of baseline unit.} \]
\[= \text{Based on IECC 2012 or IECC 2015 for the installed capacity. See table above.} \]
\[IEER_{EXIST} = IEER \text{ of the existing unit.} \]
\[= \text{Actual.} \]
\[COPEE = COP \text{ of efficient unit.} \]
\[= \text{Actual Installed.} \]
\[COP_{BASE} = COP \text{ of baseline unit.} \]
\[= \text{Based on IECC 2012 or IECC 2015 for the installed capacity. See table above.} \]
\[COP_{EXIST} = COP \text{ of the existing unit.} \]
\[= \text{Actual.} \]
\[EER_{BASE} = EER \text{ of baseline unit.} \]
\[= \text{Based on IECC 2012 or 2015 for the installed capacity. See table above.} \]
\[EER_{EXIST} = EER \text{ of the existing unit.} \]
\[= \text{Actual.} \]
\[EER_{EE} = EER \text{ of efficient unit (If the actual EER is unknown, it may be approximated by using the following equation: EER = SEER/1.2)} \]
\[= \text{Actual installed.} \]
\[3412 = \text{Conversion factor (BTU/kWh).} \]
\[EFLH_c = \text{Full load cooling hours.}^{219} \]
\[= \text{If actual full load cooling hours are unknown, see table “Full Load Cooling Hours by Location and Building Type” below. Otherwise, use site specific full load cooling hours information.} \]
\[EFLH_h = \text{Full load heating hours.} \]
\[= \text{If actual full load heating hours are unknown, see table “Full Load Heating Hours by Location and Building Type” below. Otherwise, use site specific full load heating hours information.} \]

\[^{219}\] From U.S. DOE. 2013. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures: “Although the EFLH is calculated with reference to a peak kW derived from EER, it is acceptable to use these EFLH with SEER or IEER. Some inconsistency occurs in using full-load hours with efficiency ratings measured at part loading, but errors in calculation are thought to be small relative to the expense and complexity of developing hours-of-use estimates precisely consistent with SEER and IEER.”
\[EFLH_c = \text{Full load cooling hour value (Table below)} \]

\[= \text{Dependent on location as below:} \]

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLH_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>719^{220}</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>744^{221}</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>935</td>
</tr>
</tbody>
</table>

\[EFLH_h = \text{Full load heating hour value (Table below)} \]

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLH_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>935^{222}</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>866^{223}</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>822</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

Time of Sale:
\[
\Delta kW = (\text{BTU/h}_{\text{COOL}}/1000) \times ((1/\text{EERBASE}) - (1/\text{EERE})) \times \text{CF.}
\]

Early Replacement:
\[
\Delta kW \text{ for remaining life of existing unit (i.e., measure life less the age of the existing equipment):}
= (\text{BTU/h}_{\text{COOL}}/1000) \times ((1/\text{EERE}^\text{EXIST}) - (1/\text{EERE})) \times \text{CF.}
\]

\[
\Delta kW \text{ for remaining measure life (i.e., measure life less the remaining life of existing unit):}
\]

^{220} Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (744 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CAC.xls

^{222} Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E’s full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator. http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls

= (BTU/hCOOL/1000) * ((1/EERBASE) – (1/EERE)) * CF.

Where:

\[CF_{PJM} = \text{PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm) valued at peak weather} \]

= 0.360 for units <135 kBTU/h and 0.567 for units ≥135 kBTU/h.\(^{224}\)

\[CF_{SSP} = \text{Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).} \]

= 0.588 for units <135 kBTU/h and 0.874 for units ≥135 kBTU/h.\(^{225}\)

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
The lifecycle NPV incremental costs for time of sale and early replacement units are provided in the tables below.\(^{226}\) Prescribed values vary depending on the current building code, the date of installation, and whether the baseline condition is time of sale or early replacement.\(^{227}\)

Measure Life
The measure life is assumed to be 15 years.\(^{228}\)

Operation and Maintenance Impacts
n/a

\(^{226}\) Default incremental costs assumptions for water- and evaporatively-cooled ACs, PTACs, and PTHPs will be addressed in subsequent versions of the TRM, when available. In the interim, incremental costs for these equipment types should be determined on a site-specific basis.

\(^{227}\) Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017.

Measure and baseline costs were calculated using hedonic models and data from Itron, *2010 - 2012 WO017 Ex Ante Measure Cost Study*, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA

Operation and Maintenance Impacts
n/a

Duct Sealing
Unique Measure Code: RS_HV_RF_DCTSLG_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This measure is the sealing of ducts using mastic sealant, aerosol or UL-181 compliant duct sealing tape.

Three methodologies for evaluating the savings associated with sealing the ducts are provided. The first method is provided only as a tool for prescreening potential measures involving a careful visual inspection of the duct work, followed by two further methods that require the use of a blower door either of which can be used to evaluate savings.

1. **Feasibility Evaluation of Distribution Efficiency** – this methodology should **not be used for claiming savings** but can be a useful tool to help evaluate the potential from duct sealing. It requires evaluation of three duct characteristics below, and use of the Building Performance Institutes ‘Distribution Efficiency Look-Up Table’; http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf
 a. Percentage of duct work found within the conditioned space
 b. Duct leakage evaluation
 c. Duct insulation evaluation

 It involves performing a whole house depressurization test and repeating the test with the ducts excluded.

3. **Duct Blaster Testing** - as described in RESNET Test 803.7
This involves using a blower door to pressurize the house to 25 Pascals and pressurizing the duct system using a duct blaster to reach equilibrium with the inside. The air required to reach equilibrium provides a duct leakage estimate.

This is a retrofit measure. Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition

The existing baseline condition is leaky duct work within the unconditioned space in the home.

Definition of Efficient Condition

The efficient condition is sealed duct work throughout the unconditioned space in the home.

Annual Energy Savings Algorithm

Methodology 1: Feasibility Evaluation of Distribution Efficiency (not for claiming savings)

Total Annual Savings:

\[\Delta \text{kWh} = \Delta \text{kWh}_{\text{cooling}} + \Delta \text{kWh}_{\text{heating}} \]

Estimate of Cooling savings from reduction in Air Conditioning Load:

Determine Distribution Efficiency by evaluating duct system before and after duct sealing using Building Performance Institute “Distribution Efficiency Look-Up Table”

\[\Delta \text{kWh}_{\text{cooling}} = (((\text{DE}_{\text{after}} - \text{DE}_{\text{before}})/ \text{DE}_{\text{after}})) * \text{FLH}_{\text{cool}} * \text{BTUH} / 1,000 / \eta_{\text{Cool}} \]

Where:

- \(\text{DE}_{\text{after}} \) = Distribution Efficiency after duct sealing
- \(\text{DE}_{\text{before}} \) = Distribution Efficiency before duct sealing
\(FLH_{cool} \) = Full Load Cooling Hours

= Dependent on location as below:

<table>
<thead>
<tr>
<th>Location</th>
<th>FLHcool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>524 229</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>542 230</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>681</td>
</tr>
</tbody>
</table>

\(BTUH \) = Size of equipment in BTU\(h \) (note 1 ton = 12,000BTU\(h \))

\(\eta_{Cool} \) = Efficiency in SEER of Air Conditioning equipment

= Actual. If not available, use\(^{231}\):

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Age of Equipment</th>
<th>SEER Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central AC</td>
<td>Before 2006</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>After 2006</td>
<td>13</td>
</tr>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2006-2014</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>14</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption

Duct sealing in a house in Wilmington DE, with 3-ton SEER 11 central air conditioning and the following duct evaluation results:

\[DE_{before} = 0.80 \]
\[DE_{after} = 0.90 \]

Energy Savings:

\[\Delta kWh_{Cooling} = ((0.90 - 0.80)/0.90) * 524 * 36,000) / 1,000 / 11 \]

\(^{229}\) Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland \((542\) from the research referenced below) by the ratio of full load hours in Wilmington, DE \((1,015)\) or Washington, DC \((1,320)\) to Baltimore MD \((1,050)\) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

\(^{231}\) These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.
= 191 kWh

Estimate of Heating savings for homes with electric heat (Heat Pump of resistance):

\[\text{kWh}_{\text{Heating}} = \left(\frac{(\text{DE}_{\text{after}} - \text{DE}_{\text{before}})}{\text{DE}_{\text{after}}} \right) * \text{FLH}_{\text{heat}} * \text{BTU}_{\text{H}} / 1,000,000 / \eta_{\text{Heat}} \) * 293.1

*Where:

- \(\text{FLH}_{\text{heat}} \) = Full Load Heating Hours
- \(\text{FLH}_{\text{heat}} \) = Dependent on location as below:

<table>
<thead>
<tr>
<th>Location</th>
<th>FLHheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>935²³²</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>866²³³</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>822</td>
</tr>
</tbody>
</table>

- \(\text{BTU}_{\text{H}} \) = Size of equipment in BTUh (note 1 ton = 12,000BTUh)
- \(\eta_{\text{Heat}} \) = Efficiency in COP of Heating equipment
- \(\eta_{\text{Heat}} \) = Actual. If not available, use²³⁴:

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>COP Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2006-2014</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>8.2</td>
<td>2.40</td>
</tr>
<tr>
<td>Resistance</td>
<td>n/a</td>
<td>n/a</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption

Duct sealing in a 2.5 COP heat pump heated house in Baltimore, MD with the following duct evaluation results:

²³² Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG&E’s full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls)

²³⁴ These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.
DE_{before} = 0.80
DE_{after} = 0.90

Energy Savings:
\[\Delta k\text{Wh}_{\text{heating}} = \left(\frac{(0.90 - 0.80)/0.90 \times 866 \times 36,000}{1,000,000} / 2.5 \right) \times 293.1 \]
\[= 406 \text{ kWh} \]

Methodology 2: Modified Blower Door Subtraction

Total Annual Savings:
\[\Delta k\text{Wh} = \Delta k\text{Wh}_{\text{cooling}} + \Delta k\text{Wh}_{\text{heating}} \]

Claiming Cooling savings from reduction in Air Conditioning Load:

a. Determine Duct Leakage rate before and after performing duct sealing:

\[\text{Duct Leakage (CFM50}_{DL} = (\text{CFM50}_{\text{Whole House}} - \text{CFM50}_{\text{Envelope Only}}) \times \text{SCF} \]

Where:

<table>
<thead>
<tr>
<th>CFM50\text{Whole House}</th>
<th>= Standard Blower Door test result finding Cubic Feet per Minute at 50 Pascal pressure differential</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFM50\text{Envelope Only}</td>
<td>= Blower Door test result finding Cubic Feet per Minute at 50 Pascal pressure differential with all supply and return registers sealed.</td>
</tr>
<tr>
<td>SCF</td>
<td>= Subtraction Correction Factor to account for underestimation of duct leakage due to connections between the duct system and the home. Determined by measuring pressure in duct system with registers sealed and using look up table provided by Energy Conservatory.</td>
</tr>
</tbody>
</table>

b. Calculate duct leakage reduction, convert to CFM25_{DL}^{235} and factor in Supply and Return Loss Factors

\(^{235} 25\text{ Pascals is the standard assumption for typical pressures experienced in the duct system under normal operating conditions. To convert CFM50 to CFM25 you multiply by 0.64 (inverse of the “Can’t Reach Fifty” factor for CFM25; see Energy Conservatory Blower Door Manual).} \)
Duct Leakage Reduction (ΔCFM25_DL) = (Pre CFM50_DL – Post CFM50_DL) * 0.64 * (SLF + RLF)

Where:

\begin{align*}
SLF &= \text{Supply Loss Factor} \\
&= \% \text{ leaks sealed located in Supply ducts} * 1 \\
&= \text{Default} = 0.5^{236}
\end{align*}

\begin{align*}
RLF &= \text{Return Loss Factor} \\
&= \% \text{ leaks sealed located in Return ducts} * 0.5 \\
&= \text{Default} = 0.25^{238}
\end{align*}

c. Calculate Energy Savings:

$$\Delta \text{kWh}_{\text{cooling}} = \frac{(\Delta \text{CFM25}_D)/ (\text{Capacity} * 400)) * \text{FLH}_{\text{cool}} * \text{BTUH}} / 1000 / \eta_{\text{Cool}}$$

Where:

\begin{align*}
\Delta \text{CFM25}_D &= \text{Duct leakage reduction in CFM25} \\
\text{Capacity} &= \text{Capacity of Air Cooling system (tons)} \\
400 &= \text{Conversion of Capacity to CFM (400CFM / ton)} \\
\text{FLH}_{\text{cool}} &= \text{Full Load Cooling Hours} \\
&= \text{Dependent on location as below:}
\end{align*}

<table>
<thead>
<tr>
<th>Location</th>
<th>FLHcool</th>
</tr>
</thead>
</table>

\text{236} Assumes that for each percent of supply air loss there is one percent annual energy penalty. This assumes supply side leaks are direct losses to the outside and are not recaptured back to the house. This could be adjusted downward to reflect regain of usable energy to the house from duct leaks. For example, during the winter some of the energy lost from supply leaks in a crawlspace will probably be regained back to the house (sometimes 1/2 or more may be regained). More information provided in “Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements” from http://www.energyconservatory.com/download/dbmanual.pdf

\text{237} Assumes 50% of leaks are in supply ducts.

\text{238} Assumes that for each percent of return air loss there is a half percent annual energy penalty. Note that this assumes that return leaks contribute less to energy losses than do supply leaks. This value could be adjusted upward if there was reason to suspect that the return leaks contribute significantly more energy loss than “average” (e.g. pulling return air from a super-heated attic), or can be adjusted downward to represent significantly less energy loss (e.g. pulling return air from a moderate temperature crawl space). More information provided in “Appendix E Estimating HVAC System Loss From Duct Airtightness Measurements” from http://www.energyconservatory.com/download/dbmanual.pdf

\text{239} Assumes 50% of leaks are in return ducts.
<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Age of Equipment</th>
<th>SEER Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central AC</td>
<td>Before 2006</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>After 2006</td>
<td>13</td>
</tr>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2006-2014</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>14</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption
Duct sealing in a house in Wilmington, DE with 3-ton, SEER 11 central air conditioning and the following blower door test results:

Before:
- CFM50 Whole House = 4,800 CFM50
- CFM50 Envelope Only = 4,500 CFM50
- House to duct pressure = 45 Pascals
- = 1.29 SCF (Energy Conservatory look up table)

After:

240 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPOWER average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator.
(https://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

242 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

CFM50 Whole House = 4,600 CFM50
CFM50 Envelope Only = 4,500 CFM50
House to duct pressure = 43 Pascals
= 1.39 SCF (Energy Conservatory look up table)

Duct Leakage at CFM50:

\[\text{CFM50}_{DL \text{ before}} = (4,800 - 4,500) \times 1.29 \]
\[= 387 \text{ CFM50} \]

\[\text{CFM50}_{DL \text{ after}} = (4,600 - 4,500) \times 1.39 \]
\[= 139 \text{ CFM50} \]

Duct Leakage reduction at CFM25:

\[\Delta \text{CFM25}_{DL} = (387 - 139) \times 0.64 \times (0.5 + 0.25) \]
\[= 119 \text{ CFM25} \]

Energy Savings:

\[\Delta \text{kWh}_{\text{Cooling}} = \left(\frac{(119 / (3 \times 400)) \times 524 \times 36,000}{1,000 / 11} \right) \]
\[= 170 \text{ kWh} \]

Claiming Heating savings for homes with electric heat (Heat Pump):

\[\Delta \text{kWh}_{\text{Heating}} = \left(\frac{((\Delta \text{CFM25}_{DL} / (\text{Capacity} \times 400)) \times \text{FLHheat} \times \text{BTUH}}{1,000,000 / \eta_{\text{Heat}} \right) \times 293.1 \]

Where:
- \(\Delta \text{CFM25}_{DL} \) = Duct leakage reduction in CFM25
- \(\text{Capacity} \) = Capacity of Air Cooling system (tons)
- 400 = Conversion of Capacity to CFM (400CFM / ton)
- \(\text{FLHheat} \) = Full Load Heating Hours
- \(\eta_{\text{Heat}} \) = Dependent on location as below:

BTUH = Size of equipment in BTUh (note 1 ton = 12,000BTUh)
ηHeat = Efficiency in COP of Heating equipment

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>COP Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>2006-2014</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>8.2</td>
<td>2.40</td>
</tr>
<tr>
<td>Resistance</td>
<td>n/a</td>
<td>n/a</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption
Duct sealing in a 3-ton 2.5 COP heat pump heated house in Baltimore, MD with the blower door results described above:

\[
\Delta k\text{Wh}_{\text{Heating}} = \left(\frac{119}{3 \times 400}\right) \times \frac{866 \times 36,000}{1,000,000} / 2.5 \times 293.1
\]

\[= 362 \text{ kWh}\]

Methodology 3: Duct Blaster Testing

Total Annual Savings:

\[
\Delta k\text{Wh} = \Delta k\text{Wh}_{\text{cooling}} + \Delta k\text{Wh}_{\text{heating}}
\]

243 Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BGE’s full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator.

245 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.
Claiming Cooling savings from reduction in Air Conditioning Load:

\[
\Delta \text{kWh}_{\text{cooling}} = \frac{((\text{Pre}_{\text{CFM25}} - \text{Post}_{\text{CFM25}}) \times (\text{Capacity} \times 400)) \times \text{FLH}_{\text{cool}} \times \text{BTU}_H}{1000 \times \eta_{\text{cool}}}
\]

Where:

- \(\text{Pre}_{\text{CFM25}} \) = Duct leakage in CFM25 as measured by duct blaster test before sealing
- \(\text{Post}_{\text{CFM25}} \) = Duct leakage in CFM25 as measured by duct blaster test after sealing

All other variables as provided above.

Illustrative example – do not use as default assumption
Duct sealing in a house in Wilmington, DE with 3-ton, SEER 11 central air conditioning and the following duct blaster test results:

\[
\begin{align*}
\text{Pre}_{\text{CFM25}} &= 220 \text{ CFM25} \\
\text{Post}_{\text{CFM25}} &= 80 \text{ CFM25}
\end{align*}
\]

\[
\Delta \text{kWh}_{\text{cooling}} = \frac{((220 - 80) \times (3 \times 400)) \times 524 \times 36,000}{1,000 \times 11}
\]

\[= 200 \text{ kWh}
\]

Claiming Heating savings for homes with electric heat (Heat Pump):

\[
\Delta \text{kWh}_{\text{heating}} = \frac{((\text{Pre}_{\text{CFM25}} - \text{Post}_{\text{CFM25}}) \times (\text{Capacity} \times 400)) \times \text{FLH}_{\text{heat}} \times \text{BTU}_H}{1,000,000 \times \eta_{\text{heat}}} \times 293.1
\]

Where:

All other variables as provided above.

Illustrative example – do not use as default assumption
Duct sealing in a 3-ton 2.5 COP heat pump heated house in Baltimore, MD with the duct blaster results described above:
\[\Delta \text{kWh}^{\text{Heating}} = \frac{((220 - 80) / (3 \times 400)) \times 866 \times 36,000}{1,000,000 / 2.5} \times 293.1 \]
\[= 426 \text{ kWh} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = \Delta \text{kWh}^{\text{Cooling}} / \text{FLH}^{\text{cool}} \times \text{CF} \]

Where:

- \(\text{CF}^{\text{SSP}} \) = Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday) = 0.69 \(^{246}\)
- \(\text{CF}^{\text{PJM}} \) = PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather = 0.66 \(^{247}\)

Annual Fossil Fuel Savings Algorithm

For homes with Fossil Fuel Heating:

Methodology 1: Feasibility Evaluation of Distribution Efficiency (not for claiming savings)

\[\Delta \text{MMBTU}^{\text{fossil fuel}} = \frac{((\text{DE}^{\text{after}} - \text{DE}^{\text{before}}) / \text{DE}^{\text{after}}) \times \text{FLH}^{\text{heat}} \times \text{BTU}^{\text{H}}}{1,000,000 / \eta^{\text{Heat}}} \]

Where:

- \(\text{DE}^{\text{after}} \) = Distribution Efficiency after duct sealing
- \(\text{DE}^{\text{before}} \) = Distribution Efficiency before duct sealing
- \(\text{FLH}^{\text{heat}} \) = Full Load Heating Hours
- \(\eta^{\text{Heat}} \) = 0.62 \(^{248}\)

\(^{246}\) Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.

\(^{247}\) Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.

\(^{248}\) Based on assumption from BG&E billing analysis of furnace program in the ’90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program,
Illustrative example – do not use as default assumption

Duct sealing in a fossil fuel heated house with a 100,000 BTU, 80% AFUE natural gas furnace, with the following duct evaluation results:

\[\text{DE}_{\text{before}} = 0.80 \]
\[\text{DE}_{\text{after}} = 0.90 \]

Energy Savings:
\[\Delta \text{MMBTU} = \frac{((0.90 - 0.80)/0.90) * 620 * 100,000)}{1,000,000 / 0.80} \]
\[= 8.6 \text{ MMBTU} \]

Methodology 2: Modified Blower Door Subtraction

\[\Delta \text{MMBTU} = \frac{((\Delta \text{CFM25}_{DL} / (\text{BTUH} * 0.0126)) * \text{FLH}_{\text{heat}} * \text{BTUH }) / 1,000,000}{\eta_{\text{Heat}}} \]

Where:
\[\Delta \text{CFM25}_{DL} = \text{Duct leakage reduction in CFM25} \]
\[\text{BTUH} = \text{Capacity of Heating System (BTUh)} \]
\[\text{Actual} \]
\[0.0126 = \text{Conversion of Capacity to CFM} (0.0126 \text{CFM} / \text{BTU})^{251} \]

249 Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test.

250 The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%.

251 Based on Natural Draft Furnaces requiring 100 CFM per 10,000 BTU, Induced Draft Furnaces requiring 130 CFM per 10,000 BTU and Condensing Furnaces requiring 150 CFM per 10,000 BTU (rule of thumb from http://contractingbusiness.com/enewsletters/cb_imp_43580/). Data provided by GAMA during the federal rule-making process for furnace efficiency standards,
FLHheat = Full Load Heating Hours
= 620\(^{252}\)

\(\eta_{\text{Heat}}\) = Efficiency of Heating equipment
= Actual\(^{253}\). If not available, use 84%\(^{254}\).

Illustrative example – do not use as default assumption
Duct sealing in a house with a 100,000BTUh, 80% AFUE natural gas furnace and with the blower door results described above:

Energy Savings:
\[\Delta \text{MMBTU} = \frac{(((119 / (100,000 * 0.0126)) * 620 * 100,000) / 1,000,000 / 0.80}{\text{BTUH}} = 7.3 \text{ MMBTU}\]

Methodology 3: Duct Blaster Testing

\[\Delta \text{MMBTU} = \frac{((\text{Pre}_{-}\text{CFM25} - \text{Post}_{-}\text{CFM25}/ \text{BTUH} * 0.0126)) * \text{FLHheat} * \text{BTUH}}{1,000,000 / \eta_{\text{Heat}}}\]

Where:

All variables as provided above

Illustrative example – do not use as default assumption
Duct sealing in a house with a 100,000BTUh, 80% AFUE natural gas furnace and with the duct blaster results described above:

Energy Savings:

suggested that in 2000, 32% of furnaces purchased in Maryland were condensing units. Therefore a weighted average required airflow rate is calculated assuming a 50:50 split of natural v induced draft non-condensing furnaces, as 126 per 10,000BTU or 0.0126/BTU.

\(^{252}\)Based on assumption from BG&E billing analysis of furnace program in the ’90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program, technical report”, June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

\(^{253}\)Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test.

\(^{254}\)The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%.
ΔMMBTU = (((220 - 80 / (100,000 * 0.0126)) * 620 * 100,000) / 1,000,000 / 0.80

= 8.6 MMBTU

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure should be the actual labor and material cost.

Measure Life

The measure life is assumed to be 20 years\(^{255}\).

Operation and Maintenance Impacts

n/a

Ductless Mini-Split Heat Pump

Unique Measure Code: RS_HV_TOS_MSHP_0518, RS_HV_EREP_ASHP_0518
Effective Date: May 2018
End Date: TBD

Measure Description

This measure relates to the installation of new ENERGY STAR rated ductless “mini-split” heat pump(s) (DMSHP). A ductless mini-split heat pump (DMSHP) is a type of heat pump with an outdoor condensing unit connected via refrigerant line to one or more indoor evaporator coils. Ductless mini-split heat pumps deliver cooling at the same or higher efficiency as standard central AC units, but can also deliver heat. Further, since the units do not require ductwork, they avoid duct losses.

This measure could be installed in either an existing or in a new home and the characterization is designed to allow the calculation of the impact on electric and/or gas consumption following the installation of a DHP system. The characterization requires that the program implementer perform a custom calculation to determine how much existing and supplemental heating and/or cooling load the DHP will replace based on a combination of billing data, the percentage of conditioned space covered by the DMSHP, the existing equipment and its hours of operation, proposed hours of operation, and the size of the conditioned space. Where possible, this should be treated as a custom measure, due to the number of variables needed, including usage patterns and types of baseline systems.

Definition of Baseline Condition

The baseline condition for early replacement is the existing heating and cooling (if applicable) systems within the home. If cooling equipment is not previously present, it is presumed that some type of cooling equipment would have been installed and the time of sale baseline described next should be used for the cooling baseline assumption.

The baseline condition in time of sale / new construction is a standard-efficiency ductless unit meeting the following efficiency standards:

<table>
<thead>
<tr>
<th>Year</th>
<th>SEER</th>
<th>EER</th>
<th>HSPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>14</td>
<td>8.5(^{256})</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Definition of Efficient Condition

The efficient condition is an ENERGY STAR ductless heat pump exceeding all of the following efficiency standards; 15 SEER, 12.5 EER, 8.5 HSPF.

\(^{256}\)Typical EER for units with a SEER of 14 from the AHRI database.
Annual Energy Savings Algorithm

If displacing/replacing electric heat:

\[
\Delta k\text{Wh}_{\text{total}} = \Delta k\text{Wh}_{\text{cool}} + \Delta k\text{Wh}_{\text{heat}}
\]
\[
\Delta k\text{Wh}_{\text{cool}} = \text{CoolingLoadDHP} \times (1/\text{SEER}_{\text{base}} \times (1 + \Delta \text{DL}_{\text{impr}} \times \text{DL}_{\text{cool}}) - 1/\text{SEER}_{\text{ee}})
\]
\[
\Delta k\text{Wh}_{\text{heat}} = \text{HeatLoadElectricDHP} \times (3.412/\text{HSPF}_{\text{base}} \times (1 + \Delta \text{DL}_{\text{impr}} \times \text{DL}_{\text{heat}}) - 3.412/\text{HSPF}_{\text{ee}})
\]

If displacing/replacing gas heat:

\[
\Delta k\text{Wh}_{\text{total}} = \Delta k\text{Wh}_{\text{cool}} - \text{Total}_k\text{Wh}_{\text{heat}}
\]
\[
\Delta k\text{Wh}_{\text{cool}} = \text{CoolingLoadDHP} \times (1/\text{SEER}_{\text{base}} \times (1 + \Delta \text{DL}_{\text{impr}} \times \text{DL}_{\text{cool}}) - 1/\text{SEER}_{\text{ee}})
\]
\[
\text{Total}_k\text{Wh}_{\text{heat}} = (\text{HeatLoadGasDHP} \times 293.1 \times 3.412 / \text{HSPF}_{\text{ee}})
\]

Where:

- \(\text{CoolingLoadDHP}\) = Cooling load (kWh) that the DHP will now provide
- \(\text{SEER}_{\text{base}}\) = Efficiency in SEER of existing Air Conditioner or baseline ductless heat pump (kBTU cooling/ kWh consumed)
- Early Replacement = Use actual SEER rating where it is possible to measure or reasonably estimate. If unknown assume 11

for Central AC or 10.7 for Room AC258. If no cooling exists, assume 14.0.

\textit{Time of Sale / New Construction} = 14.0259

\begin{itemize}
 \item \textit{SEER}_{\text{re}} = \text{Efficiency in SEER of efficient ductless heat pump} = \text{Actual (kBTU cooling/ kWh consumed)}
 \item \textit{HeatLoad}_{\text{ElectricDHP}} = \text{Heating load (kWh) that the DHP will now provide} = \text{Actual}260
 \item \textit{DL}_{\text{cool}} = 1 \text{ if duct leakage applies based on baseline cooling equipment} (0 \text{ otherwise})
 \item \textit{DL}_{\text{heat}} = 1 \text{ if duct leakage applies based on baseline heating equipment} (0 \text{ otherwise})
 \item \textit{\Delta DL}_{\text{impr}} = \text{Duct loss improvement factor, 0.15}
 \item 3.412 = \text{Converts 1/HSPF to 1/COP}
 \item \textit{HSPF}_{\text{base}} = \text{Heating Seasonal Performance Factor of existing system or baseline ductless heat pump for new construction}
 \item \textit{Early Replacement} = \text{Use actual HSPF rating where it is possible to measure or reasonably estimate.}
 \item \textit{Time of Sale / New Construction} = 8.2263
 \item \textit{HSPF}_{\text{ee}} = \text{Heating Seasonal Performance Factor of ENERGY STAR ductless heat pump}264
 \item \textit{HeatLoad}_{\text{GasDHP}} = \text{Heating load (MMBTU) that the DHP will now provide} = \text{Actual}265
 \item 293.1 = \text{Converts MMBTU to kWh}
\end{itemize}

258 Estimated by converting the minimum standard for Room A/Cs before 2005 (9.7) by 1.1 to adjust for SEER.

259 Minimum Federal Standard

260 For example with a Manual-J calculation or similar modeling.

261 Assume COP of 1.0 converted to HSPF by multiplying by 3.412.

262 This is estimated based on finding the average HSPF/SEER ratio from the AHRI directory data (using the least efficient models - SEER 12 and SEER 13) - 0.596, and applying to the existing ASHP SEER rating assumption of 12.

263 Minimum Federal Standard

264 HSPF ratings for Heat Pumps account for the seasonal average efficiency of the units and are based on testing within AHRI climate zone 4 which encompasses all of the Mid Atlantic region. There should therefore be no reason to adjust the rated HSPF for geographic/climate variances.

265 For example with a Manual-J calculation or similar modeling.
AFUEexist = Efficiency of existing furnace or boiler
= Use actual AFUE rating where it is possible to measure or reasonably estimate. If unknown assume 84%266.

3.412 = Converts heat pump HSPF in to COP

See example calculations at end of characterization.

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = BTUH_{Cool} \left(\frac{1}{EER_{base}} x (1 + \Delta DL_{impr} * DL_{cool}) - \frac{1}{EER_{ee}} \right) / 1,000 x CF
\]

Where:

<table>
<thead>
<tr>
<th>BTUH_{Cool}</th>
<th>= Cooling capacity in BTUs per hour (tons x 12,000BTU/hr per ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EER_{base}</td>
<td>= Energy Efficiency Ratio (EER) of Baseline Air Source Heat Pump</td>
</tr>
<tr>
<td>Early Replacement</td>
<td>= Use actual EER rating where it is possible to measure or reasonably estimate. If unknown assume 9.9267 for Central AC or 9.7 for Room AC268.</td>
</tr>
<tr>
<td>Early Replacement</td>
<td>If no cooling is at the home, make 1/EER = 0 (resulting in a negative value i.e. increase in load).</td>
</tr>
</tbody>
</table>

Time of Sale / New Construction

\[
EER_{ee} = 8.5^{269}
\]

<table>
<thead>
<tr>
<th>EER_{ee}</th>
<th>= Energy Efficiency Ratio (EER) of Efficient ductless heat pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>EER_{ee}</td>
<td>= Actual.</td>
</tr>
</tbody>
</table>

266 The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%.

267 Based on SEER of 11, using a formula to give 9.9 EER. The Federal Standard does not include an EER requirement, so it is approximated with this formula: \((-0.02 \times SEER^2) + (1.12 \times SEER)\). See Wassmer, M. (2003), “A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations,” Master’s Thesis, University of Colorado at Boulder. Note this is appropriate for single speed units only.

269 Typical EER for DMSHP units with a SEER of 14 from the AHRI database
\(DL_{cool} \) = 1 if duct leakage applies based on baseline cooling equipment (0 otherwise)

\(\Delta DL_{impr} \) = Duct loss improvement factor, 0.15

\(CF \) = Coincidence Factor for measure. Assumptions for both Central AC and Room AC are provided below. The appropriate selection depends on whether the DHP is being used similarly to a central AC (thermostatically controlled) or a room AC (controlled with need). If unknown assume Room AC.

\(CF_{SSP\ Room\ AC} \) = Summer System Peak Coincidence Factor for Room A/C (hour ending 5pm on hottest summer weekday) = 0.31 \(^{270}\)

\(CF_{PJM\ Room\ AC} \) = PJM Summer Peak Coincidence Factor for Room A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather = 0.3 \(^{271}\)

\(CF_{SSP\ Central\ AC} \) = Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday) = 0.69 \(^{272}\)

\(CF_{PJM\ Central\ AC} \) = PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather = 0.66 \(^{273}\)

See example calculations at end of characterization.

Annual Fossil Fuel Savings Algorithm

If the existing heating system is gas fired, the savings from the measure represent the displaced gas heating consumption, and the DHP represents added electric load.

\(^{270}\) Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

\(^{271}\) Consistent with coincidence factors found in:

\(^{272}\) Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.

\(^{273}\) Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.
\[\Delta \text{MMBTU} = \frac{\text{HeatLoadGasReplaced}}{\text{AFUEexist}} \times (1 + \Delta DL_{\text{impr}} \times DL_{\text{heat}}) \]

Where:
- \(\text{HeatLoadGasReplaced} \): Heating load (MMBTU) that the DHP will now provide in place of gas unit
- \(\text{AFUEexist} \): Efficiency of existing heating system
 - Use actual AFUE rating where it is possible to measure or reasonably estimate. If unknown assume 80\%\(^2\) for early retirement, or 80\% for replace on burnouts\(^3\).
- \(DL_{\text{heat}} \): 1 if duct leakage applies based on baseline heating equipment (0 otherwise)
- \(\Delta DL_{\text{impr}} \): Duct loss improvement factor = 0.15

See example calculations at end of characterization.

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental costs per ton for this measure are provided below:\(^4\)

<table>
<thead>
<tr>
<th>Unit Size (tons)</th>
<th>Time of Sale</th>
<th>Early Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$267</td>
<td>$915</td>
</tr>
<tr>
<td>1.5</td>
<td>$400</td>
<td>$1,252</td>
</tr>
<tr>
<td>2</td>
<td>$533</td>
<td>$1,588</td>
</tr>
<tr>
<td>2.5</td>
<td>$667</td>
<td>$1,925</td>
</tr>
<tr>
<td>3</td>
<td>$800</td>
<td>$2,262</td>
</tr>
</tbody>
</table>

\(^2\) For example with a Manual-J calculation or similar modeling.

\(^3\) The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32\% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92\% for the condensing furnaces and 80\% for the non-condensing furnaces gives a weighted average of 83.8\%.

\(^4\) This has been estimated assuming that the average efficiency of existing heating systems is likely to include newer more efficient systems.

\(^4\) Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 WO017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA
Measure Life

The measure life is assumed to be 18 years278. If an early replacement measure results in the removal of existing operating heating or cooling equipment, it is assumed that it would have needed replacing in 6 years.

Operation and Maintenance Impacts

n/a

Illustrative examples – do not use as default assumption

Early Replacement:

A 1.5 ton, 20 SEER, 14 EER, 12 HSPF, DHP replaces 5000 kWh of existing electric resistance heat load in a home without existing cooling in Baltimore, MD. DHP is estimated to provide 2,000kWh of cooling load.

\[
\Delta \text{kWh} = (\text{CoolingLoadDHP} \times (1/\text{SEERbase} - 1/\text{SEERee})) + \\
(\text{HeatLoadElectricDRP} \times (3.412/\text{HSPFbase} - 3.412/\text{HSPFee})) \\
= (2000 \times (0 - 1/20)) + (5000 \times (3.412/3.412 - 3.412/12)) \\
= 3,478 \text{ kWh}
\]

\[
\Delta \text{W}_{\text{SSP}} = \text{BTU}_{\text{Cool}} \times (1/\text{EERbase} - 1/\text{EERee})/1000 \times \text{CF} \\
= (18,000 \times (0 - 1/14)) / 1000 \times 0.31 \\
= -0.40 \text{ kW}
\]

A 2.5 ton, 18 SEER, 13.5 EER, 11 HSPF, DHP displaces all of the existing gas heat (78% AFUE) in a home with central cooling in Baltimore, MD. The heating load is estimated as 40 MMBTU and cooling load of 4000 kWh.

\[
\Delta \text{kWh} = (\text{CoolingLoadDHP} \times (1/\text{SEERbase} - 1/\text{SEERee})) - \\
(\text{HeatLoadGasDHP} \times 293.1 \times 0.85 \times (3.412/\text{HSPFee})) \\
= (4000 \times (1/11 - 1/18)) - (40 \times 293.3 \times 0.85 \times (3.412/11)) \\
= -2,952 \text{ kWh (i.e. this results in an increase in electric consumption)}
\]

\[
\Delta \text{W}_{\text{SSP}} = (\text{BTU}_{\text{Cool}} \times (1/\text{EERbase} - 1/\text{EERee})) / 1000 \times \text{CF} \\
= (30,000 \times (1/9.96 - 1/13.5)) / 1000 \times 0.31 \\
= 0.24 \text{ kW (in the summer you see demand savings)}
\]

\[
\Delta \text{MMBTU} = \text{HeatLoadGasReplaced} \div \text{AFUEexist} \\
= 40 \div 0.80 \\
= 50 \text{ MMBTU}
\]

Time of Sale / New Construction
Two 1.5 ton, 18 SEER, 13.5 EER, 11 HSPF, DHPs are installed in a new home in Baltimore, MD. The estimated heat load is 12,000kWh and the cooling load is 6,000kWh
\[
\Delta kWH = (\text{CoolingLoadDHP} \times (1/\text{SEERbase} - 1/\text{SEERee})) + \\
(\text{HeatLoadElectricDHP} \times (3.412/\text{HSPFbase} - 3.412/\text{HSPFee}))
\]
\[
= (6000 \times (1/14 - 1/18)) + (12,000 \times (3.412/7.7 - 3.412/11))
\]
\[
= 1,634\text{kWh}
\]
\[
\Delta kW_{SSP} = (\text{BTU}_{\text{Cool}} \times (1/\text{EERbase} - 1/\text{EERee})) / 1000 \times \text{CF}
\]
\[
= (36,000 \times (1/11.8 - 1/13.5)) / 1000 \times 0.31
\]
\[
= 0.12\text{kW}
\]

HE Gas Boiler

Unique Measure Code: RS_HV_TOS_GASBLR_0415

Effective Date: June 2015

End Date: TBD

Measure Description

This measure characterization provides savings for the purchase and installation of a new residential sized ENERGY STAR-qualified high efficiency gas-fired boiler for residential space heating, instead of a new baseline gas boiler. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition

The baseline condition is a boiler that meets the minimum Federal baseline AFUE for boilers. For boilers manufactured after September 2012, the Federal baseline is 82% AFUE.

Definition of Efficient Condition

The efficient condition is an ENERGY STAR qualified boiler with an AFUE rating ≥ 90%.

Annual Energy Savings Algorithm

n/a
Summer Coincident Peak kW Savings Algorithm
n/a

Annual Fossil Fuel Savings Algorithm

\[\Delta \text{MMBTU} = \left(\text{EFLHheat} \times \text{BTU} \times \left(\frac{\text{AFUEee}}{\text{AFUEbase}} - 1\right) \right) / 1,000,000 \]

Where:
- \(\text{EFLHheat} \) = Equivalent Full Load Heating Hours
- \(\text{Location} \)
- \(\text{EFLH} \)
 - Wilmington, DE: 848\(^{279}\)
 - Baltimore, MD: 620\(^{280}\)
 - Washington, DC: 528\(^{281}\)
- \(\text{BTU} \) = Input Capacity of Boiler
- \(\text{AFUEbase} \) = Efficiency in AFUE of baseline boiler
 - 82\%
- \(\text{AFUEee} \) = Efficiency in AFUE of efficient boiler
 - Actual

Illustrative example – do not use as default assumption
The purchase and installation of a 100,000 BTUh input capacity, 90% AFUE boiler in Maryland:

\[\Delta \text{MMBTU} = \left(620 \times 100,000 \times \left(\frac{0.9}{0.82} - 1\right) \right) / 1,000,000 \]

\[= 6.0 \text{ MMBTU} \]

\(^{280}\) Based on assumption from BGE billing analysis of furnace program in the '90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program, technical report”, June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

\(^{281}\) Full load heating hours derived by adjusting FLHheat for Baltimore, MD based on Washington, DC HDD base 60°F: 620 * 2957/3457 = 528 hours.
Annual Water Savings Algorithm
n/a

Incremental Cost
The lifecycle NPV incremental costs for this measure are provided below:282

<table>
<thead>
<tr>
<th>Efficiency of Boiler (AFUE)</th>
<th>Incremental Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>$469</td>
</tr>
<tr>
<td>92%</td>
<td>$513</td>
</tr>
<tr>
<td>95%</td>
<td>$643</td>
</tr>
<tr>
<td>98%</td>
<td>$789</td>
</tr>
</tbody>
</table>

Measure Life
The measure life is assumed to be 18 years283.

Operation and Maintenance Impacts
n/a

282 Costs were derived the Residential Furnace Technical support document, 2016 and adjusted for inflation to represent 2017 dollars

\url{http://www.energizect.com/sites/default/files/Measure%20Life%20Report%202007}.
Condensing Furnace (gas)
Unique Measure Code: RS_HV_TOS_GASFUR_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This measure characterization provides savings for the purchase and installation of a new residential sized ENERGY STAR-qualified high efficiency gas-fired condensing furnace for residential space heating, instead of a new baseline gas furnace. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Attempt should be made to account for this interaction where the measures occur in the same home within the same program period.

Definition of Baseline Condition
The baseline condition is a non-condensing gas furnace with an AFUE of 80% or 81% if weatherized\(^{284}\).

Definition of Efficient Condition
The efficient condition is an ENERGY STAR qualified gas-fired condensing furnace with an AFUE rating \(\geq 90\%\).

Annual Energy Savings Algorithm
n/a. Note, if the furnace has an ECM fan, electric savings should be claimed as characterized in the “Central Furnace Efficient Fan Motor” section of the TRM.

Summer Coincident Peak kW Savings Algorithm
n/a

Annual Fossil Fuel Savings Algorithm

\[
\Delta \text{MMBTU} = \frac{(EFLH_{\text{heat}} \times \text{BTUh} \times ((\text{AFUE}_{\text{ee}} / \text{AFUE}_{\text{base}}) - 1))}{1,000,000}
\]

Where:

\[EFLH_{\text{heat}} = \text{Equivalent Full Load Heating Hours} \]

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>848</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>620</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>528</td>
</tr>
</tbody>
</table>

\[B\text{TUH} = \text{Input Capacity of Furnace} \]
\[= \text{Actual} \]

\[AFU\text{Ebase} = \text{Efficiency in AFUE of baseline Furnace} \]
\[= 0.80 \]

\[AFU\text{Eee} = \text{Efficiency in AFUE of efficient Furnace} \]
\[= \text{Actual} \]

Illustrative example – do not use as default assumption

The purchase and installation of a 100,000 BtuH, 92% AFUE furnace in Maryland:

\[
\Delta \text{MMMBTU} = (620 \times 100,000 \times ((0.92/0.8) - 1) / 1,000,000
\]
\[
= 9.3 \text{ MMBTU}
\]

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is provided below.

286 Based on assumption from BG&E billing analysis of furnace program in the ‘90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program, technical report”, June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

287 Full load heating hours derived by adjusting FLHheat for Baltimore, MD based on Washington, DC HDD base 60°F: 620 * 2957/3457 = 528 hours.

288 Itron, Mid-Atlantic TRM Version 7.0 Incremental Costs Update, 2017. Adapted from Department of Energy, Residential Furnaces and Boilers Final Rule Technical Support
Efficiency of Furnace (AFUE)	Incremental Cost
90% | $392
92% | $429
95% | $537
98% | $659

Measure Life
The measure life is assumed to be 18 years.\(^{289}\)

Operation and Maintenance Impacts
n/a

Smart Thermostat
Unique Measure Code: RS_HV_TOS_SMTHRM_0518, RS_HV_RF_SMTHRM_0518
Effective Date: May 2018
End Date: TBD

Measure Description
The Smart Thermostat measure involves the replacement of a manually operated or conventional programmable thermostat with a “smart” (advanced, wi-fi, or connected) thermostat as defined below. This measure applies to all residential applications and may be a time of sale or retrofit measure.

Definition of Baseline Condition
This is defined as a retrofit measure. The baseline equipment is an assumed (defaulted) mix of manual and programmable thermostats.

Definition of Efficient Condition
The efficient condition is a “smart” thermostat that has earned ENERGY STAR certification\(^290\) and/or has the following product requirements\(^291\):

1. Automatic scheduling
2. Occupancy sensing (set “on” as a default)
3. For homes with a heat pump, smart thermostats must be capable of controlling heat pumps to optimize energy use and minimize the use of backup electric resistance heat.
4. Ability to adjust settings remotely via a smart phone or online the absence of connectivity to the connected thermostat (CT) service provider, retain the ability for residents to locally:
 a. view the room temperature,
 b. view and adjust the set temperature, and
 c. switch between off, heating and cooling.
5. Have a static temperature accuracy $\leq \pm 2.0 \, ^\circ$F
6. Have network standby average power consumption of $\leq 3.0 \, W$ average (Includes all equipment necessary to establish connectivity to the CT service provider’s

\(^{290}\) ENERGY STAR’s qualified products list for smart thermostats: https://data.energystar.gov/Active-Specifications/ENERGY-STAR-Certified-Smart-Thermostats/7p2p-wkbf

\(^{291}\) ENERGY STAR Smart Thermostat Specification, from which most requirements based: https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Program%20Requirements%20for%20Connected%20Thermostats%20Version%201.0_0.pdf
cloud, except those that can reasonably be expected to be present in the home, such as Wi-Fi routers and smart phones.)

7. Enter network standby after ≤ 5.0 minutes from user interaction (on device, remote or occupancy detection)

8. The following capabilities may be enabled through the CT device, CT service or any combination of the two. The CT product shall maintain these capabilities through subsequent firmware and software changes.
 a. Ability for consumers to set and modify a schedule.
 b. Provision of feedback to occupants about the energy impact of their choice of settings.
 c. Ability for consumers to access information relevant to their HVAC energy consumption, e.g. HVAC run time.

Annual Energy Savings Algorithm

As smart thermostats are control technologies, when possible, heating and cooling savings should be calculated based on data from installed thermostats. Otherwise, cooling savings should only be claimed for homes with central air conditioning. Heating savings may be claimed for homes with electric resistance, heat pump, or non-electric heating. Where there is more than one smart thermostat installed to control a single fossil heating system, a per-thermostat adjustment factor is applied to savings calculations.

When heating and/or cooling consumption is known, use the following algorithms:

\[
\Delta kWh = \Delta kWh_{heating} + \Delta kWh_{cooling}
\]
\[
\Delta kWh_{heating} = \text{Elec}_\text{Heating}_\text{Saving}_\% \times \text{Elec}_\text{Heating}_kWh
\]
\[
\Delta kWh_{cool} = \text{Cooling}_\text{Saving}_\% \times \text{Cooling}_kWh
\]
\[
\Delta \text{MMBTU} = \text{Fuel}_\text{Heating}_\text{Saving}_\% \times \text{Fuel}_\text{Heating}_\text{MMBTU} \times \text{QUANT} \times \text{QUANTafh}
\]

Where:
- \(\text{Elec}_\text{Heating}_\text{Saving}_\%\) = 6%
- \(\text{Cooling}_\text{Saving}_\%\) = 7%

292 NEEP has developed a Guidance Document detailing methodology to claim savings from smart thermostats, available here: http://www.neep.org/claiming-savings-smart-thermostats-guidance-document. This guidance uses the metric developed for the ENERGY STAR certification to develop geographically and temporally specific savings averages for program claims. These calculated savings numbers are expected to be more accurate and potentially yield higher level of savings than the estimates provided in the TRM.
Fuel_Heating_Saving_% = 6%\(^{293}\)
Elec_Heating_kWh = actual seasonal electric heat kWh consumption
Cooling_kWh = actual seasonal cooling kWh consumption
Fuel_Heating_MMBTU = actual seasonal fossil heating MMBTU consumption
QUANT = number of smart thermostats connected to a single fossil heating system
QUANTafh = adjustment factor for installed measure quantity with heating system
= 1.0 (if QUANT = 1);
= .727\(^{294}\) (if QUANT >1)

Where actual heating or cooling energy consumption is not known, use the following algorithms:

Cooling Savings:

\[
\Delta kWh = \frac{CCAP}{SEER} \times EFLHc \times \text{Cooling}_\text{Saving}_\text{%}
\]

Electric Heat Savings:

\[
\Delta kWh = \frac{HCAP_{elec}}{HSPF} \times EFLHh \times \text{Elec}_\text{Heating}_\text{Saving}_\text{%}
\]

Fossil heat Savings:

\[
\Delta MMBTU = \frac{HCAP_{fuel}}{AFUE} \times EFLHh \times \text{Fuel}_\text{Heating}_\text{Saving}_\text{%} \times \text{QUANT} \times \text{QUANTafh}
\]

Where:

\[
\begin{align*}
CCAP &= \text{Cooling capacity of existing AC unit, in kBTU/hr.} \\
HCAP_{elec} &= \text{Heating capacity of existing electric heat unit, in kBTU/hr.}
\end{align*}
\]

\(^{293}\) Smart thermostat deemed savings percentages drawn from 2017 literature survey performed by Joe Loper of Itron, see Smart_Thermostat_Literature_Summary_WORKING022417.xls

\(^{294}\) Cadmus Wi-Fi program evaluation for MA reported gas heat savings per thermostat of 11% for 1, and 8% for 2. Adjustment factor is based on these findings. 8%/11% = .727 adjustment factor if >1 wi-fi thermostat is connected to the same heating system.

HCAP\textsubscript{fuel} = Heating capacity of existing fossil heat unit, in MMBTU/hr.
SEER = SEER of controlled unit. If unknown use current energy code requirements for mechanical cooling efficiency.
HSPF = HSPF of controlled unit. If unknown use current energy code requirements for mechanical heating efficiency. Electric strip heat = 1.
AFUE = AFUE of controlled unit. If unknown use current energy code requirements for mechanical heating efficiency.
EFLH\textsubscript{cool} = Full load hours for cooling equipment. See tables below.
EFLH\textsubscript{heat} = Full load hours for heating equipment. See tables below
QUANT = number of smart thermostats connected to a single fossil heating system
QUANT\textsubscript{afh} = adjustment factor for installed measure quantity with heating system
\hspace{1cm} = 1.0 (if QUANT = 1);
\hspace{1cm} = 0.727295 (if QUANT >1)

EFLH\textsubscript{heat} for Air Source Heat Pump

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLH\textsubscript{heat}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>935296</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>866297</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>822</td>
</tr>
</tbody>
</table>

EFLH\textsubscript{heat} Gas Furnace and Boiler; Ground Source Heat Pump

295 Cadmus Wi-Fi program evaluation for MA reported gas heat savings per thermostat of 11\% for 1, and 8\% for 2. Adjustment factor is based on these findings. 8\%/11\% = 0.727 adj factor if >1 wi-fi thermostat is connected to the same heating or cooling system.

296 Full Load Heating Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying BG\&E’s full load hours determined for Baltimore (1195 from the research referenced below) by the ratio of full load hours in Wilmington, DE (2346) or Washington, DC (2061) to Baltimore MD (2172) from the ENERGY STAR calculator.
(http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ASHP_Sav_Calc.xls)

EFLHcool for Air Source Heat Pump, split system

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLHcool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>719<sup>301</sup></td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>744<sup>302</sup></td>
</tr>
<tr>
<td>Washington, DC</td>
<td>935</td>
</tr>
</tbody>
</table>

EFLHcool for Central AC, ducted split system; GSHP

<table>
<thead>
<tr>
<th>Location</th>
<th>Run Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>524<sup>303</sup></td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>542<sup>304</sup></td>
</tr>
<tr>
<td>Washington, DC</td>
<td>681</td>
</tr>
</tbody>
</table>

299 Based on assumption from BG&E billing analysis of furnace program in the ’90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program, technical report”, June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

300 Full load heating hours derived by adjusting FLHheat for Baltimore, MD based on Washington, DC HDD base 60°F: 620 *2957/3457 = 528 hours.

301 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (744 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls

303 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls

Elec_Heating_kWh, Cooling_kWh, and Fuel_Heating_MMBTU should be based on local average consumption for participants targeted by the program. If unknown, use the following table. Note that the adjustment factor of 0.727 should be applied to savings if more than one smart thermostat is connected to the same fossil heating system.

<table>
<thead>
<tr>
<th>State</th>
<th>HVAC Replacement?</th>
<th>HVAC Types</th>
<th>HVAC Unit Not Replaced</th>
<th>HVAC Unit Replaced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unknown</td>
<td>Mixed</td>
<td>CAC w/ Central Heating</td>
<td>ASHP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAC w/ Central Heating</td>
</tr>
<tr>
<td>MD</td>
<td>Cooling (kWh)</td>
<td>2,105</td>
<td>1,774</td>
<td>2,435</td>
</tr>
<tr>
<td></td>
<td>Heating (kWh)</td>
<td>2,296</td>
<td>NA</td>
<td>4,585</td>
</tr>
<tr>
<td></td>
<td>Heating (MMBTU)</td>
<td>30.9</td>
<td>62.0</td>
<td>NA</td>
</tr>
<tr>
<td>DE</td>
<td>Cooling (kWh)</td>
<td>2,035</td>
<td>1,715</td>
<td>2,353</td>
</tr>
<tr>
<td></td>
<td>Heating (kWh)</td>
<td>2,479</td>
<td>NA</td>
<td>4,950</td>
</tr>
<tr>
<td></td>
<td>Heating (MMBTU)</td>
<td>42.3</td>
<td>84.8</td>
<td>NA</td>
</tr>
<tr>
<td>DC</td>
<td>Cooling (kWh)</td>
<td>2,645</td>
<td>2,229</td>
<td>3,060</td>
</tr>
<tr>
<td></td>
<td>Heating (kWh)</td>
<td>2,179</td>
<td>NA</td>
<td>4,352</td>
</tr>
<tr>
<td></td>
<td>Heating (MMBTU)</td>
<td>26.4</td>
<td>52.8</td>
<td>NA</td>
</tr>
</tbody>
</table>

Demand Savings

The smart thermostat measure as defined here (i.e., without a corresponding demand reduction program) is assumed to have no demand savings. Smart thermostats with a demand response program added on top may generate significant demand savings, but those are not quantified as part of this measure.

Annual Water Savings Algorithm

n/a

Incremental Cost

If the costs are not known, then the incremental cost for a time of sale replacement is assumed to be $154305 and the incremental cost for a retrofit

305 From NEEP’s 2016 Incremental Cost Study: http://www.neep.org/incremental-cost-emerging-technology-0, table 3-13 found range of incremental costs to be $80-195 (with baseline as $54 and using Nest/Ecobee at $249). NEEP’s more recent list of home energy management systems products http://neep.org/initiatives/high-efficiency-products/home-.
replacement is assumed to be $208. If thermostats are professionally installed, $50 for labor should be added to the assumed incremental cost.

Measure Life

The measure life is assumed to be 7.5 years.

Operation and Maintenance Impacts

n/a

[energy-management-systems](http://www.neep.org/incremental-cost-emerging-technology-0) shows a straight average of 68 products at $210 for the cost of the smart thermostat, bringing the incremental cost assuming $54 for baseline down to $154. From NEEP’s 2016 Incremental Cost Study: http://www.neep.org/incremental-cost-emerging-technology-0, table 3-13 found range of incremental costs to be $80-195 (with baseline as $54 and using Nest/Ecobee at $249). NEEP’s more recent list of home energy management systems products (http://neep.org/initiatives/high-efficiency-products/home-energy-management-systems) shows a straight average of 68 products at $210 for the cost of the smart thermostat, bringing the incremental cost assuming $54 for baseline down to $154.

Based on professional judgment of TRM technical team and stakeholder consensus. EULs observed include: 11 years in AR TRM and 10 years in IL TRM, both of which are based on programmable thermostat EULs. CA workpapers conclude 3-year EUL using persistence modeling. RTF concludes a 5-year EUL based on CA workpapers and concerns that there is little basis for assuming long-time persistence of savings, considering past challenges with manual overrides and “know-how” needed to use wifi-connected devices, including communicating hardware and software downloading. For discussion, see Northwest Regional Technical Forum January 2017. https://rtf.nwcouncil.org/measure/connected-thermostats.
Room Air Conditioner, Early Replacement
Unique Measure Code: RS_HV_EREP_RA/CES_0414
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes the early removal of an existing inefficient Room Air Conditioner unit from service, prior to its natural end of life, and replacement with a new ENERGY STAR qualifying unit. This measure is suitable for a Low Income or a Home Performance program.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

Definition of Baseline Condition
The baseline condition is the existing inefficient room air conditioning unit for the remaining assumed useful life of the unit, and then for the remainder of the measure life the baseline becomes a new replacement unit meeting the minimum federal efficiency standard (i.e. with an efficiency rating of 10.9 CEER308).

Definition of Efficient Condition
The efficient condition is a new replacement room air conditioning unit meeting the ENERGY STAR efficiency standard (i.e. with a CEER efficiency rating greater than or equal to 12.0309).

Annual Energy Savings Algorithm

Savings for remaining life of existing unit (1st 3 years)
\[\Delta k\text{Wh} = \frac{\text{Hours} \times \text{BTUH} \times (1/\text{EERexist} - 1/\text{CEERee})}{1,000} \]

Savings for remaining measure life (next 9 years)
\[\Delta k\text{Wh} = \frac{\text{Hours} \times \text{BTUH} \times (1/\text{CEERbase} - 1/\text{CEERee})}{1,000} \]

308 Minimum Federal Standard for most common Room AC type - 8000-14,999 capacity range with louvered sides.

309 Minimum qualifying for ENERGY STAR most common Room AC type - 8000-14,999 capacity range with louvered sides.
Where:

- **Hours** = Run hours of Window AC unit
 = 325
- **BTUh** = Capacity of replaced unit
 = Actual or 8,500 if unknown
- **EERexist** = Efficiency of existing unit in BTUs per Watt-hour
 = 9.8
- **CEERbase** = Efficiency of baseline unit in BTUs per Watt-hour
 = 10.9
- **CEERee** = Efficiency of ENERGY STAR unit in BTUs per Watt-hour
 = Actual or CEER 12 if unknown

Illustrative example – do not use as default assumption
Replacing existing 8,500 BTUh Room AC unit with a new ENERGY STAR unit with CEER rating of 12:

Savings for remaining life of existing unit (1st 3 years)
\[
\Delta kWh = \frac{325 \times 8,500 \times \left(1/9.8 - 1/12\right)}{1,000}
\]
\[
= 52 kWh
\]

Savings for remaining measure life (next 9 years)
\[
\Delta kWh = \frac{325 \times 8,500 \times \left(1/10.9 - 1/12\right)}{1,000}
\]
\[
= 23 kWh
\]

Summer Coincident Peak kW Savings Algorithm

310 VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI: http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at 31%. Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC.

311 Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

312 Minimum Federal Standard for most common room AC type (8000-14,999 capacity range with louvered sides) per federal standards from 10/1/2000 to 5/31/2014. Note that this value is the EER value, as CEER were introduced later.

Savings for remaining life of existing unit (1st 3 years)
\[\Delta kW = ((\text{BTUH} \times (1/\text{EERexist} - 1/\text{CEERee}))/1000) \times CF \]

Savings for remaining measure life (next 9 years)
\[\Delta kW = ((\text{BTUH} \times (1/\text{CEERbase} - 1/\text{CEERee}))/1000) \times CF \]

Where:
- \(CF_{SSP} \) = Summer System Peak Coincidence Factor for Room A/C (hour ending 5pm on hottest summer weekday)
 \[= 0.31 \]
- \(CF_{PJM} \) = PJM Summer Peak Coincidence Factor for Room A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather
 \[= 0.3 \]

Illustrative example – do not use as default assumption
Replacing existing 8,500 BTUh Room AC unit with a new ENERGY STAR unit with CEER rating of 12.0.

Savings for remaining life of existing unit (1st 3 years)
\[\Delta kW_{SSP} = ((8,500 \times (1/9.8 - 1/12))/1,000) \times 0.31 \]
\[= 0.0493 \text{ kW} \]

Savings for remaining measure life (next 9 years)
\[\Delta kW_{SSP} = ((8,500 \times (1/10.9 - 1/12))/1,000) \times 0.31 \]
\[= 0.0222 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm
n/a

314 Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.
315 Consistent with coincidence factors found in:
Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this early replacement measure is provided below.\(^{316}\)

<table>
<thead>
<tr>
<th>Product Type and Class (BTU/hour) Specified by Mid A TRM</th>
<th>With Louvered Sides</th>
<th>Without Louvered Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Reverse Cycle < 8,000</td>
<td>$244</td>
<td>$205</td>
</tr>
<tr>
<td>8,000 to 10,999</td>
<td>$361</td>
<td>$311</td>
</tr>
<tr>
<td>11,000 to 13,999</td>
<td>$451</td>
<td>$398</td>
</tr>
<tr>
<td>14,000 to 19,999</td>
<td>$579</td>
<td>$523</td>
</tr>
<tr>
<td>20,000 to 24,999</td>
<td>$692</td>
<td>$692</td>
</tr>
<tr>
<td>25,000 to 27,999</td>
<td>$809</td>
<td>$812</td>
</tr>
<tr>
<td>>=28,000</td>
<td>$896</td>
<td>$911</td>
</tr>
<tr>
<td>With Reverse Cycle <14,000</td>
<td>NA</td>
<td>$313</td>
</tr>
<tr>
<td>>= 14,000</td>
<td>NA</td>
<td>$592</td>
</tr>
<tr>
<td><20,000</td>
<td>$333</td>
<td>NA</td>
</tr>
<tr>
<td>>=20,000</td>
<td>$764</td>
<td>NA</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 12 years\(^{317}\). Note this characterization also assumes there is 3 years of remaining useful life of the unit being replaced\(^{318}\).

Operation and Maintenance Impacts

\(^{316}\) Costs are from Itron, _Mid-Atlantic TRM Version 7.0 Incremental Costs Update_, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 WO017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA

\(^{318}\) Based on Connecticut TRM; Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year
The net present value of the deferred replacement cost (the cost associated with the replacement of the existing unit with a standard unit that would have occurred in 3 years, had the existing unit not been replaced) should be calculated as:

$$ NPV_{\text{deferred replacement cost}} = (\text{Actual Cost of ENERGY STAR unit} - $240^{319}) \times 86\%^{320}. $$

Note that this is a lifecycle cost savings (i.e. a negative cost).

319 Itron Incremental Cost Review 2017
320 With a discount rate of 5%, the net present value of replacement in year 4 would be $0.95^3 = 0.86$.

Room Air Conditioner, Early Retirement / Recycling

Unique Measure Code: RS_HV_ERET_RA/C_0414
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes the savings resulting from implementing a drop off service taking existing working inefficient Room Air Conditioner units from service, prior to their natural end of life. This measure assumes that a percentage of these units will ultimately be replaced with a baseline standard efficiency unit (note that if it is actually replaced by a new ENERGY STAR qualifying unit, the savings increment between baseline and ENERGY STAR should be captured under the ENERGY STAR Room AC Time of Sale measure).

Definition of Baseline Condition
The baseline condition is the existing inefficient room air conditioning unit.

Definition of Efficient Condition
Not applicable. This measure relates to the retiring of an existing inefficient unit. A percentage of units however are assumed to be replaced with a baseline new unit and the savings are therefore reduced to account for these replacement units.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \left(\frac{\text{Hours} \times \text{BTU/hour} \times (1/\text{EERexist})}{1,000} \right) - \left(\frac{\%\text{replaced} \times \left(\text{Hours} \times \text{BTU/hour} \times (1/\text{EERnewbase}) \right)}{1,000} \right) \]

Where:
- \(\text{Hours} \) = Run hours of Window AC unit
- \(\text{BTU/hour} \) = Capacity of replaced unit

\[^{321} \] VEIC calculated the average ratio of FLH for Room AC (provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008) to FLH for Central Cooling (provided by AHRI: http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls) at 31%. Applying this to the FLH for Central Cooling provided for Baltimore (1050) we get 325 FLH for Room AC.
Illustrative example – do not use as default assumption
The turn in of an 8,500 BTU, 7.7 EER unit:

\[\Delta kWh = ((325 \times 8,500 \times (1/9.8))/1,000) - (0.76 \times ((325 \times 8,500 \times (1/10.9))/1,000) = 89 kWh \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = [(BTUH \times (1/EERexist))/1,000) - (%replaced \times BTUH \times (1/CEERnewbase))/1,000)] \times CF \]

Where:

\[CF_{SSP} = Summer System Peak Coincidence Factor for Room A/C (hour ending 5pm on hottest summer weekday) \]

322 Based on maximum capacity average from RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008.

323 Minimum Federal Standard for most common room AC type (8000-14,999 capacity range with louvered sides) per federal standards from 10/1/2000 to 5/31/2014. Note that this value is the EER value, as CEER were introduced later.

324 Based on Nexus Market Research Inc, RLW Analytics, December 2005; “Impact, Process, and Market Study of the Connecticut Appliance Retirement Program: Overall Report.” Report states that 63% were replaced with ENERGY STAR units and 13% with non-ENERGY STAR. However this formula assumes all are non-ENERGY STAR since the increment of savings between baseline units and ENERGY STAR would be recorded by the Time of Sale measure when the new unit is purchased.

325 Minimum Federal Standard for most common Room AC type - 8000-14,999 capacity range with louvered sides. Note that we assume the replacement is only at federal standard efficiency for the reason explained above. Current federal standards use CEER while previous federal standards used EER for efficiency levels.
Illustrative example – do not use as default assumption
The turn in of an 8500 BTUh, 9.8 EER unit:

\[\Delta kW_{SP} = \left(\frac{8,500 \times (1/9.8)}{1,000} \right) \times 0.31 - \left(\frac{0.76 \times \left(\frac{8,500 \times (1/10.9)}{1,000} \right)}{0.31} \right) \]

\[= 0.09 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this measure should be the actual implementation cost for recycling the existing unit, plus $184 to account for the replacement of 76% of the units.\(^{328}\)

Measure Life

The measure life is assumed to be 3 years\(^{329}\).

\(^{326}\) Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

\(^{328}\) The $184 replacement cost was calculated by multiplying the percentage assumed to be replaced (76%) by the assumed cost of a standard efficiency unit of $242 (=$0.76 \times $242 = $184). Cost is from Itron 2017 measure cost update available on NEEP website.

\(^{329}\) 3 years of remaining useful life based on Connecticut TRM; Connecticut Energy Efficiency Fund; CL&P and UI Program Savings Documentation for 2008 Program Year.
Operation and Maintenance Impacts

The net present value of the deferred replacement cost (the cost associated with the replacement of those units that would be replaced, with a standard unit that would have had to have occurred in 3 years, had the existing unit not been replaced) is calculated as $158,330.

330 Determined by calculating the Net Present Value (with a 5% discount rate) of the annuity payments from years 4 to 12 of a deferred replacement of a standard efficiency unit costing multiplied by the 76%, the percentage of units being replaced (i.e. 0.76 * $170 = $129.2. Baseline cost from ENERGY STAR calculator; http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/CalculatorConsumerRoomAC.xls)
Boiler Pipe Insulation

Unique Measure Code: RS_HV_RFPIPEIN_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This measure describes adding insulation to un-insulated boiler pipes in un-conditioned basements or crawlspaces.
Note, the algorithm provided to calculate savings may be used to determine an appropriate deemed savings value if the programs can provide appropriate average values for each of the variables.
This is a retrofit measure.

Definition of Baseline Condition
The baseline condition is an un-insulated boiler pipe.

Definition of Efficient Condition
The efficient condition is installing pipe wrap insulation to a length of boiler pipe.

Annual Energy Savings Algorithm
N/A

Summer Coincident Peak kW Savings Algorithm
N/A

Annual Fossil Fuel Savings Algorithm
\[\Delta MM_{BTU} = \frac{\left(\frac{1}{R_{\text{exist}}} - \frac{1}{R_{\text{new}}}\right) \times FLH_{\text{heat}} \times C_{\text{exist}} \times L \times \Delta T}{\eta_{\text{Boiler}}} /1,000,000 \]

Where:
\[R_{\text{exist}} = \text{Pipe heat loss coefficient of uninsulated pipe} \ [\text{hr}^{-1} \cdot ^\circ \text{F} \cdot \text{ft}^2 / \text{BTU}] \]
\[= 0.5^{331} \]

\[R_{\text{new}} = \text{Pipe heat loss coefficient of insulated pipe} \ [\text{hr}^{-1} \cdot ^\circ \text{F} \cdot \text{ft}^2 / \text{BTU}] \]
\[= \text{Actual} \ (0.5 + R \text{ value of insulation}) \]

331 Assumption based on data obtained from the 3E Plus heat loss calculation software provided by the NAIMA (North American Insulation Manufacturer Association) and derived from Table 15 and Table 16 of 2009 ASHRAE Fundamentals Handbook, Chapter 23 Insulation for Mechanical Systems, page 23.17.
EFLH = Equivalent Full load hours of heating

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>848</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>620</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>528</td>
</tr>
</tbody>
</table>

$L = \text{Length of boiler pipe in unconditioned space covered by pipe wrap} \ (\text{ft})$

$C_{\text{exist}} = \text{Circumference of bare pipe} \ (\text{ft}) \ (\text{Diameter} \ (\text{in}) \times \pi/12)$

$\Delta T = \text{Average temperature difference between circulated heated water and unconditioned space air temperature} \ (^\circ\text{F})$

<table>
<thead>
<tr>
<th>Pipes location</th>
<th>Outdoor Reset Controls</th>
<th>ΔT (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconditioned basement</td>
<td>Boiler without reset control</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Boiler with reset control</td>
<td>70</td>
</tr>
<tr>
<td>Crawlspace</td>
<td>Boiler without reset control</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Boiler with reset control</td>
<td>80</td>
</tr>
</tbody>
</table>

$\eta_{\text{Boiler}} = \text{Efficiency of boiler}$

$= 0.84$

333 Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program, technical report”, June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

334 Full load heating hours derived by adjusting FLHheat for Baltimore, MD based on Washington, DC HDD base 60°F: 620 *2957/3457 = 528 hours.

335 Assumes 160°F water temp for a boiler without reset control, 120°F for a boiler with reset control, and 50°F air temperature for pipes in unconditioned basements 40°F for pipes in crawlspace (Zone 4; NCDC 1881-2010 Normals, average of monthly averages Nov - Apr for zones 1-3 and Nov-March for zones 4 and 5).

336 Assumed efficiency of existing boilers.
Illustrative example – do not use as default assumption
Insulating 15 feet of 0.75” pipe with R-3 wrap (0.75” thickness) in a crawl space in
Wilmington, DE with a boiler without reset controls:

\[
\Delta \text{MMBTU} = \frac{((1/R_{\text{exist}}) - (1/R_{\text{new}})) \times FLH_{\text{heat}} \times C_{\text{exist}} \times L \times \Delta T}{\eta_{\text{Boiler}}} / 1,000,000
\]

\[
= \frac{\left(\left(\frac{1}{0.5} - \frac{1}{3.5}\right) \times 848 \times 0.196 \times 15 \times 120\right)}{0.85} / 1,000,000
\]

\[
= 0.63 \text{ MMBTU}
\]

Annual Water Savings Algorithm

N/A

Incremental Cost

The lifecycle NPV incremental cost for this retrofit measure should be the actual unit cost plus labor cost. If unknown, the measure cost including material and installation is assumed to be $3 per linear foot.\(^{337}\)

Deemed Lifetime of Efficient Equipment

The assumed lifetime of the measure is 15 years\(^{338}\).

Operation and Maintenance Impacts

N/A

\(^{337}\) Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeresources.com).

Boiler Reset Controls
Unique Measure Code: RS_HV_RF_BLRRES_0415
Effective Date: TBD
End Date: TBD

Measure Description
This measure relates to improving system efficiency by adding controls to residential heating boilers to vary the boiler entering water temperature relative to heating load as a function of the outdoor air temperature to save energy. The water can be run a little cooler during fall and spring, and a little hotter during the coldest parts of the winter. A boiler reset control has two temperature sensors - one outside the house and one in the boiler water. As the outdoor temperature goes up and down, the control adjusts the water temperature setting to the lowest setting that is meeting the house heating demand. There are also limits in the controls to keep a boiler from operating outside of its safe performance range.

Definition of Baseline Condition
Existing condensing boiler in a single family residential setting without boiler reset controls.

Definition of Efficient Condition
Natural gas single family residential customer adding boiler reset controls capable of resetting the boiler supply water temperature in an inverse fashion with outdoor air temperature. The system must be set so that the minimum temperature is not more than 10 degrees above manufacturer’s recommended minimum return temperature. This boiler reset measure is limited to existing condensing boilers serving a single family residence. Boiler reset controls for non-condensing boilers in single family residences should be implemented as a custom measure, and the cost-effectiveness should be confirmed.

Annual Energy Savings Algorithm
n/a

Summer Coincident Peak kW Savings Algorithm
n/a

Annual Fossil Fuel Savings Algorithm
\[\Delta \text{MMBTU} = (\text{Savings \%}) \times (\text{EFLHheat} \times \text{BTUh}) / 1,000,000 \]
Where:

\[\text{Savings \%} = \text{Estimated percent reduction in heating load due to boiler reset controls being installed} = 5\%^{339} \]

\[\text{EFLHheat} = \text{Equivalent Full Load Heating Hours} \]

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>848(^{340})</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>620(^{341})</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>528(^{342})</td>
</tr>
</tbody>
</table>

\[\text{BTUH} = \text{Input Capacity of Boiler} = \text{Actual} \]

Illustrative example – do not use as default
A boiler reset control is applied to a 80,000 BTUH boiler in Baltimore, MD.

\[\Delta \text{MMBTU} = 0.05 \times \frac{(620 \times 80,000)}{1,000,000} \]

\[= 2.48 \text{ MMBTU} \]

Annual Water Savings Algorithm
n/a

Incremental Cost
The cost of this measure is $612\(^{343}\)

\(^{339}\) Energy savings factor for residential applications taken from an article published by the Energy Solutions Center, a consortium of natural gas utilities, equipment manufacturers and vendors. See: http://cleanboiler.org/learn-about/boiler-efficiency-improvement/efficiency-index/boiler-reset-control/

\(^{341}\) Based on assumption from BG&E billing analysis of furnace program in the ’90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program, technical report”, June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

\(^{342}\) Full load heating hours derived by adjusting FLH\(_{heat}\) for Baltimore, MD based on Washington, DC HDD base 60°F: 620 \(\times 2957/3457 = 528\) hours.

Measure Life
The life of this measure is 15 years.\footnote{New York State TRM v4.0, April 2016}

Operation and Maintenance Impacts
n/a
Ground Source Heat Pumps

Unique Measure Code: RS_HV_TOS_GSHPS_0518, RS_HV_NC_GSHPS_0518
Effective Date: May 2018
End Date: TBD

Measure Description

This measure characterizes the installation of an ENERGY STAR qualified Ground Source Heat Pump (GSHP) either during new construction or at Time of Sale/Replacement of an existing system(s). The baseline is always assumed to be a new baseline Air Source Heat Pump. Savings are calculated due to the GSHP providing heating and cooling more efficiently than a baseline ASHP, and where a desuperheater is installed, additional Domestic Hot Water (DHW) savings occur due to displacing existing water heating.

The ENERGY STAR efficiency standards are presented below.

ENERGY STAR Requirements (Effective January 1, 2012)

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Cooling EER</th>
<th>Heating COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water-to-air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed Loop</td>
<td>17.1</td>
<td>3.6</td>
</tr>
<tr>
<td>Open Loop</td>
<td>21.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Water-to-Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed Loop</td>
<td>16.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Open Loop</td>
<td>20.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Direct Geoexchange</td>
<td>345</td>
<td>16</td>
</tr>
</tbody>
</table>

Evaluators should be aware that there will be an interaction between this measure and others, e.g. duct sealing, air sealing and insulation measures. Comprehensive building efficiency improvements will reduce load and may lead to downsizing of space conditioning equipment. To properly account for these interactive effects, energy modeling should be performed and those results should be used for savings attribution in place of savings algorithms shown here. Effects of HVAC downsizing can be attributed to either weatherization or HVAC, but not both. Definition of Baseline Condition

New Construction:

345 Direct GeoExchange (DGX) is defined by Energy Star as: “A geothermal heat pump model in which the refrigerant is circulated in pipes buried in the ground or submerged in water that exchanges heat with the ground, rather than using a secondary heat transfer fluid, such as water or antifreeze solution in a separate closed loop.” See https://www.energystar.gov/products/heating_cooling/heat_pumps_geothermal/key_product_criteria.
The baseline equipment is assumed to be an Air Source Heat Pump meeting the Federal Standard efficiency level; 14 SEER, 8.2 HSPF and 11.8 EER. If a desuperheater is installed, the baseline for DHW savings is assumed to be a Federal Standard electric hot water heater, with Energy Factor calculated as follows:

For <=55 gallons: \[EF = 0.96 - (0.0003 \times \text{rated volume in gallons}) \]
For >55 gallons: \[EF = 2.057 - (0.00113 \times \text{rated volume in gallons}) \]

If size is unknown, assume 50 gallons; 0.945 EF.

Time of Sale:

The baseline equipment is assumed to be an Air Source Heat Pump meeting the Federal Standard efficiency level; 14 SEER, 8.2 HSPF and 11.8 EER. If a desuperheater is installed, the baseline for DHW savings is assumed to be the existing home’s hot water heater fuel and efficiency.

If electric DHW, and unknown efficiency – assume efficiency is equal to pre 4/2015 Federal Standard:

\[EF = 0.93 - (0.00132 \times \text{rated volume in gallons}) \]

If size is unknown, assume 50 gallons; 0.864 EF

If gas water heater, and unknown efficiency – assume efficiency is equal to pre 4/2015 Federal Standard:

\[EF = (0.67 - 0.0019 \times \text{rated volume in gallons}) \]

If size is unknown, assume 40 gallons; 0.594 EF

If DHW fuel is unknown, assume electric DHW provided above.

Definition of Efficient Condition

346 The Federal Standard does not include an EER requirement, so it is approximated with this formula: \((-0.02 \times \text{SEER}^2) + (1.12 \times \text{SEER})\) Wassmer, M. (2003). A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations. Masters Thesis, University of Colorado at Boulder.

In order for this characterization to apply, the efficient equipment must be a Ground Source Heat Pump unit meeting the minimum ENERGY STAR efficiency level standards effective at the time of installation as detailed above.

Annual Energy Savings Algorithm

\[
\Delta k\text{Wh} = [\text{Cooling savings}] + [\text{Heating savings}] + [\text{DHW savings}]
\]

\[
= [(\text{FLH}_{\text{cool}} \times \text{BTU}_c \times (1/\text{SEER}_{\text{base}} - (1/\text{EER}_{\text{PL}})/1000)] + \\
[\text{FLH}_{\text{heat}} \times \text{BTU}_h \times (1/\text{HSPF}_{\text{base}} - (1/(\text{COP}_{\text{PL}} \times 3.412)))/1000] + [\text{ElecDHW} \times \%\text{DHWDisplaced} \times ((1/\text{EF}_{\text{ELEC}}) \times \text{GPD} \times \text{Household} \times 365.25 \times \gamma_{\text{Water}} \times (T_{\text{OUT}} - T_{\text{IN}}) \times 1.0) / 3412]
\]

Where:

- \(\text{FLH}_{\text{cool}}\) = *Full load cooling hours*
- \(\text{BTU}_c\) = *Cooling capacity in BTUs per hour (tons x 12,000BTU/hr)*
- \(\text{BTU}_h\) = *Heating capacity in BTUs per hour (tons x 12,000BTU/hr)*
- \(\text{SEER}_{\text{base}}\) = *SEER Efficiency of new replacement baseline unit*
- \(\text{SEER}_{\text{base}} = 14^{352}\)
- \(\text{EER}_{\text{FL}}\) = *Full Load EER Efficiency of efficient GSHP unit*\(^{353}\)
- \(\text{EER}_{\text{FL}} = \text{Actual installed}\)
- \(\text{FLH}_{\text{heat}}\) = *Full load heating hours*

<table>
<thead>
<tr>
<th>Location</th>
<th>Run Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>524 (^{350})</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>542 (^{351})</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>681</td>
</tr>
</tbody>
</table>

\(^{350}\) Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

\(^{353}\) As per Navigant-Cadmus 2017-2018 Deemed Savings Exception memo.
<table>
<thead>
<tr>
<th>Location</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>848354</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>620355</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>528356</td>
</tr>
</tbody>
</table>

\[HSPF_{base} = \text{Heating System Performance Factor of new replacement baseline heating system (kBTU/kWh)} \]
\[= 8.2 \text{ } 357 \]

\[COP_{FL} = \text{Full Load Coefficient of Performance of efficient unit} \]
\[= \text{Actual Installed} \]
\[= 3.412 \]
\[= \text{Constant to convert the COP of the unit to the Heating Season Performance Factor (HSPF).} \]

\[ElecDHW = 1 \text{ if existing DHW is electrically heated} \]
\[= 0 \text{ if existing DHW is not electrically heated} \]

\[\%DHW\text{Displaced} = \text{Percentage of total DHW load that the GSHP will provide} \]
\[= \text{Actual if known} \]
\[= \text{If unknown and if desuperheater installed assume 44%} \]
\[= 0\% \text{ if no desuperheater installed} \]

\[EF_{ELEC} = \text{Energy Factor (efficiency) of electric water heater} \]

For new construction assume federal standard360:

\[
\text{For } \leq 55 \text{ gallons: } 0.96 - (0.0003 \times \text{rated volume in gallons})
\]

355 Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program, technical report”, June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLH_{heat} assumption.

356 Full load heating hours derived by adjusting FLH_{heat} for Baltimore, MD based on Washington, DC HDD base 60°F: \(620 \times 2957/3457 = 528 \text{ hours.} \)

358 As per Navigant-Cadmus 2017-2018 Deemed Savings Exception memo

359 Assumes that the desuperheater can provide two thirds of hot water needs for eight months of the year \((2/3 \times 2/3 = 44\%)\). Based on input from Doug Dougherty, Geothermal Exchange Organization.

For >55 gallons: $2.057 - (0.00113 \times \text{rated volume in gallons})$

If size is unknown, assume 50 gallon; 0.945 EF.

For Time of Sale, if electric DHW use Actual efficiency. If unknown – assume efficiency is equal to pre 4/2015 Federal Standard:

$$EF = 0.93 - (0.00132 \times \text{rated volume in gallons})$$

If size is unknown, assume 50 gallon; 0.864 EF

\[GPD = \text{Gallons Per Day of hot water use per person}\]
\[= 45.5 \text{ gallons hot water per day per household}/2.59 \text{ people per household}\]
\[= 17.6\]

\[Household = \text{Average number of people per household}\]
\[= 2.53\]

\[365.25 = \text{Days per year}\]
\[\gamma_{\text{Water}} = \text{Specific weight of water}\]
\[= 8.33 \text{ pounds per gallon}\]

\[T_{OUT} = \text{Tank temperature}\]
\[= 125^\circ\text{F}\]

\[T_{IN} = \text{Incoming water temperature from well or municipal system}\]
\[= 60.9\]

\[1.0 = \text{Heat Capacity of water (1 BTU/lb}^\circ\text{F})\]

\[3412 = \text{Conversion from BTU to kWh}\]

Illustrative Example – do not use as default assumption

362 Based upon email message from Maureen Hodgins, Research Manager for Water Research Foundation, on August 26, 2014.

New Construction:
For example, a 3-ton unit with Part Load EER rating of 19 and Part Load COP of 4.4 with desuperheater is installed with a 50-gallon electric water heater in single family house in Baltimore:

$$\Delta \text{kWh} = \left[(\text{FLHcool} \times \text{BTUc} \times (1/\text{SEER}_{\text{base}} - (1/\text{EER}_{\text{PL}})/1000) + [(\text{FLHheat} \times \text{BTUh} \times (1/\text{HSPF}_{\text{base}} - (1/\text{COP}_{\text{PL}} \times 3.412))/1000] + [\text{ElecDHW} \times \%\text{DHWDisplaced} \times (((1/\text{EF}_{\text{ELEC EXIST}}) \times \text{GPD} \times \text{Household} \times 365.25 \times \gamma_{\text{Water}} \times (T_{\text{OUT}} - T_{\text{IN}}) \times 1.0)/3412)] \right]$$

$$\Delta \text{kWh} = \left[\left(542 \times 36,000 \times (1/14 - 1/19) / 1000\right) + \left(620 \times 36,000 \times (1/8.2 - 1/(4.4 \times 3.412)) / 1000\right) + \left[1 \times 0.44 \times (((1/0.945) \times 17.6 \times 2.53 \times 365.25 \times 8.33 \times (125-60.9) \times 1)/3412)\right]\right]$$

$$= 367 + 1235 + 1185$$

$$= 2787 \text{ kWh}$$

Summer Coincident Peak kW Savings Algorithm

$$\Delta \text{kW} = (\text{BTUc} \times (1/\text{EER}_{\text{base}} - 1/\text{EER}_{\text{PL}}))/1000 \times \text{CF}$$

Where:

- $\text{EER}_{\text{base}} = \text{EER Efficiency of new replacement unit}$
- $\text{EER}_{\text{FL}} = \text{Full Load EER Efficiency of ENERGY STAR GSHP unit}$
- $\text{CF}_{\text{SSP}} = \text{Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday)}$
- $\text{CF}_{\text{PJM}} = \text{PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather}$

365 The Federal Standard does not include an EER requirement, so it is approximated with the conversion formula from Wassmer, M. 2003 thesis referenced below.

366 As per conversations with David Buss territory manager for Connor Co, the EER rating of an ASHP equate most appropriately with the full load EER of a GSHP.

367 Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.

368 Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.
Illustrative Example— do not use as default assumption

New Construction or Time of Sale:
For example, a 3-ton unit with Full Load EER rating of 19:
\[
\Delta kW_{SSP} = \frac{(36,000 \times (1/11.8 - 1/19))}{1000} \times 0.69 \\
= 0.80 \text{ kW}
\]
\[
\Delta kW_{PJM} = \frac{(36,000 \times (1/11 - 1/19))}{1000} \times 0.66 \\
= 0.76 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm
Savings for Time of Sale where existing hot water heater is gas fired:
\[
\Delta \text{MMBTU} = [\text{DHW Savings}] \\
= [(1 - \text{ElecDHW}) \times \%\text{DHWDisplaced} \times (1/ \text{EF}_{\text{GAS BASE}} \times \text{GPD} \times \text{Household} \times 365.25 \times \gamma_{\text{Water}} \times (T_{\text{OUT}} - T_{\text{IN}}) \times 1.0) / 1,000,000)
\]
Where:
\[
\text{EF}_{\text{GAS EXIST}} = \text{Energy Factor (efficiency) of existing gas water heater} \\
= \text{Actual. If unknown assume efficiency is equal to pre 4/2015 Federal Standard:} \\
= (0.67 - 0.0019 \times \text{rated volume in gallons})^{369}. \\
\text{If size is unknown, assume 40 gallons; 0.594 EF}
\]

All other variables provided above

Illustrative Example – do not use as default assumption

Time of Sale:
For example, a GSHP with desuperheater is installed with a 40-gallon gas water heater in single family house in Baltimore
\[
\Delta \text{MMBTU} = [(1 - \text{ElecDHW}) \times \%\text{DHWDisplaced} \times (1/ \text{EF}_{\text{GAS BASE}} \times \text{GPD} \times \text{Household} \times 365.25 \times \gamma_{\text{Water}} \times (T_{\text{OUT}} - T_{\text{IN}}) \times 1.0) / 1,000,000]) \\
= [(1 - 0) \times 0.44 \times (((1/0.594) \times 17.6 \times 2.53 \times 365.25 \times 8.33 \times (125 - 60.9) \times 1)/1,000,000))] \\
= 6.4 \text{ MMBTU}
\]

Annual Water Savings Algorithm
n/a

Incremental Cost
New Construction and Time of Sale: The lifecycle NPV incremental cost should be the actual installed cost of the Ground Source Heat Pump, including the ground loop and desuperheater, if installed, (default of $3,957 per ton\(^{370}\)), minus the assumed installed cost of the baseline equipment ($838 per ton for ASHP\(^{371}\)).

Measure Life
The expected measure life is assumed to be 20 years\(^{372}\).

Operation and Maintenance Impacts
N/A

High Efficiency Bathroom Exhaust Fan
Unique Measure Code(s): RS_HV_TOS_BTHFAN_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This market opportunity is defined by the need for continuous mechanical ventilation due to reduced air-infiltration from a tighter building shell. In retrofit projects, existing fans may be too loud, or insufficient in other ways, to be operated as required for proper ventilation. This measure assumes a fan capacity of 20 CFM rated at a sound level of less than 2.0 sones at 0.1 inches of water column static pressure. This measure may be applied to larger capacity, up to 130 CFM, efficient fans with bi-level controls because the savings and incremental costs are very similar. All eligible

\(^{370}\) Based on data provided to VEIC in ‘Results of Home geothermal and air source heat pump rebate incentives documented by Illinois electric cooperatives’.

\(^{371}\) Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 WO017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA.

\(^{372}\) The ground loop has a much longer life, but the compressor and other mechanical components are the same as an ASHP. Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007. http://www.energizect.com/sites/default/files/Measure%20Life%20Report%202007.
installations shall be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2.

Definition of Baseline Condition
New standard efficiency (average CFM/Watt of 3.1\(^{373}\)) exhaust-only ventilation fan, quiet (< 2.0 sones) operating in accordance with recommended ventilation rate indicated by ASHRAE 62.2\(^{374}\).

Definition of Efficient Condition
New efficient (average CFM/watt of 8.3\(^{375}\)) exhaust-only ventilation fan, quiet (< 2.0 sones) Continuous operation in accordance with recommended ventilation rate (20 CFM) indicated by ASHRAE 62.2\(^{376}\).

Annual Energy Savings Algorithm

\[
\Delta k\text{Wh} = \left(\text{CFM} \times \frac{1}{\eta_{\text{Baseline}}} - \frac{1}{\eta_{\text{Efficient}}}\right) / 1000 \times \text{Hours}
\]

Where:
- \(\text{CFM}\) = Nominal Capacity of the exhaust fan
 = 20 CFM\(^{377}\)
- \(\eta_{\text{Baseline}}\) = Average efficacy for baseline fan
 = 3.1 CFM/Watt\(^{378}\)
- \(\eta_{\text{Efficient}}\) = Average efficacy for efficient fan
 = 8.3 CFM/Watt\(^{379}\)
- \(\text{Hours}\) = assumed annual run hours,
 = 8760 for continuous ventilation.

\(^{373}\) VEIC analysis looking at average baseline fan (i.e. non-Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.

\(^{374}\) On/off cycling controls may be required of baseline fans larger than 50CFM.

\(^{375}\) VEIC analysis looking at average efficient fan (i.e. Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.

\(^{376}\) Bi-level controls may be used by efficient fans larger than 50 CFM.

\(^{377}\) 20 CFM is used with continuous bathroom ventilation in ASHRAE 62.2. Note that 50CFM is the closest available fan size to ASHRAE 62.2 Section 4.1 Whole House Ventilation rates based upon typical square footage and bedrooms.

\(^{378}\) VEIC analysis looking at average baseline fan (i.e. non-Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.

\(^{379}\) VEIC analysis looking at average efficient fan (i.e. Brushless Permanent Magnet) efficacies at static pressures of 0.1 and 0.25 inches of water column for quiet fans rated for 50 CFM.
\[\Delta \text{kWh} = (20 \times (1/3.1 - 1/8.3))/1000 \times 8760 \]
\[= 35.4 \text{ kWh} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = (\text{CFM} \times (1/\eta_{\text{Baseline}} - 1/\eta_{\text{Efficient}})/1000) \times CF \]

Where:

\[CF = \text{Summer Peak Coincidence Factor} \]
\[= 1.0 \text{ (continuous operation)} \]

Other variables as defined above

\[\Delta \text{kW} = (20 \times (1/3.1 - 1/8.3))/1000 \times 1.0 \]
\[= 0.0040 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

For this time of sale measure, the incremental cost per installed fan is $43.50.\(^\text{380}\)

Measure Life

The expected measure life is assumed to be 19 years.\(^\text{381}\)

Operation and Maintenance Impacts

N/A

\(^{380}\) VEIC analysis using cost data collected from wholesale vendor; http://www.westsidewholesale.com/.

ENERGY STAR Ceiling Fan

Unique Measure Code: RS_HV_TOS_ESCFN_0415, RS_HV_NC_ESCFN_0415
Effective Date: June 2015
End Date: TBD

Measure Description

A ceiling fan/light unit meeting the ENERGY STAR efficiency specifications is installed in place of a model meeting the federal standard. ENERGY STAR qualified ceiling fan/light combination units are over 60% more efficient than conventional fan/light units, and use improved motors and blade designs.

Due to the savings from this measure being derived from more efficient ventilation and more efficient lighting, and the loadshape and measure life for each component being very different, the savings are split in to the component parts and should be claimed together. Lighting savings should be estimated utilizing the ENERGY STAR Integrated Screw Based SSL screw-in measure.

Definition of Baseline Equipment

The baseline equipment is assumed to be a standard fan with EISA qualified incandescent or halogen light bulbs.

Definition of Efficient Equipment

The efficient equipment is defined as an ENERGY STAR certified ceiling fan with integral LED bulbs.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \Delta \text{kWh}_{\text{fan}} + \Delta \text{kWh}_{\text{Light}} \]

\[\Delta \text{kWh}_{\text{fan}} = [\text{Days} \times \text{FanHours} \times (\%\text{Low}_{\text{base}} \times \text{WattsLow}_{\text{base}}) + (\%\text{Med}_{\text{base}} \times \text{WattsMed}_{\text{base}}) + (\%\text{High}_{\text{base}} \times \text{WattsHigh}_{\text{base}})]/1000] - [\text{Days} \times \text{FanHours} \times (\%\text{Low}_{\text{ES}} \times \text{WattsLow}_{\text{ES}}) + (\%\text{Med}_{\text{ES}} \times \text{WattsMed}_{\text{ES}}) + (\%\text{High}_{\text{ES}} \times \text{WattsHigh}_{\text{ES}})]/1000] \]

\[^{389} \text{Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all showerhead installations.} \]
$$\Delta kWh_{\text{light}} = \frac{(Watts\text{Base} - Watts\text{EE})}{1000} \times \text{ISR} \times \text{HOURS} \times (\text{WHF}_{\text{Heat}} + (\text{WHF}_{\text{Cool}} - 1))$$

See ENERGY STAR Integrated Screw Based SSL screw-in measure (assume ISR = 1.0)

Where\(^{383}\):

- **Days** = Days used per year
 - Actual. If unknown use 365.25 days/year
- **FanHours** = Daily Fan “On Hours”
 - Actual. If unknown use 3 hours
- **%Low\text{base}** = Percent of time spent at Low speed of baseline
 - 40%
- **Watts\text{Low\text{base}}** = Fan wattage at Low speed of baseline
 - Actual. If unknown use 15 watts
- **%Med\text{base}** = Percent of time spent at Medium speed of baseline
 - 40%
- **Watts\text{Med\text{base}}** = Fan wattage at Medium speed of baseline
 - Actual. If unknown use 34 watts
- **%High\text{base}** = Percent of time spent at High speed of baseline
 - 20%
- **Watts\text{High\text{base}}** = Fan wattage at High speed of baseline
 - Actual. If unknown use 67 watts
- **%Low\text{ES}** = Percent of time spent at Low speed of ENERGY STAR
 - 40%
- **Watts\text{Low\text{ES}}** = Fan wattage at Low speed of ENERGY STAR
 - Actual. If unknown use 6 watts
- **%Med\text{ES}** = Percent of time spent at Medium speed of ENERGY STAR
 - 40%

\(^{383}\) Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all showerhead installations.
\[\text{WattsMed}_{\text{ES}} = \text{Fan wattage at Medium speed of ENERGY STAR} \]
\[= \text{Actual. If unknown use 23 watts} \]
\[\%\text{High}_{\text{ES}} = \text{Percent of time spent at High speed of ENERGY STAR} \]
\[= 20\% \]
\[\text{WattsHigh}_{\text{ES}} = \text{Fan wattage at High speed of ENERGY STAR} \]
\[= \text{Actual. If unknown use 56 watts} \]

For ease of reference, the fan assumptions are provided below in table form:

<table>
<thead>
<tr>
<th></th>
<th>Low Speed</th>
<th>Medium Speed</th>
<th>High Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent of Time at Given Speed</td>
<td>40%</td>
<td>40%</td>
<td>20%</td>
</tr>
<tr>
<td>Conventional Unit Wattage</td>
<td>15</td>
<td>34</td>
<td>67</td>
</tr>
<tr>
<td>ENERGY STAR Unit Wattage</td>
<td>6</td>
<td>23</td>
<td>56</td>
</tr>
<tr>
<td>(\Delta W)</td>
<td>9</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

If the lighting \(\text{WattsBase} \) and \(\text{WattsEE} \) is unknown, assume the following
\[\text{WattsBase} = 3 \times 43 = 129 \text{ W} \]
\[\text{WattsEE} = 1 \times 42 = 42 \text{ W} \]

Deemed savings if using defaults provided above:
\[\Delta \text{kWh}_{\text{fan}} = [365.25 \times 3 \times ((0.4 \times 15) + (0.4 \times 34) + (0.2 \times 67))/1000] - [365.25 \times 3 \times ((0.4 \times 6) + (0.4 \times 23) + (0.2 \times 56))/1000] \]
\[= 36.2 - 25.0 \]
\[= 11.2 \text{ kWh} \]

\[\Delta \text{kWh}_{\text{light}} = ((129 - 42)/1000) \times 1.0 \times 898 \times (0.899 + (1.09 - 1)) \]
\[= 77.3 \text{ kWh} \]

\[\Delta \text{kWh} = 11.2 + 77.3 \]
\[= 88.5 \text{ kWh} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \Delta kW_{\text{Fan}} + \Delta kW_{\text{light}} \]

\[\Delta kW_{\text{Fan}} = ((\text{WattsHigh}_{\text{base}} - \text{WattsHigh}_{\text{ES}})/1000) \times \text{CF_{fan}} \]
\[\Delta kW_{\text{Light}} = \left(\frac{\text{WattsBase} - \text{WattsEE}}{1000} \right) \times \text{ISR} \times \text{WHFd} \times \text{CFlight} \]

See General Purpose CFL Screw Based, Residential measure (assume ISR = 1.0)

Where:

\[C_{\text{fanSSP}} = \text{Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday)} \]
\[= 0.31^{384} \]

\[C_{\text{fanPJM}} = \text{PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm) valued at peak weather} \]
\[= 0.3^{385} \]

\[\text{CFlight} = \text{Summer Peak coincidence factor for lighting savings} \]

<table>
<thead>
<tr>
<th>Installation Location</th>
<th>Type</th>
<th>Coincidence Factor CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential interior and in-unit Multi Family</td>
<td>Utility Peak CF</td>
<td>0.082(^{386})</td>
</tr>
<tr>
<td></td>
<td>PJM CF</td>
<td>0.084(^{387})</td>
</tr>
</tbody>
</table>

Deemed savings if using defaults provided above:
\[\Delta kW_{\text{fan ssp}} = \left(\frac{67 - 56}{1000} \right) \times 0.31 \]
\[= 0.0034 \text{ kW} \]

\[\Delta kW_{\text{light ssp}} = \left(\frac{129 - 42}{1000} \right) \times 1.0 \times 1.17 \times 0.082 \]
\[= 0.0083 \text{ kW} \]

\[\Delta kW_{\text{ssp}} = 0.0034 + 0.0083 \]
\[= 0.012 \text{ kW} \]

\[\Delta kW_{\text{fan pjm}} = \left(\frac{67 - 56}{1000} \right) \times 0.3 \]

\(^{389}\) Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all showerhead installations.
=0.0033 kW

\[\Delta kW_{\text{light, pj}} = \frac{(129 - 42)}{1000} \times 1.0 \times 1.18 \times 0.084 \]
\[= 0.0086 kW \]

\[\Delta kW_{\text{pj}} = 0.0033 + 0.0086 \]
\[= 0.012 kW \]

Annual Fossil Fuel Savings Algorithm

Heating penalty from improved lighting:

\[\Delta MMBTU_{\text{Penalty}} = - \frac{(((\text{WattsBase} - \text{WattsEE}) / 1000) \times \text{ISR} \times \text{Hours} \times \text{HF} \times 0.003412)}{\eta_{\text{Heat}}} \times \% \text{FossilHeat} \]

See General Purpose CFL Screw Based, Residential measure (assume ISR = 1.0)

Deemed savings if using defaults provided above:

\[\Delta MMBTU_{\text{Penalty}} = - \frac{(((129 - 42) / 1000) \times 1.0 \times 898 \times 0.47 \times 0.003412)}{0.84} \times 0.625 \]
\[= -0.09 \]

Annual Water Savings Algorithm

n/a

Incremental Cost

For this time of sale measure, the Incremental cost per unit is assumed to be $46.388

Measure Life

The measure life is assumed to be 15 years.

Operation and Maintenance Impacts

See the ENERGY STAR Integrated Screw Based SSL LED Measure.

389 Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all showerhead installations.
Domestic Hot Water (DHW) End Use

Low Flow Shower Head

Unique Measure Code(s): RS_WT_DIAG_SHWRHD_0518, RS_WT_TOS_SHWRHD_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure relates to the installation of a low flow (≤2.0 GPM) showerhead in a home. This is a retrofit direct install measure or a new installation.

Definition of Baseline Condition
The baseline is a standard showerhead using 2.5 GPM. For direct install programs, utilities may choose to measure the actual flow rate of the existing showerhead and use that in the algorithm below.

Definition of Efficient Condition
The efficient condition is an energy efficient shower head with a lower GPM flow than required by code. If baseline flow is not measured in the program, then the rated flow can be used for the efficient condition. However, if actual measured flow rates of the baseline fixtures are used in a direct install program, then the actual measured flow rate of the installed efficient aerators should be used as well.

Annual Energy Savings Algorithm

If electric domestic water heater:

\[
\Delta kWh = \frac{((GPM_{base} - GPM_{low}) \times Time_{shower} \times \#\ people \times Showers_{Person} \times days/year \times \#\ ShowerHeads/home) \times 8.3 \times \left(TEMP_{sh} - TEMP_{in}\right)}{DHW\ Recovery\ Efficiency} \times 3,412
\]

Where:

\[
GPM_{base} = Gallons\ Per\ Minute\ of\ baseline\ showerhead
\]

\[
GPM_{low} = Gallons\ Per\ Minute\ of\ low\ flow\ showerhead
\]

Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all showerhead installations.

The Energy Policy Act of 1992 (EPAct) established the maximum flow rate for showerheads at 2.5 gallons per minute (gpm).
= Rated flow rate of unit installed or actual flow rate if baseline flow rate used.

people = Number of people per household, if unknown, use 2.53

Time\text{Shower} = 7.8 \text{ minutes}^{392}

Showers\text{Person} = \text{Average showers per person per day} = 0.6^{393}

days/\text{year} = \text{Days shower used per year} = 365

\text{ShowerHeads/home} = \text{Average number of showers in the home} = 1.3^{394}

8.3 = \text{Constant to convert gallons to lbs}

\text{TEMPsh} = \text{Assumed temperature of water used for shower} = 105

\text{TEMPin} = \text{Assumed temperature of water entering house} = 60.9^{395}

\text{DHW Recovery Efficiency} = \text{Recovery efficiency of electric water heater} = 0.98^{396}

3412 = \text{Constant BTU per kWh}

392 Table 6. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. The study compared shower length by single-family and multifamily populations, finding no statistical difference in showering times. For the energy-saving analysis, the study used the combined single-family and multifamily average shower length of 7.8 minutes. Per Pennsylvania TRM-2016

393 Table 8. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. For each shower fixture metered, the evaluation team knew the total number of showers taken, duration of time meters remained in each home, and total occupants reported to live in the home. From these values average showers taken per day, per person was calculated. The study compared showers per day, per person by single-family and multifamily populations, finding no statistical difference in the values. For the energy-saving analysis, the study used the combined single-family and multifamily average showers per day, per person of 0.6. Per Pennsylvania TRM-2016

394 Table 9; Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013

Illustrative example – do not use as default assumption
For a 2.0GPM rated showerhead:

\[\Delta \text{kWh} = \left((2.5 - 2.0) \times 7.8 \times 2.53 \times 365 / 1.3 \right) \times 8.3 \times (101 \text{ - 60.9}) / .98 / 3412 \]

= 276 kWh

Note, utilities may consider whether it is appropriate to claim kWh savings from the reduction in water consumption arising from this measure. The kWh savings would be in relation to the pumping and wastewater treatment. See water savings for characterization.

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = \Delta \text{kWh} / \text{hours} \times \text{CF} \]

Where:

- **Hours** = Average number of hours per year spent using shower head

 = Time\text{shower} x # people x Showers\text{Person} / 60 x days /year

 = 7.8 x 2.53 x 0.6 / 60 x 365

 = 72 hours

- **CF** = Summer Peak Coincidence Factor for measure

 = 0.00371 \(^{397}\)

Illustrative example – do not use as default assumption
For a 2.0GPM rated showerhead:

\[\Delta \text{kW} = 276 / 72 \times 0.00371 \]

= 0.014 kW

Annual Fossil Fuel Savings Algorithm

If fossil fuel domestic water heater:

\(^{397}\) Calculated as follows: Assume 9% showers take place during peak hours (based on:

9% * 7.42 minutes per day (11.6 * 2.56 / 1.6 / 2.5 = 7.42) = 0.668 minutes

= 0.668 / 180 (minutes in peak period) = 0.00371
$$\Delta \text{MMBTU} =$$

$$((\text{GPMbase} - \text{GPMlow}) \times \text{Time}_{\text{shower}} \times \# \text{people} \times \text{Showers}_{\text{Person}} \times$$

$$\text{days/year} / \text{ShowerHeads/home}) \times 8.3 \times (\text{TEMP}_{\text{sh}} - \text{TEMP}_{\text{in}}) / \text{Gas DHW Recovery Efficiency} / 10^6$$

Where:

- \text{Gas DHW Recovery Efficiency} = \text{Recovery efficiency of gas water heater} = 0.80^{398}
- \text{All other variables} = \text{As above}

Illustrative example – do not use as default assumption
For a 2.0GPM rated showerhead:

$$\Delta \text{MMBTU} = ((2.5 - 2.0) \times 7.8 \times 2.53 \times 365 / 1.3) \times 8.3 \times (101 - 60.9) /$$

$$0.80 / 10^6$$

$$= 1.23 \text{ MMBTU}$$

\textbf{Annual Water Savings Algorithm}

\text{Water Savings} = ((\text{GPMbase} - \text{GPMlow}) \times \text{Time}_{\text{shower}} \times \# \text{people} \times$$

$$\text{Showers}_{\text{Person}} \times \text{days/year} / \text{ShowerHeads/home}) / 748$$

Where:

- 748 = \text{Constant to convert from gallons to CCF}
- \text{All other variables} = \text{as above}

Illustrative example – do not use as default assumption
For a 2.0GPM rated showerhead:

$$\text{Water Savings} = ((2.5 - 2.0) \times 7.8 \times 2.53 \times 365 / 1.3) / 748$$

$$= 3.7 \text{ CCF}$$

\(^{398}\)Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87\%. Average of existing units is estimated at 75\%.

kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities’ must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

\[\Delta \text{kWh}_{\text{water}} = 2.07 \text{ kWh/CCF} \times \Delta \text{Water (CCF)} \]

Illustrative example – do not use as default assumption
For a 2.0GPM rated showerhead:

\[\Delta \text{kWh}_{\text{water}} = 2.07 \times 3.7 \]
\[= 7.7 \text{ kWh} \]

Incremental Cost
As a retrofit measure, the lifecycle NPV incremental cost will be the actual cost of installing the new showerhead. As a time of sale measure, the lifecycle NPV incremental cost is assumed to be $2.399

Measure Life
The measure life is assumed to be 10 years.400

Operation and Maintenance Impacts
When a retrofit measure, there would be a very small O&M benefit associated with the deferral of the next replacement, but this has conservatively not been characterized.

Faucet Aerators
Unique Measure Code(s): RS_WT_DI_FAUCET_0518 and RS_WT_TOS_FAUCET_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure relates to the installation of a low flow (≤1.5 GPM) faucet aerator in a home. This could be a retrofit direct install measure or a new installation.

Definition of Baseline Condition
The baseline is a standard faucet aerator using 2.2 GPM. For direct install programs, utilities may choose to measure the actual flow rate of the existing aerator and use that in the algorithm below.

Definition of Efficient Condition
The efficient condition is an energy efficient faucet aerator using rated GPM of the installed aerator. If actual flow rates of the baseline fixtures are used in a direct install program, then the actual flow rate of the installed aerators should be used as well.

Annual Energy Savings Algorithm
If electric domestic water heater:

\[
\Delta kWH = \left(((GPM_{base} \times Throttle_{base}) - (GPM_{low} \times Throttle_{low})) \times \text{Time}_{faucet} \times \#people \times \text{days/year} \times \text{DR} \right) \times 8.3 \times (\text{Temp}_{ft} - \text{Temp}_{in}) / \text{DHW Recovery Efficiency} / 3412
\]

Where:
- \(GPM_{base}\) = Gallons Per Minute of baseline faucet
- \(GPM_{low}\) = Gallons Per Minute of low flow faucet
- \# people = Average number of people per household

Note, the algorithm and variables are provided as documentation for the deemed savings result provided which should be claimed for all faucet aerator installations.

In 1998, the Department of Energy adopted a maximum flow rate standard of 2.2 gpm at 60 psi for all faucets: 63 Federal Register 13307; March 18, 1998.

Time_{faucet} = 3 minutes^{404}
\text{gals/day/person} = \text{Average gallons per day used by faucet per person}
\quad = \text{Time}_{faucet} \times \text{GPM}_{base}
\quad = \text{if unknown, use 6.6}
\text{days/y} = \text{Days faucet used per year}
\quad = 365
\text{DR} = \text{Percentage of water flowing down drain (if water is collected in a sink, a faucet aerator will not result in any saved water)}
\quad = 50\% \text{ for kitchens, 70\% for bathrooms}
\text{Throttle}_{base} = 83\%
\text{Throttle}_{low} = 95\%^{405}
\text{8.3} = \text{Constant to convert gallons to lbs}
\text{TEMP}_{ft} = \text{Assumed temperature of water used by faucet}
\quad = 93 \text{ kitchen}, 86 \text{ bathrooms}\text{Error! Bookmark not defined.}
\text{TEMP}_{in} = \text{Assumed temperature of water entering house}
\quad = 60.9^{406}
\text{DHW Recovery Efficiency} = \text{Recovery efficiency of electric water heater}
\quad = 0.98^{407}
0.003412 = \text{Constant to converts MMBTU to kWh}

Illustrative example – do not use as default assumption
For a 1.5 GPM rated aerator in a kitchen:
\[\Delta k\text{WH} = \frac{((2.2 \times 0.83) - (1.5 \times 0.950)) \times 3 \times 2.53 \times 365 \times 0.5 \times 8.3 \times (93 - 60.9)}{0.98 \times 3412} \]
\[= 44 \text{ kWh} \]

^{404} \text{Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. If aerator location is known, use the corresponding kitchen/bathroom value. If unknown, use 3 min/person/day as the average length of use value, which is the total for the household: kitchen (4.5 min/person/day) + bathroom (1.6 min/person/day) = 6.1 min/person/day/2. Via Pennsylvania TRM}

Note, utilities may consider whether it is appropriate to claim kWh savings from the reduction in water consumption arising from this measure. The kWh savings would be in relation to the pumping and wastewater treatment. See water savings for characterization.

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \Delta kWh/\text{hours} \times CF
\]

Where:

- **Hours** = Average number of hours per year spent using faucet
 = \#people x Time_{faucet} / 60 \times 365
 = 2.53 \times 3 / 60 \times 365
 = 46 hours

- **CF** = Summer Peak Coincidence Factor for measure
 = 0.00262 \(^{408}\)

Illustrative example – do not use as default assumption

For a 1.5 GPM rated aerator:

\[
\Delta kW = \frac{44}{46} \times 0.00262
\]

\[= 0.025 \text{ kW}\]

Annual Fossil Fuel Savings Algorithm

If fossil fuel domestic water heater, MMBTU savings provided below:

\[
\Delta \text{MMBTU} = \frac{((\text{GPM}_{\text{base}} \times \text{Throttle}_{\text{base}}) - (\text{GPM}_{\text{low}} \times \text{Throttle}_{\text{low}})) \times \text{Time}_{\text{faucet}} \times \#\text{people} \times \text{days/year} \times \text{DR} \times 8.3 \times (\text{Temp}_{\text{ft}} - \text{Temp}_{\text{in}})}{\text{DHW Recovery Efficiency} / 10^6}
\]

Where:

- **Gas DHW Recovery Efficiency** = Recovery efficiency of gas water heater
 = 0.80 \(^{409}\)

\(^{408}\) Calculated as follows: Assume 13% faucet use takes place during peak hours (based on: http://www.aquacraft.com/Download_Reports/DISAGGREGATED-HOT_WATER_USE.pdf)

13% \times 3.6 \text{ minutes per day} (10.9 \times 2.56 / 3.5 / 2.2 = 3.6) = 0.47 \text{ minutes}

= 0.47 / 180 (minutes in peak period) = 0.00262

\(^{409}\) Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.
Illustrative example – do not use as default assumption
For a 1.5 GPM rated aerator:
\[\Delta \text{MMBTU} = \left(\left((2.2 \times 0.83) - (1.5 \times 0.950) \right) \times 3 \times 2.53 \times 365 \times 0.5 \right) \times 8.3 \times (93 - 60.9) / 0.75 / 10^6 \]
\[= 0.19732 \text{ MMBTU} \]

Annual Water Savings Algorithm

\[
\text{Water Savings} = \left((\text{GPM}_{\text{base}} \times \text{Throttle}_{\text{base}}) - (\text{GPM}_{\text{low}} \times \text{Throttle}_{\text{low}}) \right) \times \text{Time}_{\text{faucet}} \times \# \text{people} \times \text{days/year} \times DR / 748
\]

Where:

748 = Constant to convert from gallons to CCF

All other variables same as above

Illustrative example – do not use as default assumption
For a 1.5 GPM rated aerator installed in a kitchen:
\[\text{Water Savings} = \left((2.2 \times 0.83) - (1.5 \times 0.950) \right) \times 3 \times 2.53 \times 365 \times 0.5 / 748 \]
\[= 0.0743 \text{ CCF} \]

kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities’ must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

\[\Delta \text{kWh}_{\text{water}}^{410} = 2.07 \text{ kWh/CCF} \times \Delta \text{Water (CCF)} \]

410 This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, “Energy Savings Plan, Prepared for DC Water.” Washington, D.C., 2010. See DC Water Conservation.xlsx for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region.
Illustrative example – do not use as default assumption

For a 1.5 GPM rated aerator:

\[
\Delta k\text{Wh}_{\text{water}} = 2.07 \text{ kWh/CCF} \times 0.743 \text{ CCF} \\
= 2.79 \text{ kWh}
\]

Incremental Cost

As a retrofit measure, the incremental cost will be the actual cost of installing the new aerator. As a time of sale measure, the incremental cost is assumed to be $2.411

Measure Life

The measure life is assumed to be 10 years.412

Operation and Maintenance Impacts

When a retrofit measure, there would be a very small O&M benefit associated with the deferral of the next replacement, but this has conservatively not been characterized.

412 California DEER Effective Useful Life (EUL) Table - 2014 Update
Domestic Hot Water Tank Wrap
Unique Measure Code(s): RS_WT_RF_HWWRAP_0113
Effective Date: June 2014
End Date: TBD

Measure Description
This measure relates to a Tank Wrap or insulation “blanket” that is wrapped around the outside of a hot water tank to reduce stand-by losses. This measure applies only for homes that have an electric water heater that is not already well insulated.

Definition of Baseline Condition
The baseline condition is a standard electric domestic hot water tank without an additional tank wrap.

Definition of Efficient Condition
The efficient condition is the same standard electric domestic hot water tank with an additional tank wrap.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \left(\left(U_{\text{base}} A_{\text{base}} - U_{\text{insul}} A_{\text{base}} \right) \times \Delta T \times \text{Hours} \right) / (3412 \times \eta_{\text{DHW}}) \]

Where:
- \(\Delta \text{kWh} \) = Gross customer annual kWh savings for the measure
- \(U_{\text{base}} \) = Overall heat transfer coefficient prior to adding tank wrap (BTU/Hr-F-ft\(^2\))
 - See table below. If unknown assume 1/8 \(^{413}\)
- \(U_{\text{insul}} \) = Overall heat transfer coefficient after addition of tank wrap (BTU/Hr-F-ft\(^2\))
 - See table below. If unknown assume 1/18 \(^{414}\)
- \(A_{\text{base}} \) = Surface area of storage tank prior to adding tank wrap (square feet)
 - See table below. If unknown assume 23.18 \(^{415}\)

\(^{413}\) Assumptions are from Pennsylvania Public Utility Commission Technical Reference Manual (PA TRM) for a poorly insulated 40 gallon tank
\(^{414}\) Assumes an R-10 tank wrap is added.
\(^{415}\) Assumptions from PA TRM for a 40-gallon tank. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center.
$A_{\text{insul}} = \text{Surface area of storage tank after addition of tank wrap (square feet)}$

$\Delta T = \text{Average temperature difference between tank water and outside air temperature (°F)}$

$\text{Hours} = \text{Number of hours in a year (since savings are assumed to be constant over year).}$

$3412 = \text{Conversion from BTU to kWh}$

$\eta_{\text{DHW}} = \text{Recovery efficiency of electric hot water heater}$

$= 0.98$

The following table has default savings for various tank capacity and pre and post R-VALUES.

<table>
<thead>
<tr>
<th>Capacity (gal)</th>
<th>Rbase</th>
<th>Rinsul</th>
<th>Abase (ft²)</th>
<th>ΔkWh</th>
<th>ΔkW</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>8</td>
<td>16</td>
<td>19.16</td>
<td>171</td>
<td>0.019</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>18</td>
<td>19.16</td>
<td>118</td>
<td>0.014</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>20</td>
<td>19.16</td>
<td>86</td>
<td>0.010</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>18</td>
<td>19.16</td>
<td>194</td>
<td>0.022</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>20</td>
<td>19.16</td>
<td>137</td>
<td>0.016</td>
</tr>
<tr>
<td>30</td>
<td>12</td>
<td>22</td>
<td>19.16</td>
<td>101</td>
<td>0.012</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>16</td>
<td>23.18</td>
<td>207</td>
<td>0.024</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>18</td>
<td>23.18</td>
<td>143</td>
<td>0.016</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>20</td>
<td>23.18</td>
<td>105</td>
<td>0.012</td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>18</td>
<td>23.18</td>
<td>234</td>
<td>0.027</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>20</td>
<td>23.18</td>
<td>165</td>
<td>0.019</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>22</td>
<td>23.18</td>
<td>123</td>
<td>0.014</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>16</td>
<td>24.99</td>
<td>225</td>
<td>0.026</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>18</td>
<td>24.99</td>
<td>157</td>
<td>0.018</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>20</td>
<td>24.99</td>
<td>115</td>
<td>0.013</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>18</td>
<td>24.99</td>
<td>255</td>
<td>0.029</td>
</tr>
</tbody>
</table>

416 Ibid.

417 Assumes 125°F water leaving the hot water tank and average temperature of basement of 65°F.

418 NREL, National Residential Efficiency Measures Database, http://www.nrel.gov/ap/retrofits/measures.cfm?gId=6&ctId=40
50 10 20 24.99 180 0.021
50 12 22 24.99 134 0.015
80 8 16 31.84 290 0.033
80 10 18 31.84 202 0.023
80 12 20 31.84 149 0.017
80 8 18 31.84 327 0.037
80 10 20 31.84 232 0.027
80 12 22 31.84 173 0.020

If tank specifics are unknown assume 40 gallons as an average tank size\(^{419}\), and savings from adding R-10 to a poorly insulated R-8 tank:

\[
\Delta \text{kWh} = \frac{(23.18/8 - 23.18/18) \times 60 \times 8760}{3412 \times 0.98}
\]

\[
= 253 \text{ kWh}
\]

Summer Coincident Peak kW Savings Algorithm

\[
\Delta \text{kW} = \frac{\Delta \text{kWh}}{8760}
\]

Where:

\[
\Delta \text{kWh} = \text{kWh savings from tank wrap installation}
\]

\[
8760 = \text{Number of hours in a year (since savings are assumed to be constant over year)}.
\]

The table above has default savings for various tank capacity and pre and post R-VALUES.

If tank specifics are unknown assume 40 gallons as an average tank size\(^{420}\), and savings are from adding R-10 to a poorly insulated R-8 tank:

\[
\Delta \text{kW} = \frac{253}{8760}
\]

\[
= 0.029 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
The lifecycle NPV incremental cost for this retrofit measure is the actual cost of installing the tank wrap. If unknown assume $35 average cost.\(^{421}\)

Measure Life
The measure life is assumed to be 5 years.\(^{422}\)

Operation and Maintenance Impacts
n/a

\(^{421}\) Based on VEIC online product review.
\(^{422}\) Conservative estimate that assumes the tank wrap is installed on an existing unit with 5 years remaining life.
DHW Pipe Insulation

Unique Measure Code: RS_WT_RF_PIPEIN_0711
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes adding insulation to uninsulated domestic hot water pipes. The measure assumes the pipe wrap is installed to the first elbow of the hot water carrying pipe.

Note, the algorithm provided to calculate savings may be used to determine an appropriate deemed savings value if the programs can provide appropriate average values for each of the variables.

This is a retrofit measure.

Definition of Baseline Condition
The baseline condition is un-insulated hot water carrying copper pipes.

Definition of Efficient Condition
To efficiency case is installing pipe wrap insulation to the first elbow of the hot water carrying copper pipe.

Annual Energy Savings Algorithm

If electric domestic hot water tank:

$$\Delta \text{kWh} = \frac{((1/R_{\text{exist}} - 1/R_{\text{new}}) \times (L \times C) \times \Delta T \times 8,760)}{\eta_{\text{DHW}}} / 3413$$

Where:

- R_{exist} = Assumed R-value of existing uninsulated piping
 = 1.0423
- R_{new} = R-value of existing pipe plus installed insulation
 = Actual

423 Navigant Consulting Inc., April 2009; “Measures and Assumptions for Demand Side Management (DSM) Planning; Appendix C Substantiation Sheets”, p77, presented to the Ontario Energy Board:

Length = Length of piping insulated
= Actual

Circumference = Circumference of piping
= Actual (0.5” pipe = 0.13ft, 0.75” pipe = 0.196ft)

ΔT = Temperature difference between water in pipe and ambient air
= 65°F

8,760 = Hours per year

ηDHW = DHW Recovery efficiency (ηDHW)
= 0.98

3413 = Conversion from BTU to kWh

Illustrative example – do not use as default assumption
Insulating 4 feet of 0.75” pipe with R-3.5 wrap:

ΔkWh = ((1/1.0 – 1/4.5) * (4 * 0.196) * 65 * 8,760) / 0.98 / 3,413

= 104 kWh

Summer Coincident Peak kW Savings Algorithm

ΔkW = ΔkWh / 8,760

Illustrative example – do not use as default assumption
Insulating 4 feet of 0.75” pipe with R-3.5 wrap:

ΔkW = 104 / 8,760

= 0.012 kW

Annual Fossil Fuel Savings Algorithm

If fossil fuel DHW unit:

ΔMMBTU = ((1/Rexist – 1/Rnew) * (L * C) * ΔT * 8,760) / ηDHW / 1,000,000

424 Assumes 130°F water leaving the hot water tank and average temperature of basement of 65°F.

425 Electric water heaters have recovery efficiency of 98%;
Where:
\[\eta_{DHW} = \text{Recovery efficiency of gas hot water heater} \]
\[= 0.75 \]

Illustrative example – do not use as default assumption
Insulating 4 feet of 0.75” pipe with R-3.5 wrap:

\[\Delta \text{MMBTU} = \left(\frac{1}{1.0} - \frac{1}{4.5} \right) \times (4 \times 0.196) \times 65 \times 8,760) / 0.75 / 1,000,000 \]

\[= 0.46 \text{ MMBTU} \]

Annual Water Savings Algorithm
n/a

Incremental Cost
The lifecycle NPV incremental cost for this retrofit measure should be the actual cost of material and labor. If this is not available, assume $3 per foot of insulation\(^{427}\).

Measure Life
The measure life is assumed to be 15 years\(^{428}\).

Operation and Maintenance Impacts
n/a

\(^{426}\) Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%

\(^{427}\) Consistent with DEER 2008 Database Technology and Measure Cost Data (www.deeressources.com).

High Efficiency Gas Water Heater

Unique Measure Code: RS_WT_TOS_GASDHW_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This measure describes the purchase of a high efficiency gas water heater meeting or exceeding ENERGY STAR criteria for the water heater category provided below, in place of a new unit rated at the minimum Federal Standard. The measure could be installed in either an existing or new home. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition
The baseline condition is a new conventional gas storage water heater rated at the federal minimum429.

\[
\text{EF} = 0.675 - (0.0015 \times \text{rated volume in gallons})
\]

For 20 - 55 gallons:
\[
\text{EF} = 0.8012 - (0.00078 \times \text{rated volume in gallons})
\]

If size is unknown, assume 40 gallons; 0.615 EF.

Definition of Efficient Condition
The efficient condition is a new high efficiency gas water heater meeting or exceeding the minimum efficiency Energy Star qualification criteria provided below430.

<table>
<thead>
<tr>
<th>Water Heater Type</th>
<th>Energy Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Efficiency Gas Storage</td>
<td>0.67</td>
</tr>
<tr>
<td>Gas Condensing</td>
<td>0.80</td>
</tr>
<tr>
<td>Whole Home Gas Tankless</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Annual Energy Savings Algorithm
n/a

430 http://www.energystar.gov/index.cfm?c=water_heat.pr_crit_water_heaters
Summer Coincident Peak kW Savings Algorithm
n/a

Annual Fossil Fuel Savings Algorithm

\[\Delta \text{MMBTU} = \frac{1}{\text{EF}_{\text{base}}} - \frac{1}{\text{EF}_{\text{efficient}}} \times (\text{GPD} \times \text{Household} \times 365.25 \times \gamma_{\text{Water}} \times (T_{\text{OUT}} - T_{\text{in}}) \times 1.0)}{1,000,000} \]

Where:

\(\text{EF}_{\text{Baseline}} = \) Energy Factor rating for baseline equipment

For \(\leq 55 \) gallons: \(0.675 - (0.0015 \times \text{tank size}) \)
For \(> 55 \) gallons: \(0.8012 - (0.00078 \times \text{tank size}) \)

= If tank size unknown assume 40 gallons and \(\text{EF}_{\text{Baseline}} \) of 0.615

\(\text{EF}_{\text{Efficient}} = \) Energy Factor Rating for efficient equipment

= Actual. If Tankless whole-house multiply rated efficiency by 0.91431. If unknown assume values in look up in table below

<table>
<thead>
<tr>
<th>Water Heater Type</th>
<th>EF_{Efficient}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensing Gas Storage</td>
<td>0.80</td>
</tr>
<tr>
<td>Gas Storage</td>
<td>0.67</td>
</tr>
<tr>
<td>Tankless whole-house</td>
<td>0.82 \times 0.91 = 0.75</td>
</tr>
</tbody>
</table>

\(\text{GPD} = \) Gallons Per Day of hot water use per person

431 The disconnect between rated energy factor and in-situ energy consumption is markedly different for tankless units due to significantly higher contributions to overall household hot water usage from short draws. In tankless units the large burner and unit heat exchanger must fire and heat up for each draw. The additional energy losses incurred when the mass of the unit cools to the surrounding space in-between shorter draws was found to be 9% in a study prepared for Lawrence Berkeley National Laboratory by Davis Energy Group, 2006. “Field and Laboratory Testing of Tankless Gas Water Heater Performance” Due to the similarity (storage) between the other categories and the baseline, this derating factor is applied only to the tankless category.
= 45.5 gallons hot water per day per household/2.53 people per household\(^432\)
= 17.6

Household = Average number of people per household
= 2.53 \(^433\)

365.25 = Days per year, on average

\(\gamma_{\text{Water}}\) = Specific Weight of water
= 8.33 pounds per gallon

\(T_{\text{out}}\) = Tank temperature
= 125°F

\(T_{\text{in}}\) = Incoming water temperature from well or municipal system
= 60.9 \(^434\)

1.0 = Heat Capacity of water (1 BTU/lb\(^°\)F)

Illustrative example – do not use as default assumption
For example, installing a 40 gallon condensing gas storage water heater, with an energy factor of 0.82 in a single family house:

\[
\Delta \text{MMBTU} = \frac{(1/0.615 - 1/0.82) \times (17.6 \times 2.53 \times 365.25 \times 8.33 \times (125 - 60.9) \times 1)}{1,000,000}
\]
= 3.53 MMBTU

Annual Water Savings Algorithm

n/a

\(^433\) Ibid

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is dependent on the type of water heater as listed below.

<table>
<thead>
<tr>
<th>Water heater Type</th>
<th>Incremental Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Storage</td>
<td>$159<sup>435</sup></td>
</tr>
<tr>
<td>Condensing gas storage</td>
<td>$685<sup>436</sup></td>
</tr>
<tr>
<td>Tankless whole-house unit</td>
<td>$407<sup>437</sup></td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 13 years⁴³⁸.

Operation and Maintenance Impacts

n/a

⁴³⁵ Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, *2010 - 2012 WO017 Ex Ante Measure Cost Study*, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA.

⁴³⁷ Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, *2010 - 2012 WO017 Ex Ante Measure Cost Study*, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA.

⁴³⁸ Based on ACEEE Life-Cycle Cost analysis; http://www.aceee.org/node/3068#lcc
Heat Pump Domestic Water Heater

Unique Measure Code(s): RS_WT_TOS_HPRSHW_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This measure relates to the installation of a Heat Pump domestic water heater in place of a standard electric water heater in conditioned space. This is a time of sale measure.

Definition of Baseline Condition
The baseline condition is assumed to be a new electric water heater meeting federal minimum efficiency standards\(^\text{439}\):

\[
\text{For } \leq 55 \text{ gallons: } \quad 0.96 - (0.0003 \times \text{rated volume in gallons}) \\
\text{For } > 55 \text{ gallons: } \quad 2.057 - (0.00113 \times \text{rated volume in gallons})
\]

Definition of Efficient Condition
The efficient condition is a heat pump water heater.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \left(\frac{1}{\text{EF}_\text{BASE}} - 1 \right) \times \text{GPD} \times \text{Household} \times 365.25 \times \gamma_{\text{Water}} \\
\times \left(T_{\text{OUT}} - T_{\text{IN}} \right) \times 1.0 \times \frac{\text{kWh}_{\text{cooling}} - \text{kWh}_{\text{heating}}}{3412}
\]

Where:

\[
\text{EF}_\text{BASE} = \text{Energy Factor (efficiency) of standard electric water heater according to federal standards}\(^\text{440}\):
\]

\[
\text{For } \leq 55 \text{ gallons: } \quad 0.96 - (0.0003 \times \text{rated volume in gallons})
\]

For >55 gallons: \[2.057 - (0.00113 \times \text{rated volume in gallons}) \]

= 0.945 for a 50 gallon tank, the most common size for HPWH

\[EF_{\text{EFFICIENT}} \]

= Energy Factor (efficiency) of Heat Pump water heater

= Actual. If unknown assume 2.0 \(^{441}\)

\[GPD \]

= Gallons Per Day of hot water use per person

= 45.5 gallons hot water per day per household/2.53 people per household\(^{442}\)

= 17.6

\[\text{Household} \]

= Average number of people per household

= 2.53 \(^{443}\)

\[365.25 \]

= Days per year

\[\gamma_{\text{Water}} \]

= Specific weight of water

= 8.33 pounds per gallon

\[T_{\text{OUT}} \]

= Tank temperature

= 125°F

\[T_{\text{IN}} \]

= Incoming water temperature from well or municipal system

\(^{442}\) Email message from Maureen Hodgins, Research Manager for Water Research Foundation, to TAC/SAG, August 26, 2014. Describes water usage for a house size of 2.59 people.

\[= 60.9^{444} \]

1.0 \(= \text{Heat Capacity of water (1 BTU/lb}^{\circ\text{F}}) \)

3412 \(= \text{Conversion from BTU to kWh} \)

\[k\text{Wh}_{\text{cooling}}^{445} = \text{Cooling savings from conversion of heat in home to water heat} \]

\[= (((1/ \ EF_{\text{NEW}} \times GPD \times \text{Household} \times 365.25 \times \gamma_{\text{Water}} \times (T_{\text{OUT}} - T_{\text{IN}}) \times 1.0) / 3412) \times LF \times 33\% / COP_{\text{COOL}}) \]

Where:

\[LF \]

= Location Factor

= 1.0 for HPWH installation in a conditioned space

= 0.5 for HPWH installation in an unknown location

= 0.0 for installation in an unconditioned space

\[33\% \]

= Portion of removed heat that results in cooling savings\(^{446}\)

\[COP_{\text{COOL}} \]

= COP of central air conditioning

= Actual, if unknown, assume 3.08 (10.5 SEER / 3.412)

\(^{445}\) This algorithm calculates the heat removed from the air by subtracting the HPWH electric consumption from the total water heating energy delivered. This is then adjusted to account for location of the HP unit and the coincidence of the waste heat with cooling requirements, the efficiency of the central cooling and latent cooling demands.

\(^{446}\) REMRate determined percentage (33%) of lighting savings that result in reduced cooling loads for several different building configurations in Wilmington, DE, Baltimore, MD and Washington, DC (lighting is used as a proxy for hot water heating since load shapes suggest their seasonal usage patterns are similar).
Northeast Energy Efficiency Partnerships
91 Hartwell Avenue Lexington, MA 02421
P: 781.860.9177
www.neep.org

\[
\text{kWh}_\text{heating} = \text{Heating cost from conversion of heat in home to water heat (dependent on heating fuel)} \\
\text{For Natural Gas heating, } \text{kWh}_\text{heating} = 0 \\
\text{For electric heating:} \\
= (((1/ \text{EF} \text{NEW} \ast \text{GPD} \ast \text{Household} \ast 365.25 \ast \gamma_{\text{Water}} \ast (T_{\text{OUT}} - T_{\text{IN}}) \ast 1.0 / 3412)) \ast \text{LF} \ast 47\%) / \text{COP}_{\text{HEAT}} \\
\]

Where:

47% = Portion of removed heat that results in increased heating load\(^{447}\)

\[\text{COP}_{\text{HEAT}} = \text{COP of electric heating system} \]

= actual. If not available, use\(^{448}\):

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>COP(_{\text{HEAT}}) (COP Estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>After 2006 – 2014 (default)</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td></td>
<td>2015 on</td>
<td>8.2</td>
<td>2.40</td>
</tr>
<tr>
<td>Resistance</td>
<td>N/A</td>
<td>N/A</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Prescriptive savings based on defaults provided above:

\[
\Delta \text{kWH electric resistance heat} = (((1/0.945 – 1/2.0) \ast 17.6 \ast 2.53 \ast 365.25 \ast 8.33 \ast (125 – 60.9) \ast 1.0) / 3412) + \text{kWh}_\text{cooling} - \text{kWh}_\text{heating} \\
\]

\(^{447}\) REMRate determined percentage (47%) of lighting savings that result in increased heating loads (lighting is used as a proxy for hot water heating since load shapes suggest their seasonal usage patterns are similar).

\(^{448}\) These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.
\[
\begin{align*}
\text{kWh_cooling} & = ((1/2.0 \times 17.6 \times 2.53 \times 365.25 \times 8.33 \times \frac{125 - 60.9}{3412} \times 0.5 \times 0.33) / 3.08) \times 1.33 \\
& \approx 90.7 \text{ kWh}
\end{align*}
\]

\[
\begin{align*}
\text{kWh_heating} & = ((1/2.0 \times 17.6 \times 2.53 \times 365.25 \times 8.33 \times \frac{125 - 60.9}{3412} \times 0.5 \times 0.47) / 1.0 \\
& \approx 299.1 \text{ kWh}
\end{align*}
\]

\[
\begin{align*}
\Delta \text{kWH electric resistance heat} & = 1420.7 + 90.7 - 299.1 \\
& = 1212.3 \text{ kWh}
\end{align*}
\]

\[
\begin{align*}
\Delta \text{kWH heat pump heat} & = ((1/0.945 - 1/2.0) \times 17.6 \times 2.53 \times 365.25 \times 8.33 \times \frac{125 - 60.9}{3412}) + \text{kWh_cooling} - \text{kWh_heating} \\
+ \text{kWh_cooling} & = 90.7 \text{ kWh}
\end{align*}
\]

\[
\begin{align*}
\text{kWh_heating} & = ((1/2.0 \times 17.6 \times 2.53 \times 365.25 \times 8.33 \times \frac{125 - 60.9}{3412} \times 0.5 \times 0.47) / 2.0 \\
& \approx 149.5 \text{ kWh}
\end{align*}
\]

\[
\begin{align*}
\Delta \text{kWH heat pump heat} & = 1420.7 + 90.7 - 149.5 \\
& = 1361.9 \text{ kWh}
\end{align*}
\]

\[
\begin{align*}
\Delta \text{kWH fossil fuel heat} & = ((1/0.945 - 1/2.0) \times 17.6 \times 2.53 \times 365.25 \times 8.33 \times \frac{125 - 60.9}{3412}) + \text{kWh_cooling} - \text{kWh_heating} \\
+ \text{kWh_cooling} & = 90.7
\end{align*}
\]
\[\text{kWh}_{\text{heating}} = 0 \]

\[\Delta \text{kW}_{\text{fossil fuel heat}} = 1420.7 + 90.7 - 0 \]
\[= 1511.4 \text{ kWh} \]

Summer Coincident Peak kW Savings Algorithm
\[\Delta \text{kW} = 0.17 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm
\[\Delta \text{MMBTU} = - (\frac{(1/ \text{EF}_{\text{NEW}} \times \text{GPD} \times \text{Household} \times 365.25 \times \gamma_{\text{Water}} \times (T_{\text{OUT}} - T_{\text{IN}}) \times 1.0)}{3412} \times \text{LF} \times 47\% \times 0.003412) / (\eta_{\text{Heat}} \times \% \text{Natural Gas}) \]

Where:
\[\Delta \text{MMBTU} = \text{Heating cost from conversion of heat in home to water heat for homes with Natural Gas heat.} \]
\[0.003412 = \text{conversion factor (MMBTU per kWh)} \]
\[\eta_{\text{Heat}} = \text{Efficiency of heating system} \]
\[= \text{Actual.} \]

449 Based on a chart showing summer weekday average electrical demand on page 10 of FEMP Study “Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters” (http://www1.eere.energy.gov/femp/pdfs/tir_heatpump.pdf). Using data points from the chart, the average delta kW in heat pump mode during the peak hours compared to resistance mode is 0.17kW.

450 This is the additional energy consumption required to replace the heat removed from the home during the heating season by the heat pump water heater.

451 Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-Bluesheet.pdf) or by performing duct blaster testing.

452 This has been estimated assuming typical efficiencies of existing heating systems weighted by percentage of homes with non-electric heating (based on Energy Information Administration, 2009 Residential Energy Consumption Survey: http://www.eia.gov/consumption/residential/data/2009/xls/HC6.9%20Space%20Heating%20in%20Midwest%20Region.xls).
% Natural Gas = Factor dependent on heating fuel:

<table>
<thead>
<tr>
<th>Heating System</th>
<th>% Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric resistance or heat pump</td>
<td>0%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>100%</td>
</tr>
<tr>
<td>Unknown heating fuel<sup>453</sup></td>
<td>62.5%</td>
</tr>
</tbody>
</table>

Other factors as defined above

Prescriptive savings based on defaults provided above:

\[\Delta \text{MMBTU} = \frac{-((1/2.0 \times 17.6 \times 2.53 \times 365.25 \times 8.33 \times (125 - 60.9) \times 1.0) / 3412)) \times 0.5 \times 0.47 \times 0.003412) / (0.72 \times 1.0)}{0.72 \times 1.0} \]

\[= -1.21 \text{MMBTU} \]

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for the time of sale measure is provided below.⁴⁵⁴

<table>
<thead>
<tr>
<th>Size</th>
<th>Efficiency Factor</th>
<th>Incremental Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Gallon Heat Pump Water Heater</td>
<td>2</td>
<td>$1,338</td>
</tr>
<tr>
<td>60 Gallon Heat Pump Water Heater</td>
<td>2.2</td>
<td>$2,253</td>
</tr>
</tbody>
</table>

⁴⁵³ Based on KEMA baseline study for Maryland.

⁴⁵⁴ Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 WO017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA.
Measure Life
The expected measure life is assumed to be 13 years.455

Operation and Maintenance Impacts
n/a

Thermostatic Restrictor Shower Valve

Unique Measure Code: RS_HV_RF_GSHPS_0415, RS_HV_NC_GSHPS_0415

Effective Date: June 2015
End Date: TBD

Measure Description
The measure is the installation of a thermostatic restrictor shower valve in a single or multi-family household. This is a valve attached to a residential showerhead which restricts hot water flow through the showerhead once the water reaches a set point (generally 95°F or lower).

This measure was developed to be applicable to the following program types: RF, NC, DI. If applied to other program types, the measure savings should be verified.

Definition of Baseline Condition
The baseline equipment is the residential showerhead without the restrictor valve installed.

Definition of Efficient Condition
To qualify for this measure the installed equipment must be a thermostatic restrictor shower valve installed on a residential showerhead.

Annual Energy Savings Algorithm

$$\Delta\text{kWh} = \%\text{ElectricDHW} \times ((\text{GPM_base_S} \times \text{L_showerdevice}) \times \text{Household} \times \text{SPCD} \times 365.25 / \text{SPH}) \times \text{EPG_electric}$$

Where:

$$\%\text{ElectricDHW} = \text{proportion of water heating supplied by electric resistance heating}$$

<table>
<thead>
<tr>
<th>DHW fuel</th>
<th>%ElectricDHW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>0%</td>
</tr>
<tr>
<td>Unknown</td>
<td>24%456</td>
</tr>
</tbody>
</table>

Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic Region. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographic area, then that should be used.
\[GPM_{\text{base}}_S = \text{Flow rate of the basecase showerhead, or actual if available} \]

<table>
<thead>
<tr>
<th>Program</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct-install, device only</td>
<td>2.5 457</td>
</tr>
<tr>
<td>New Construction or direct install of device and low flow showerhead</td>
<td>Rated or actual flow of program-installed showerhead</td>
</tr>
</tbody>
</table>

\[L_{\text{showerdevice}} = \text{Hot water waste time avoided due to thermostatic restrictor valve} \]
\[= 0.89 \text{ minutes}458 \]

\[Household = \text{Average number of people per household} \]
\[= 2.56 459 \]

\[SPCD = \text{Showers Per Capita Per Day} \]
\[= 0.6 460 \]

\[365.25 = \text{Days per year, on average.} \]

\[SPH = \text{Showerheads Per Household so that per-showerhead savings fractions can be determined} \]
\[= 1.6 461 \]

457 The Energy Policy Act of 1992 (EPAct) established the maximum flow rate for showerheads at 2.5 gallons per minute (gpm).

460 Cadmus and Opinion Dynamics Showerhead and Faucet Aerator Meter Study Memorandum dated June 2013, directed to Michigan Evaluation Working Group.

461 Estimate based on review of a number of studies.
For example, a direct installed valve in a home with electric DHW:

Illustrative Example - do not use as default assumption

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPG_electric</td>
<td>Energy per gallon of hot water supplied by electric</td>
</tr>
<tr>
<td>=</td>
<td>(8.33 * 1.0 * (ShowerTemp - SupplyTemp)) / (RE_electric * 3412)</td>
</tr>
<tr>
<td>=</td>
<td>(8.33 * 1.0 * (105 – 60.9)) / (0.98 * 3412)</td>
</tr>
<tr>
<td>=</td>
<td>0.11kWh/gal</td>
</tr>
<tr>
<td>8.33</td>
<td>Specific weight of water (lbs/gallon)</td>
</tr>
<tr>
<td>1.0</td>
<td>Heat Capacity of water (BTU/lb·°)</td>
</tr>
<tr>
<td>ShowerTemp</td>
<td>Assumed temperature of water</td>
</tr>
<tr>
<td>=</td>
<td>105°F</td>
</tr>
<tr>
<td>SupplyTemp</td>
<td>Assumed temperature of water entering house</td>
</tr>
<tr>
<td>=</td>
<td>60.9°F</td>
</tr>
<tr>
<td>RE_electric</td>
<td>Recovery efficiency of electric water heater</td>
</tr>
<tr>
<td>=</td>
<td>98%</td>
</tr>
<tr>
<td>3412</td>
<td>Constant to convert BTU to kWh</td>
</tr>
</tbody>
</table>

http://www.osti.gov/bridge/purl.cover.jsp;jsessionid=80456EF00AA94DB204EB48BAE65F199?p
url=/10185385-CEkZMk/native/
b. East Bay Municipal Utility District; “Water Conservation Market Penetration Study”
http://www.ebmud.com/sites/default/files/pdfs/market_penetration_study_0.pdf

464 Electric water heaters have recovery efficiency of 98%:
http://www.ahridirectory.org/ahridirectory/pages/home.aspx
\[\Delta \text{kWh} = 1.0 \times (2.5 \times 0.89 \times 2.56 \times 0.6 \times 365.25 / 1.6) \times 0.11 \]

= 86 kWh

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = \Delta \text{kWh} / \text{Hours} \times \text{CF} \]

Where:

\[\text{Hours} = \text{Annual electric DHW recovery hours for wasted showerhead use prevented by device} \]

\[= ((\text{GPM}_{\text{base} - S} \times \text{L} _\text{showerdevice}) \times \text{Household} \times \text{SPCD} \times 365.25 / \text{SPH}) \times 0.746 \]

\[\text{GPH} = \text{Gallons per hour recovery of electric water heater calculated for 59.1 temp rise (120-60.9), 98\% recovery efficiency, and typical 4.5kW electric resistance storage tank.} \]

= 30.0

\[\text{Hours} = (2.5 \times 0.89 \times 2.56 \times 0.6 \times 365.25 / 1.6) \times 0.746 / 30 \]

= 19.4 hours

\[\text{CF} = \text{Coincidence Factor for electric load reduction} \]

= 0.0015

465 74.6\% is the proportion of hot 120F water mixed with 60.1F supply water to give 105F shower water.

466 Calculated as follows: Assume 11\% showers take place during peak hours (based on: http://www.aquacraft.com/sites/default/files/pub/DeOreo-%282001%29-Disaggregated-Hot-Water-Use-in-Single-Family-Homes-Using-Flow-Trace-Analysis.pdf). There are 65 days in the summer peak period, so the percentage of total annual use in peak period is 0.11*65/365 = 1.96\%. The number of hours of recovery during peak periods is therefore assumed to be 1.96\% * 19.4 = 0.38 hours of recovery during peak period, where 19.4 equals the annual electric DHW recovery hours for showerhead use prevented by the device. There are 260 hours in the peak period so the probability you will see savings during the peak period is 0.38/260 = 0.0015

467 Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Attlantic Region. If utilities have specific evaluation results providing a
Illustrative example – do not use as default assumption

For example, a direct installed valve in a home with electric DHW:

$$\Delta kW = \frac{86}{19.4} \times 0.0015$$

$$= 0.007 kW$$

Annual Fossil Fuel Savings Algorithm

$$\Delta MMBTU = \% \text{FossilDHW} \times (GPM_{\text{base_S}} \times L_{\text{showerdevice}}) \times \text{Household} \times SPCD \times \frac{365.25}{SPH} \times \text{EPG}_{\text{gas}}$$

Where:

$$\% \text{FossilDHW} = \text{proportion of water heating supplied by Natural Gas heating}$$

<table>
<thead>
<tr>
<th>DHW fuel</th>
<th>%Fossil_DHW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>0%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>100%</td>
</tr>
<tr>
<td>Unknown</td>
<td>76%</td>
</tr>
</tbody>
</table>

$$\text{EPG}_{\text{gas}} = \text{Energy per gallon of Hot water supplied by gas}$$

$$= \frac{8.33 \times 1.0 \times (\text{ShowerTemp} - \text{SupplyTemp})}{(\text{RE}_{\text{gas}} \times 1,000,000)}$$

$$= 0.00065 \text{ MMBTUBTU/gal}$$

$$\text{RE}_{\text{gas}} = \text{Recovery efficiency of gas water heater}$$

$$= 75\% \text{ For SF homes}$$

more appropriate assumption for homes in a particular market or geographic area, then that should be used.

467 Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic Region. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographic area, then that should be used.

468 DOE Final Rule discusses Recovery Efficiency with an average around 0.76 for Gas Fired
1,000,000 = Converts BTUs to MMBTU

Other variables as defined above.

Illustrative example – do not use as default assumption

For example, a direct installed valve in a home with gas DHW:

\[
\Delta\text{MMBTUBTU} = 1.0 \times (\frac{(2.5 \times 0.89) \times 2.56 \times 0.6 \times 365.25}{1.6}) \times 0.00065 \\
= 0.51 \text{ MMBTU}
\]

Water impact Descriptions and calculations

\[
\Delta\text{CCF} = \frac{(\text{GPM}_\text{base}_S \times \text{L}_\text{showerdevice}) \times \text{Household} \times \text{SPCD} \times 365.25}{\text{SPH}} / 748
\]

Where:

748 = Constant to convert from gallons to CCF

Other variables as defined above

Illustrative example – do not use as default assumption

For example, a direct installed valve:

\[
\Delta\text{CCF} = \frac{(2.5 \times 0.89) \times 2.56 \times 0.6 \times 365.25}{1.6} / 748 \\
= 1.0 \text{ CCF}
\]

Measure Life

The expected measure life is assumed to be 10 years.\(^{469}\)

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is the actual measure cost or $30\(^{470}\) if not available.

Storage Water heaters and 0.78 for standard efficiency gas fired tankless water heaters up to 0.95 for the highest efficiency gas fired condensing tankless water heaters. These numbers represent the range of new units however, not the range of existing units in stock. Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.

\(^{469}\) Assumptions based on NY TRM, Pacific Gas and Electric Company Work Paper PGECODHW113, and measure life of low-flow showerhead

\(^{470}\) Based on actual cost of the SS-1002CP-SB Ladybug Water-Saving Shower-Head adapter from Evolve showerheads.
Operation and Maintenance Impacts
N/A

Water Heater Temperature Setback

Unique Measure Code: RS_WT_RF_WHTSB_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This measure relates to turning down an existing hot water tank thermostat setting that is at 130 degrees or higher. Savings are provided to account for the resulting reduction in standby losses. This is a retrofit measure.

Definition of Baseline Equipment
The baseline condition is a hot water tank with a thermostat setting that is 130 degrees or higher. Note if there are more than one DHW tanks in the home at or higher than 130 degrees and they are all turned down, then the savings per tank can be multiplied by the number of tanks.

Definition of Efficient Equipment
The efficient condition is a hot water tank with the thermostat reduced to no lower than 120 degrees.

Annual Energy Savings Algorithm
For homes with electric DHW tanks:

\[\Delta kWh = \frac{(UA \times (T_{pre} - T_{post}) \times \text{Hours})}{(3412 \times RE_{\text{electric}})} \]

Where:

\[U = \text{Overall heat transfer coefficient of tank (BTU/Hr-°F-ft²).} \]

\[U = \text{Actual if known. If unknown assume R-12, } U = 0.083 \]

Note this algorithm provides savings only from reduction in standby losses. VEIC considered avoided energy from not heating the water to the higher temperature but determined that the potential impact for the three major hot water uses was too small to be characterized; Dishwashers are likely to boost the temperature within the unit (roughly canceling out any savings), faucet and shower use is likely to be at the same temperature so there would need to be more lower temperature hot water being used (cancelling any savings) and clothes washers will only see savings if the water from the tank is taken without any temperature control.
A = Surface area of storage tank (square feet)

= Actual if known. If unknown use table below based on capacity of tank. If capacity unknown assume 50 gal tank; A = 24.99 ft²

<table>
<thead>
<tr>
<th>Capacity (gal)</th>
<th>A (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>19.16</td>
</tr>
<tr>
<td>40</td>
<td>23.18</td>
</tr>
<tr>
<td>50</td>
<td>24.99</td>
</tr>
<tr>
<td>80</td>
<td>31.84</td>
</tr>
</tbody>
</table>

Tpre = Actual hot water setpoint prior to adjustment.

= 135 degrees default

Tpost = Actual new hot water setpoint, which may not be lower than 120 degrees

= 120 degrees default

Hours = Number of hours in a year (since savings are assumed to be constant over year).

= 8760

3412 = Conversion from BTU to kWh

RE_electric = Recovery efficiency of electric hot water heater

= 0.98

472 Assumptions from Pennsylvania TRM. Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation.

473 Electric water heaters have recovery efficiency of 98%:
http://www.ahridirectory.org/ahridirectory/pages/home.aspx
The deemed savings assumption, where site specific assumptions are not available would be as follows:

\[
\Delta \text{kWh} = \frac{(UA \times (T_{\text{pre}} - T_{\text{post}}) \times \text{Hours})}{(3412 \times \text{RE}_{\text{electric}})}
\]
\[
= \frac{((0.083 \times 24.99) \times (135 - 120) \times 8760)}{(3412 \times 0.98)}
\]
\[
= 81.5 \text{ kWh}
\]

Summer Coincident Peak kW Savings Algorithm

\[
\Delta \text{kW} = \frac{\Delta \text{kWh}}{\text{Hours}}
\]

Where:

\[
\text{Hours} = 8760
\]

The deemed savings assumption, where site specific assumptions are not available would be as follows:

\[
\Delta \text{kW} = \frac{81.5}{8760}
\]
\[
= 0.0093 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm

For homes with gas water heaters:

\[
\Delta \text{MMBTU} = \frac{(U \times A \times (T_{\text{pre}} - T_{\text{post}}) \times \text{Hours})}{(1,000,000 \times \text{RE}_{\text{gas}})}
\]

Where

\[
1,000,000 = \text{Converts BTUs to MMBTU (BTU/MMBTU)}
\]

\[
\text{RE}_{\text{gas}} = \text{Recovery efficiency of gas water heater}
\]
\[
= 0.75 \quad ^{474}
\]

The deemed savings assumption, where site specific assumptions are not available would be as follows:

\[
\Delta \text{MMBTU} = \frac{(U \times A \times (T_{\text{pre}} - T_{\text{post}}) \times \text{Hours})}{(1,000,000 \times \text{RE}_{\text{gas}})}
\]

\(^{474}\)Review of AHRI Directory suggests range of recovery efficiency ratings for new Gas DHW units of 70-87%. Average of existing units is estimated at 75%.
\[
= (0.083 \times 24.99 \times (135 - 120) \times 8760) / (1,000,000 \times 0.75)
\]
\[
= 0.36 \text{ MMBTU}
\]

Annual Water Savings Algorithm
N/A

Incremental Cost
The lifecycle NPV incremental cost of this retrofit measure is assumed to be $5 for contractor time.

Deemed Lifetime of Efficient Equipment
The assumed lifetime of the measure is 2 years.

Operation and Maintenance Impacts
N/A
Appliance End Use

Clothes Washer

Unique Measure Code(s): RS_LA_TOS_CWASHES_0415, RS_LA_TOS_CWASHT2_0415, RS_LA_TOS_CWASHT3_0415, RS_LA_TOS_CWASHME_0415

Effective Date: June 2015
End Date: TBD

Measure Description

This measure relates to the purchase (time of sale) and installation of a clothes washer exceeding either the ENERGY STAR/CEE Tier 1, ENERGY STAR Most Efficient/CEE Tier 2 or CEE Tier 3 minimum qualifying efficiency standards presented below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Integrated Modified Energy Factor (IMEF)</th>
<th>Integrated Water Factor (IWF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
<td>Top Loading</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>>= 2.38</td>
<td>>= 2.06<sup>475</sup></td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>>= 2.74</td>
<td>>= 2.74</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>>= 2.92</td>
<td>>= 2.92</td>
</tr>
</tbody>
</table>

ENERGY STAR has a new draft specification version 8.0 expected to go into effect as of January 1, 2018⁴⁷⁷. Once this specification is in place, front loading clothes washers will need a minimum IMEF of 2.76 and a maximum IWF of 3.2. Top loading washers are unaffected.

The Integrated Modified Energy Factor (IMEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity and the per-cycle standby and off mode energy consumption; the higher the number, the greater the efficiency.

⁴⁷⁵ CEE does not distinguish between front loading and top loading, and requires a minimum IMEF of 2.38 in both cases
⁴⁷⁶ CEE does not distinguish between front loading and top loading, and requires a maximum IWF of 3.7 in both cases
⁴⁷⁷ https://www.energystar.gov/sites/default/files/asset/document/Final%20Draft%20ENERGY%20STAR%20Version%208.0%20Clothes%20Washer%20Cover%20Memo.pdf
The Integrated Water Factor (IWF) is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Definition of Baseline Condition

The baseline efficiency is determined according to the Integrated Modified Energy Factor (IMEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle and standby/off mode consumption. The federal baseline changes as of January 1, 2018. The baseline for before and after January 1, 2018 is defined in the table below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Integrated Modified Energy Factor (IMEF)</th>
<th>Integrated Water Factor (IWF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
<td>Top Loading</td>
</tr>
<tr>
<td>Before Jan 1, 2018</td>
<td>1.84</td>
<td>1.29</td>
</tr>
<tr>
<td>After Jan 1, 2018</td>
<td>1.84</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Definition of Efficient Condition

The efficient condition is a clothes washer meeting either the ENERGY STAR/CEE Tier 1, ENERGY STAR Most Efficient/CEE Tier 2 or CEE TIER 3 efficiency criteria presented above.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \left[(\text{Capacity} \times \frac{1}{\text{IMEFbase}} \times \text{Ncycles}) \times (\%\text{CWbase} + (\%\text{DHWbase} \times \%\text{Electric_DHW}) + (\%\text{Dryerbase} \times \%\text{Electric_Dryer})) \right] - \left[(\text{Capacity} \times \frac{1}{\text{IMEFeff}} \times \text{Ncycles}) \times (\%\text{CWeff} + (\%\text{DHWeff} \times \%\text{Electric_DHW}) + (\%\text{Dryereff} \times \%\text{Electric_Dryer})) \right]
\]

Where

- \(\text{Capacity}\) = Clothes Washer capacity (cubic feet)
- \(\frac{1}{\text{IMEFbase}}\) = Actual. If capacity is unknown assume average 3.45 cubic feet\(^{478}\)
- \(\text{IMEFbase}\) = Integrated Modified Energy Factor of baseline unit

\(^{478}\) Based on the average clothes washer volume of all units that pass the new Federal Standard on the California Energy Commission (CEC) database of Clothes Washer products accessed on 08/28/2014.
IMEFeff

= Values provided in table below

= Integrated Modified Energy Factor of efficient unit

= Actual. If unknown assume average values provided below.

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Integrated Modified Energy Factor (IMEF)</th>
<th>Weighting Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
<td>Top Loading</td>
</tr>
<tr>
<td>Federal Standard</td>
<td>>= 1.84</td>
<td>>= 1.29</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>>= 2.38</td>
<td>>= 2.06</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>>= 2.74</td>
<td>>= 2.74</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>>= 2.92</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Ncycles

= Number of Cycles per year

= 254

%CW

= Percentage of total energy consumption for Clothes Washer operation

%DHW

= Percentage of total energy consumption used for water heating

%Dryer

= Percentage of total energy consumption for dryer operation

(dependent on efficiency level – see table below)

<table>
<thead>
<tr>
<th>Percentage of Total Energy Consumption</th>
<th>%CW</th>
<th>%DHW</th>
<th>%Dryer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Standard</td>
<td>8%</td>
<td>31%</td>
<td>61%</td>
</tr>
</tbody>
</table>

479 Weighting percentages are based on available product from the CEC database accessed on 08/28/2014.

481 The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and consumption data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm. See “2015 Clothes Washer Analysis.xls” for the calculation.

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>ΔkWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>112.7</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>145.0</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>160.9</td>
</tr>
</tbody>
</table>

Note

482 Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

483 Default assumption for unknown is based on percentage of homes with electric dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

484 Note that the baseline savings for all cases (Front, Top and Weighted Average) is based on the weighted average baseline IMEF (as opposed to assuming Front baseline for Front efficient unit). The reasoning is that the support of the program of more efficient units (which are predominately front loading) will result in some participants switching from planned purchase of a top loader to a front loader.
The unit specific kWh savings when DHW and Dryer fuels are known is provided below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Dryer/DHW Gas Combo</th>
<th>ΔkWH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Front</td>
</tr>
<tr>
<td>Energy Star, CEE Tier 1</td>
<td>Electric Dryer/Electric DHW</td>
<td>160.0</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Gas DHW</td>
<td>59.8</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Electric DHW</td>
<td>101.7</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Gas DHW</td>
<td>1.5</td>
</tr>
<tr>
<td>Energy Star Most Efficient, CEE Tier 2</td>
<td>Electric Dryer/Electric DHW</td>
<td>208.4</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Gas DHW</td>
<td>74.5</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Electric DHW</td>
<td>129.7</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Gas DHW</td>
<td>-4.1</td>
</tr>
<tr>
<td>CEE Tier 3</td>
<td>Electric Dryer/Electric DHW</td>
<td>228.1</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Gas DHW</td>
<td>92.4</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Electric DHW</td>
<td>134.4</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Gas DHW</td>
<td>-1.4</td>
</tr>
</tbody>
</table>

Note, utilities may consider whether it is appropriate to claim kWh savings from the reduction in water consumption arising from this measure. The kWh savings would be in relation to the pumping and wastewater treatment. See water savings for characterization.

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \frac{\Delta kWh}{Hours} \times CF \]

Where:

- \(Hours = 265 \) \(^{485}\)
- \(CF = 0.029 \) \(^{486}\)

The prescriptive kW savings based on values provided above where DHW and Dryer fuels are unknown is provided below:

\(^{486}\) Ibid.
The unit specific kW savings when DHW and Dryer fuels are known is provided below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Dryer/DHW Fuel Combo</th>
<th>ΔkW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Front</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>Electric Dryer/Electric DHW</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Fuel DHW</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>Fuel Dryer/Electric DHW</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>Fuel Dryer/Fuel DHW</td>
<td>0.000</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>Electric Dryer/Electric DHW</td>
<td>0.023</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Fuel DHW</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Fuel Dryer/Electric DHW</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>Fuel Dryer/Fuel DHW</td>
<td>0.000</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>Electric Dryer/Electric DHW</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Fuel DHW</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>Fuel Dryer/Electric DHW</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>Fuel Dryer/Fuel DHW</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Annual Fossil Fuel Savings Algorithm

\[\Delta \text{MMBTU} = \left(\frac{\text{Capacity} \times \text{1/IMEFbase} \times \text{Ncycles} \times (\% \text{DHWbase} \times \% \text{Natural Gas}_\text{DHW} \times R_{\text{eff}}) + \% \text{Dryerbase} \times \% \text{Gas}_\text{Dryer}}{\% \text{DHWeff} \times \% \text{Natural Gas}_\text{DHW} \times R_{\text{eff}}} \right) - \left(\frac{\text{Capacity} \times \text{1/IMEFeff} \times \text{Ncycles} \times (\% \text{DHWeff} \times \% \text{Gas}_\text{Dryer}}{\% \text{DHWeff} \times \% \text{Gas}_\text{Dryer}} \right) \times \text{MMBTU}_{\text{convert}} \]

Where:

\[R_{\text{eff}} = \text{Recovery efficiency factor} = 1.31^{487} \]

487 To account for the different efficiency of electric and Natural Gas water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency (http://www.energystar.gov/ia/partners/bldr_lenders_rates/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf), Therefore, a factor of 0.98/0.78 (1.26) is applied.
The prescriptive MMBTU savings based on values provided above where DHW and Dryer fuels are unknown is provided below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>ΔMMBTU</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front</td>
<td>Top</td>
<td>Weighted Average</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>0.16</td>
<td>0.05</td>
<td>0.12</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>0.22</td>
<td>0.13</td>
<td>0.22</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>0.22</td>
<td>n/a</td>
<td>0.22</td>
</tr>
</tbody>
</table>

The unit specific MMBTU savings when DHW and Dryer fuels are known is provided below:

488 Default assumption for unknown fuel is based on percentage of homes with gas DHW from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.

489 Default assumption for unknown is based on percentage of homes with gas dryer from EIA Residential Energy Consumption Survey (RECS) 2009 for Mid Atlantic States.
Efficiency Level

<table>
<thead>
<tr>
<th>Configuration</th>
<th>ΔMMBTU (Front)</th>
<th>ΔMMBTU (Top)</th>
<th>ΔMMBTU (Weighted Average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Dryer/Electric DHW</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Electric Dryer/Gas DHW</td>
<td>0.43</td>
<td>0.11</td>
<td>0.32</td>
</tr>
<tr>
<td>Gas Dryer/Electric DHW</td>
<td>0.20</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>Gas Dryer/Gas DHW</td>
<td>0.63</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE Tier 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Dryer/Electric DHW</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Electric Dryer/Gas DHW</td>
<td>0.58</td>
<td>0.31</td>
<td>0.57</td>
</tr>
<tr>
<td>Gas Dryer/Electric DHW</td>
<td>0.27</td>
<td>0.38</td>
<td>0.27</td>
</tr>
<tr>
<td>Gas Dryer/Gas DHW</td>
<td>0.84</td>
<td>0.69</td>
<td>0.84</td>
</tr>
<tr>
<td>CEE Tier 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Dryer/Electric DHW</td>
<td>0.00</td>
<td>n/a</td>
<td>0.00</td>
</tr>
<tr>
<td>Electric Dryer/Gas DHW</td>
<td>0.58</td>
<td>n/a</td>
<td>0.58</td>
</tr>
<tr>
<td>Gas Dryer/Electric DHW</td>
<td>0.32</td>
<td>n/a</td>
<td>0.32</td>
</tr>
<tr>
<td>Gas Dryer/Gas DHW</td>
<td>0.90</td>
<td>n/a</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

\[
\Delta \text{Water (CCF)} = (\text{Capacity} \times (\text{IWF}_{\text{base}} - \text{IWF}_{\text{eff}})) \times \text{Ncycles} / 748 \text{ gallons/CCF}
\]

Where

- \(\text{IWF}_{\text{base}}\) = Integrated Water Factor of baseline clothes washer
- \(\text{IWF}_{\text{eff}}\) = Integrated Water Factor of efficient clothes washer (gallons/CF of washer capacity)

= Actual. If unknown assume average values provided below.

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>IWF^{490}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
</tr>
<tr>
<td>Federal Standard</td>
<td>4.7</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>3.7</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>3.2</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>3.2</td>
</tr>
</tbody>
</table>

^{490} Based on relevant specifications as of March 2015. Weighting percentages are based on available product from the CEC database accessed on 08/28/2014.
The prescriptive water savings for each efficiency level are presented below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>ΔWater (ccf per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>2.6</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>3.2</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>3.2</td>
</tr>
</tbody>
</table>

kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities’ must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

\[
\Delta kWh_{water}^{491} = 2.07 \text{ kWh} \times \Delta \text{Water (CCF)}
\]

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>ΔkWh_{water}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>5.4</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>6.6</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is provided in the table below: 492

491 This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, “Energy Savings Plan, Prepared for DC Water.” Washington, D.C., 2010. See DC Water Conservation.xlsx for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region.

492 Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 -
<table>
<thead>
<tr>
<th>Purchase Date</th>
<th>Efficiency Level</th>
<th>Front Loading</th>
<th>Top Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Jan 1, 2018</td>
<td>ENERGY STAR, CEE Tier 1</td>
<td>$17</td>
<td>$17</td>
</tr>
<tr>
<td></td>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>$28</td>
<td>$28</td>
</tr>
<tr>
<td></td>
<td>CEE TIER 3</td>
<td>$34</td>
<td>$34</td>
</tr>
<tr>
<td>After Jan 1, 2018</td>
<td>ENERGY STAR, CEE Tier 1</td>
<td>$17</td>
<td>$21</td>
</tr>
<tr>
<td></td>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>$28</td>
<td>$50</td>
</tr>
<tr>
<td></td>
<td>CEE TIER 3</td>
<td>$34</td>
<td>NA</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 14 years.\(^{493}\)

Operation and Maintenance Impacts

n/a

\(^{493}\) Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at:

Clothes Washer, Early Replacement

Unique Measure Code(s): RS_LA_EREP_CWASHES_0415, RS_LA_EREP_CWASHT2_0415, RS_LA_EREP_CWASHT3_0415, RS_LA_EREP_CWASHME_0415

Effective Date: June 2015
End Date: TBD

Measure Description
This measure relates to the early removal of an existing inefficient clothes washer from service, prior to its natural end of life, and replacement with a new unit exceeding either the ENERGY STAR/CEE Tier 1, ENERGY STAR Most Efficient / CEE Tier 2 or CEE Tier 3 minimum qualifying efficiency standards presented below.

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Integrated Modified Energy Factor (IMEF)</th>
<th>Integrated Water Factor (IWF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
<td>Top Loading</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>>= 2.38</td>
<td>>= 2.06<sup>494</sup></td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>>= 2.74</td>
<td>>= 2.74</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>>= 2.92</td>
<td>>= 2.92</td>
</tr>
</tbody>
</table>

The Integrated modified energy factor (MEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity and the per-cycle standby and off mode energy consumption; the higher the number, the greater the efficiency.

The Integrated Water Factor (IWF) is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Savings are calculated between the existing unit and the new efficient unit consumption during the assumed remaining life of the existing unit, and between a hypothetical new baseline unit and the efficient unit consumption for the remainder of the measure life.

⁴⁹⁴ CEE does not distinguish between front loading and top loading, and requires a minimum IMEF of 2.38 in both cases

⁴⁹⁵ CEE does not distinguish between front loading and top loading, and requires a maximum IWF of 3.7 in both cases
Definition of Baseline Condition

The baseline condition is the existing inefficient clothes washer for the remaining assumed useful life of the unit, assumed to be 5 years496, and then for the remainder of the measure life (next 9 years) the baseline becomes a new replacement unit meeting the minimum federal efficiency standard presented above.

The existing unit efficiency is assumed to be 1.0 IMEF for front loaders and 0.84 IMEF for top loaders. This is based on the Federal Standard for clothes washers from 2004 - 2015; 1.26 MEF converted to IMEF using an ENERGY STAR conversion tool copied in to the reference calculation spreadsheet “2015 Mid Atlantic Early Replacement Clothes Washer Analysis.xls”. The Integrated Water Factor is assumed to be 8.2 IWF for front loaders and 8.4 for top loaders, based on a similar conversion of the 2004 Federal Standard 7.93WF.

The new baseline unit is consistent with the Time of Sale measure.

The baseline assumptions are provided below:

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Integrated Modified Energy Factor (IMEF)</th>
<th>Integrated Water Factor (IWF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
<td>Top Loading</td>
</tr>
<tr>
<td>Existing unit</td>
<td>1.0</td>
<td>0.84</td>
</tr>
<tr>
<td>Federal Standard before Jan 1, 2018</td>
<td>1.84</td>
<td>1.29</td>
</tr>
<tr>
<td>Federal Standard after Jan 1, 2018</td>
<td>1.84</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Definition of Efficient Condition

The efficient condition is a clothes washer meeting either the exceeding ENERGY STAR/CEE Tier 1, ENERGY STAR Most Efficient / CEE Tier 2 or CEE Tier 3 standards as of 1/1/2015 as presented in the measure description.

Annual Energy Savings Algorithm
(see ‘2015 Mid Atlantic Early Replacement Clothes Washer Analysis.xls’ for detailed calculation)

496 Based on 1/3 of the measure life.
\[\Delta \text{kWh} = [(\text{Capacity} \times 1/\text{IMEF}_{\text{base}} \times N_{\text{cycles}}) \times (\%C_W_{\text{base}} + (\%D_HW_{\text{base}} \times \%\text{Electric}_{\text{DHW}}) + (\%\text{Dryer}_{\text{base}} \times \%\text{Electric}_{\text{Dryer}})) - ((\text{Capacity} \times 1/\text{IMEF}_{\text{eff}} \times N_{\text{cycles}}) \times (\%C_W_{\text{eff}} + (\%D_HW_{\text{eff}} \times \%\text{Electric}_{\text{DHW}}) + (\%\text{Dryer}_{\text{eff}} \times \%\text{Electric}_{\text{Dryer}}))] \]

Where

- **Capacity** = Clothes Washer capacity (cubic feet)
 - Actual. If capacity is unknown, assume average 3.45 cubic feet \(^{497}\)

- **IMEF_{base}** = Integrated Modified Energy Factor of baseline unit
 - Values provided in the table below

- **IMEF_{eff}** = Integrated Modified Energy Factor of efficient unit
 - Actual. If unknown, assume average values provided below.

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Integrated Modified Energy Factor (IMEF)</th>
<th>Weighting Percentages (^{498})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
<td>Top Loading</td>
</tr>
<tr>
<td>Existing Unit (^{499})</td>
<td>1.0</td>
<td>0.84</td>
</tr>
<tr>
<td>Federal Standard</td>
<td>>= 1.84</td>
<td>>= 1.29</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>>= 2.38</td>
<td>>= 2.06</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient,</td>
<td>>= 2.74</td>
<td>>= 2.74</td>
</tr>
<tr>
<td>CEE TIER 2</td>
<td></td>
<td>n/a</td>
</tr>
</tbody>
</table>

- **N_{cycles}** = Number of Cycles per year
 - 254 \(^{501}\)

- **\%C_W** = Percentage of total energy consumption for Clothes Washer operation

\(^{497}\) Based on the average clothes washer volume of all units that pass the new Federal Standard on the California Energy Commission (CEC) database of Clothes Washer products accessed on 08/28/2014.

\(^{498}\) Weighting percentages are based on available product from the CEC database.

\(^{499}\) Existing units efficiencies are based upon an MEF of 1.26, the 2004 Federal Standard, converted to IMEF using an ENERGY STAR conversion tool.

\(^{500}\) For early replacement measures, we will always know the configuration of the replaced machine.

%DHW = Percentage of total energy consumption used for water heating
%Dryer = Percentage of total energy consumption for dryer operation
(dependent on efficiency level – see table below)

<table>
<thead>
<tr>
<th>Percentage of Total Energy Consumption</th>
<th>%CW</th>
<th>%DHW</th>
<th>%Dryer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Standard</td>
<td>8%</td>
<td>31%</td>
<td>61%</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>8%</td>
<td>23%</td>
<td>69%</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE Tier 2</td>
<td>14%</td>
<td>10%</td>
<td>76%</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>14%</td>
<td>10%</td>
<td>77%</td>
</tr>
</tbody>
</table>

%Electric_DHW = Percentage of DHW savings assumed to be electric

<table>
<thead>
<tr>
<th>DHW fuel</th>
<th>%Electric_DHW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>0%</td>
</tr>
</tbody>
</table>

%Electric_Dryer = Percentage of dryer savings assumed to be electric

<table>
<thead>
<tr>
<th>Dryer fuel</th>
<th>%Electric_Dryer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Fossil Fuel</td>
<td>0%</td>
</tr>
</tbody>
</table>

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

502 The percentage of total energy consumption that is used for the machine, heating the hot water or by the dryer is different depending on the efficiency of the unit. Values are based on a weighted average of top loading and front loading units (based on available product from the CEC Appliance database) and consumption data from Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm.
### Efficiency Level	Dryer/DHW Fuel Combo	Remaining life of existing unit (first 5 years) ΔkWh	Remaining measure life (next 9 years) ΔkWh	Mid Life Adjustment	Equivalent Weighted Average Annual Savings
ENERGY STAR, CEE TIER 1	Electric Dryer/Electric DHW	488.7	655.6	140.1	29%
	Electric Dryer/Gas DHW	316.3	397.0	66.3	21%
	Gas Dryer/Electric DHW	208.4	305.1	82.6	40%
	Gas Dryer/Gas DHW	36.0	46.5	8.8	25%
ENERGY STAR Most Efficient, CEE TIER 2	Electric Dryer/Electric DHW	556.5	723.4	208.5	37%
	Electric Dryer/Gas DHW	325.5	406.2	76.0	23%
	Gas Dryer/Electric DHW	254.6	351.4	129.1	51%
	Gas Dryer/Gas DHW	23.6	34.2	-3.5	-15%
CEE TIER 3	Electric Dryer/Electric DHW	576.1	743.0	228.1	40%
	Electric Dryer/Gas DHW	341.9	422.6	92.4	27%
	Gas Dryer/Electric DHW	259.9	356.7	134.4	52%
	Gas Dryer/Gas DHW	25.7	36.3	-1.4	-5%

Summer Coincident Peak kW Savings Algorithm

\[
\Delta W = \Delta \text{kHz}/\text{Hours} \times \text{CF}
\]

Where:

- **Hours** = Assumed Run hours of Clothes Washer
 \[= 265 \text{ } 503\]
- **CF** = Summer Peak Coincidence Factor for measure
 \[= 0.029 \text{ } 504\]

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

504 Ibid.
### Efficiency Level	Dryer/DHW Fuel Combo	Remaining life of existing unit (first 5 years) ΔkW	Remaining measure life (next 9 years) ΔkW	Mid Life Adjustment	Equivalent Weighted Average Annual Savings
ENERGY STAR, CEE Tier 1					
Electric Dryer/Electric DHW	0.053	0.072	0.015	29%	21%
Electric Dryer/Fuel DHW	0.035	0.043	0.007	21%	17%
Fuel Dryer/Electric DHW	0.023	0.033	0.009	40%	27%
Fuel Dryer/Fuel DHW	0.004	0.005	0.001	25%	19%

ENERGY STAR Most Efficient, CEE TIER 2
Electric Dryer/Electric DHW	0.061	0.079	0.023	37%	29%	0.041	0.050
Electric Dryer/Fuel DHW	0.036	0.044	0.008	23%	19%	0.021	0.025
Fuel Dryer/Electric DHW	0.028	0.038	0.014	51%	37%	0.021	0.026
Fuel Dryer/Fuel DHW	0.003	0.004	0.000	-15%	-10%	0.001	0.001

CEE TIER 3
Electric Dryer/Electric DHW	0.063	0.081	0.025	40%	31%	0.043	0.052
Electric Dryer/Fuel DHW	0.037	0.046	0.010	27%	22%	0.023	0.027
Fuel Dryer/Electric DHW	0.028	0.039	0.015	52%	38%	0.022	0.026
Fuel Dryer/Fuel DHW	0.003	0.004	0.000	-5%	-4%	0.001	0.002

Annual Fossil Fuel Savings Algorithm

Break out savings calculated in Step 1 of electric energy savings (MEF savings) and extract Natural Gas DHW and Natural Gas dryer savings from total savings:

\[
\Delta\text{MMBTU} = [(\text{Capacity} \times 1/\text{IMEFbase} \times \text{Ncycles}) \times ((\%\text{DHWbase} \times \%\text{Natural Gas_DHW} \times R_{eff}) + (\%\text{Dryerbase} \times \%\text{Gas_Dryer})) - [(\text{Capacity} \times 1/\text{IMEFeff} \times \text{Ncycles}) \times ((\%\text{DHWeff} \times \%\text{Natural Gas_DHW} \times R_{eff}) + (\%\text{Dryereff} \times \%\text{Gas_Dryer}))] \times \text{MMBTU_convert}
\]

Where:

\[
R_{eff} = \text{Recovery efficiency factor} = 1.26^{505}
\]

\[
\text{MMBTU_convert} = \text{Conversion factor from kWh to MMBTU}
\]

505 To account for the different efficiency of electric and Natural Gas hot water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.78 used), and electric water heater with 0.98 recovery efficiency http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf. Therefore a factor of 0.98/0.78 (1.26) is applied.
\[\text{\%Natural Gas}_{\text{DHW}} = \text{Percentage of DHW savings assumed to be Natural Gas} \]

<table>
<thead>
<tr>
<th>DHW fuel</th>
<th>%Natural Gas_{\text{DHW}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>0%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>100%</td>
</tr>
</tbody>
</table>

\[\text{\%Gas}_{\text{Dryer}} = \text{Percentage of dryer savings assumed to be Natural Gas} \]

<table>
<thead>
<tr>
<th>Dryer fuel</th>
<th>%Gas_{\text{Dryer}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>0%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>100%</td>
</tr>
</tbody>
</table>

Other factors as defined above

Using the default assumptions provided above, the prescriptive savings for each configuration are presented below.

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Configuration</th>
<th>Remaining life of existing unit (first 5 years) ΔMMBTU</th>
<th>Remaining measure life (next 9 years) ΔMMBTU</th>
<th>Mid Life Adjustment</th>
<th>Equivalent Weighted Average Annual Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Front</td>
<td>Top</td>
<td>Weighted Average</td>
<td>Front</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>Electric Dryer/Electric DHW</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Gas DHW</td>
<td>0.74</td>
<td>1.11</td>
<td>0.32</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Electric DHW</td>
<td>0.96</td>
<td>1.20</td>
<td>0.20</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Gas DHW</td>
<td>1.70</td>
<td>2.31</td>
<td>0.51</td>
<td>30%</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE Tier 2</td>
<td>Electric Dryer/Electric DHW</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Gas DHW</td>
<td>0.99</td>
<td>1.36</td>
<td>0.57</td>
<td>57%</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Electric DHW</td>
<td>1.03</td>
<td>1.27</td>
<td>0.27</td>
<td>26%</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Gas DHW</td>
<td>2.02</td>
<td>2.63</td>
<td>0.84</td>
<td>42%</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>Electric Dryer/Electric DHW</td>
<td>0.00</td>
<td>n/a</td>
<td>0.00</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Electric Dryer/Gas DHW</td>
<td>1.01</td>
<td>1.38</td>
<td>0.58</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Electric DHW</td>
<td>1.08</td>
<td>1.32</td>
<td>0.32</td>
<td>30%</td>
</tr>
<tr>
<td></td>
<td>Gas Dryer/Gas DHW</td>
<td>2.09</td>
<td>2.70</td>
<td>0.90</td>
<td>43%</td>
</tr>
</tbody>
</table>
Annual Water Savings Algorithm

\[\Delta \text{Water (CCF)} = (\text{Capacity} \times (\text{IWF}_{\text{base}} - \text{IWF}_{\text{eff}})) \times \text{Ncycles} / 748 \text{ gallons / CCF} \]

Where

- \(\text{WF}_{\text{base}} = \text{Integrated Water Factor of baseline clothes washer}
 = \text{Values provided below}
- \(\text{WF}_{\text{eff}} = \text{Integrated Water Factor of efficient clothes washer}
 = \text{Actual. If unknown assume average values provided below.}

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>IWF (^{506})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
</tr>
<tr>
<td>Existing (^{507})</td>
<td>8.2</td>
</tr>
<tr>
<td>Federal Standard</td>
<td>4.7</td>
</tr>
<tr>
<td>ENERGY STAR, CEE Tier 1</td>
<td>3.7</td>
</tr>
<tr>
<td>ENERGY STAR Most Efficient, CEE TIER 2</td>
<td>3.2</td>
</tr>
<tr>
<td>CEE TIER 3</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below\(^{509}\):

\(^{506}\) Based on relevant specifications as of March 2015. Weighting percentages are based on available product from the CEC database.

\(^{507}\) Existing units efficiencies are based upon an WF of 7.93 which was the previous new baseline assumption - converted to IWF using an ENERGY STAR conversion tool copied in to the “2015 Mid Atlantic Early Replacement Clothes Washer Analysis.xls” worksheet.

\(^{508}\) For early replacement measures we will always know the configuration of the replaced machine.

\(^{509}\) Water Factor is the number of gallons required for each cubic foot of laundry. For ENERGY STAR and CEE Tiers 2 and 3 the average WF of units in the following evaluation are used; Navigant Consulting “EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program.” March 21, 2014, page 36. For baseline and ENERGY STAR Most Efficient the average WF of the post 1/1/2011 units available in each classification is used (based on data pulled from the California Energy Commission Appliance Efficiency Database http://www.appliances.energy.ca.gov/)
kWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities’ must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

\[
\Delta \text{kWh}_{\text{water}}^{510} = 2.07 \text{ kWh} \times \Delta \text{Water (CCF)}
\]

Using the default assumptions provided above, the prescriptive water savings for each efficiency level are presented below:

510 This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, “Energy Savings Plan, Prepared for DC Water.” Washington, D.C., 2010. See DC Water Conservation.xlsx for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region.
Incremental Cost

The lifecycle NPV incremental cost for this early replacement measure is provided in the table below: 511

<table>
<thead>
<tr>
<th>Purchase Date</th>
<th>Efficiency Level</th>
<th>Front Loading</th>
<th>Top Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Jan 1, 2018</td>
<td>ENERGY STAR, CEE Tier 1</td>
<td>$444</td>
<td>$348</td>
</tr>
<tr>
<td></td>
<td>ENERGY STAR Most Efficient, CEE Tier 2</td>
<td>$455</td>
<td>$378</td>
</tr>
<tr>
<td></td>
<td>CEE Tier 3</td>
<td>$461</td>
<td>NA</td>
</tr>
<tr>
<td>After Jan 1, 2018</td>
<td>ENERGY STAR, CEE Tier 1</td>
<td>$444</td>
<td>$354</td>
</tr>
<tr>
<td></td>
<td>ENERGY STAR Most Efficient, CEE Tier 2</td>
<td>$455</td>
<td>$455</td>
</tr>
<tr>
<td></td>
<td>CEE Tier 3</td>
<td>$427</td>
<td>NA</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 14 years 512 and the existing unit is assumed to have a remaining life of 5 years 513.

Operation and Maintenance Impacts

n/a

511 Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 WO017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA

512 Based on DOE Life-Cycle Cost and Payback Period Excel-based analytical tool, available online at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/rcw_dfr_lcc_standard.xlsm

513 Based on 1/3 of the measure life.
Dehumidifier
Unique Measure Code(s): RS_AP_TOS_DEHUMID_0113
Effective Date: June 2014
End Date: TBD

Measure Description
This measure relates to the purchase (time of sale) and installation of a dehumidifier meeting the minimum qualifying efficiency standard established by the current ENERGY STAR (Version 4.0)\(^{514}\) in place of a unit that meets the minimum federal standard efficiency.

Definition of Baseline Condition
The baseline for this measure is defined as a new dehumidifier that meets the Federal Standard efficiency standards as defined below:

<table>
<thead>
<tr>
<th>Capacity (pints/day)</th>
<th>Federal Standard Criteria (L/kWh)(^{515})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 35</td>
<td>≥1.35</td>
</tr>
<tr>
<td>> 35 to ≤45</td>
<td>≥1.50</td>
</tr>
<tr>
<td>> 45 to ≤54</td>
<td>≥1.60</td>
</tr>
<tr>
<td>> 54 to ≤75</td>
<td>≥1.70</td>
</tr>
<tr>
<td>> 75 to ≤185</td>
<td>≥2.50</td>
</tr>
</tbody>
</table>

Definition of Efficient Condition
To qualify for this measure, the new dehumidifier must meet the ENERGY STAR standards version 4.0 effective 10/25/2016\(^{516}\) as defined below:

<table>
<thead>
<tr>
<th>Capacity (pints/day)</th>
<th>ENERGY STAR Criteria (L/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td><75</td>
<td>≥2.00</td>
</tr>
<tr>
<td>75 to ≤185</td>
<td>≥2.80</td>
</tr>
</tbody>
</table>

\(^{514}\) Energy Star Version 4.0 became effective 10/25/16
\(^{516}\)https://www.energystar.gov/products/spec/dehumidifiers_specification_version_4_0.pdf
Qualifying units shall be equipped with an adjustable humidistat control or shall require a remote humidistat control to operate.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \text{Capacity} \times 0.473 / 24 \times \text{Hours} \times \left(1 / (\text{L/kWh}_\text{Base}) - 1 / (\text{L/kWh}_\text{Eff})\right)
\]

Where:

- **Capacity** = Capacity of the unit (pints/day)
- **0.473** = Constant to convert Pints to Liters
- **24** = Constant to convert Liters/day to Liters/hour
- **Hours** = Run hours per year
 = 1632 \text{ } 517
- **L/kWh** = Liters of water per kWh consumed, as provided in tables above

Annual kWh results for each capacity class are presented below using the average of the capacity range. If the capacity of installed units is collected, the savings should be calculated using the algorithm. If the capacity is unknown, a default average value is provided:

<table>
<thead>
<tr>
<th>Capacity Range (pints/day)</th>
<th>Capacity Used</th>
<th>Federal Standard Criteria (≥ L/kWh)</th>
<th>ENERGY STAR Criteria (≥ L/kWh)</th>
<th>Federal Standard</th>
<th>ENERGY STAR</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤25</td>
<td>20</td>
<td>1.35</td>
<td>2.0</td>
<td>477</td>
<td>322</td>
<td>155</td>
</tr>
<tr>
<td>> 25 to ≤35</td>
<td>30</td>
<td>1.35</td>
<td>2.0</td>
<td>715</td>
<td>482</td>
<td>232</td>
</tr>
<tr>
<td>> 35 to ≤45</td>
<td>40</td>
<td>1.5</td>
<td>2.0</td>
<td>858</td>
<td>643</td>
<td>214</td>
</tr>
<tr>
<td>> 45 to ≤54</td>
<td>50</td>
<td>1.6</td>
<td>2.0</td>
<td>1005</td>
<td>804</td>
<td>201</td>
</tr>
</tbody>
</table>

517 Based on 68 days of 24-hour operation; ENERGY STAR Dehumidifier Calculator http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?f3f7-6a8b&f3f7-6a8b
Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \frac{\Delta \text{kWh}}{\text{Hours}} \times CF
\]

Where:

- **Hours** = Annual operating hours
 - = 1632 hours
- **CF** = Summer Peak Coincidence Factor for measure
 - = 0.37

<table>
<thead>
<tr>
<th>Capacity (pints/day) Range</th>
<th>(\Delta kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤25</td>
<td>0.035</td>
</tr>
<tr>
<td>> 25 to ≤35</td>
<td>0.053</td>
</tr>
<tr>
<td>> 35 to ≤45</td>
<td>0.049</td>
</tr>
<tr>
<td>> 45 to ≤54</td>
<td>0.046</td>
</tr>
<tr>
<td>> 54 to ≤75</td>
<td>0.042</td>
</tr>
<tr>
<td>> 75 to ≤185</td>
<td>0.041</td>
</tr>
<tr>
<td>Average</td>
<td>0.054</td>
</tr>
</tbody>
</table>

Annual Fossil Fuel Savings Algorithm

n/a

518 Based on 68 days of 24-hour operation; ENERGY STAR Dehumidifier Calculator
http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?f3f7-6a8b6f3f7-6a8b

519 Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). 1632 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1632/4392 = 37.2%
Annual Water Savings Algorithm
n/a

Incremental Cost
The lifecycle NPV incremental cost for this time of sale measure is $5.520

Measure Life
The measure life is assumed to be 12 years.521

Operation and Maintenance Impacts
n/a

Dehumidifier, Early Retirement / Recycling
Unique Measure Code(s): RS_AP_ERET_DEHUMID_0518
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes the savings resulting from removing an existing, operating dehumidifier from service prior to its natural end of life. The program should target, but not be limited to, dehumidifiers put into service prior to June 2019. If the unit is replaced rather than retired, savings should be based on the Dehumidifier Time-of-Sale measure.

Definition of Baseline Condition
The baseline condition is the existing inefficient dehumidifier.

Definition of Efficient Condition
The existing inefficient dehumidifier is removed from service and not replaced.

Energy Savings Algorithm

520 Based on available data from the Department of Energy’s Life Cycle Cost analysis spreadsheet:
http://www1.eere.energy.gov/buildings/appliance_standards/residential/docs/lcc_dehumidifier.xls
521 ENERGY STAR Dehumidifier Calculator
http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xls?f3f7-6a8b&f3f7-6a8b
Remaining life kWh savings =
\[\text{Capacity} \times \frac{0.473}{24} \times \text{hours} \times \frac{1}{L\text{ per kWh}} \times (\text{Service Life} - \text{Existing Age})\]

Where:
- **Capacity** = Capacity of the unit (pints/day)
- **0.473** = Constant to convert Pints to Liters
- **24** = Constant to convert Liters/day to Liters/hour
- **Hours** = Run hours per year
 - **1632**
- **L/kWh** = Liters of water per kWh consumed, as provided in table below. Values reflect a manufacture date range that coincides with timing of federal efficiency standards.
- **Service Life** = 12
- **Existing Age** = age of existing unit

Annual kWh savings results for each capacity class are presented in the table below reflecting two recent federal standards as baseline. If the capacity of installed units is collected, the savings should be calculated using the algorithm. If the capacity is unknown, a default average value is provided. If the unit being removed is Energy Star labeled, custom calculation will be required.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>≤25</td>
<td>20</td>
<td>1</td>
<td>1.35</td>
<td>643</td>
<td>477</td>
</tr>
<tr>
<td>> 25 to ≤35</td>
<td>30</td>
<td>1.2</td>
<td>1.35</td>
<td>804</td>
<td>715</td>
</tr>
</tbody>
</table>

522 Based on 68 days of 24-hour operation; ENERGY STAR Dehumidifier Calculator http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/appliance_calculator.xlsx?f3f7-6a86f3f7-6a8b

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \frac{\Delta kWh}{Hours} \times CF \]

Where:

- \(kW \) = annual kWh savings
- \(Hours \) = Annual operating hours
 - 1632 hours\(^{525}\)
- \(CF \) = Summer Peak Coincidence Factor for measure
 - 0.37 \(^{526}\)

<table>
<thead>
<tr>
<th>Capacity (pints/day) Range</th>
<th>(\Delta kW) before 2012</th>
<th>(\Delta kW) 2012-2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤25</td>
<td>0.146</td>
<td>0.108</td>
</tr>
<tr>
<td>> 25 to ≤35</td>
<td>0.182</td>
<td>0.162</td>
</tr>
<tr>
<td>> 35 to ≤45</td>
<td>0.224</td>
<td>0.194</td>
</tr>
<tr>
<td>> 45 to ≤54</td>
<td>0.280</td>
<td>0.228</td>
</tr>
<tr>
<td>> 54 to ≤75</td>
<td>0.316</td>
<td>0.279</td>
</tr>
<tr>
<td>> 75 to ≤185</td>
<td>0.421</td>
<td>0.379</td>
</tr>
<tr>
<td>Average</td>
<td>0.262</td>
<td>0.225</td>
</tr>
</tbody>
</table>

\(^{525}\) Based on 68 days of 24-hour operation; ENERGY STAR Dehumidifier Calculator

\(^{526}\) Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through the end of September (4392 possible hours). 1632 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer peak is therefore 1632/4392 = 37.2%
Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
n/a

Measure Life
n/a

Operation and Maintenance Impacts
n/a
ENERGY STAR Air Purifier/Cleaner

Unique Measure Code(s): RS_AP_TOS_AIRPUR_0414
Effective Date: June 2014
End Date: TBD

Measure Description
An air purifier (cleaner) is a portable electric appliance that removes dust and fine particles from indoor air. This measure characterizes the purchase and installation of a unit meeting the efficiency specifications of ENERGY STAR in place of a baseline model.

Definition of Baseline Condition
The baseline equipment is assumed to be a conventional non-ENERGY STAR unit with consumption estimates based upon EPA research on available models, 2011\(^{527}\).

Definition of Efficient Condition
The efficient equipment is defined as an air purifier meeting the efficiency specifications of ENERGY STAR as provided below.

- Must produce a minimum 50 Clean Air Delivery Rate (CADR) for Dust\(^{528}\) to be considered under this specification.
- Minimum Performance Requirement: = 2.0 CADR/Watt (Dust)
- Standby Power Requirement: = 2.0 Watts Qualifying models that perform secondary consumer functions (e.g. clock, remote control) must meet the standby power requirement.
- UL Safety Requirement: Models that emit ozone as a byproduct of air cleaning must meet UL Standard 867 (ozone production must not exceed 50ppb)

Annual Energy Savings Algorithm

\(^{527}\) ENERGY STAR Appliance Savings Calculator; [http://www.energystar.gov/buildings/sites/default/uploads/files/appliance_calculator.xlsx\(24\)-046c=a0f2-2e6f\&a0f2-2e6f]

\(^{528}\) Measured according to the latest ANSI/AHAM AC-1 (AC-1) Standard
\[\Delta \text{kWh} = \text{kWh}_{\text{Base}} - \text{kWh}_{\text{ESTAR}} \]

Where:

\(\text{kWh}_{\text{BASE}} \) = Baseline kWh consumption per year\(^{529}\)

\(\text{kWh}_{\text{ESTAR}} \) = ENERGY STAR kWh consumption per year\(^{530}\)

\[\Delta \text{kWh} = \Delta \text{kWh}/\text{Hours} \times \text{CF} \]

\(\Delta \text{kWh} \) = Gross customer annual kWh savings for the measure

\(\text{Hours} \) = Average hours of use per year

\(^{529}\) Based on assumptions found in the ENERGY STAR Appliance Savings Calculator; Efficiency 1.0 CADR/Watt, 16 hours a day, 365 days a year and 1W standby power.

\(^{530}\) Ibid. Efficiency 3.0 CADR/Watt, 16 hours a day, 365 days a year and 0.6W standby power.
\[\text{CF} = 0.67^{532} \]

<table>
<thead>
<tr>
<th>Clean Air Delivery Rate</th>
<th>ΔkW</th>
</tr>
</thead>
<tbody>
<tr>
<td>CADR 51-100</td>
<td>0.034</td>
</tr>
<tr>
<td>CADR 101-150</td>
<td>0.056</td>
</tr>
<tr>
<td>CADR 151-200</td>
<td>0.078</td>
</tr>
<tr>
<td>CADR 201-250</td>
<td>0.101</td>
</tr>
<tr>
<td>CADR Over 250</td>
<td>0.123</td>
</tr>
</tbody>
</table>

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is $0.533

Measure Life

The measure life is assumed to be 9 years534.

Operation and Maintenance Impacts

There are no operation and maintenance cost adjustments for this measure.535

531 Consistent with ENERGY STAR Qualified Room Air Cleaner Calculator; 16 hours a day, 365 days a year.

532 Assumes appliance use is equally likely at any hour of the day or night.

533 ENERGY STAR Appliance Savings Calculator, which cites “EPA research on available models, 2012”

534 ENERGY STAR Appliance Savings Calculator; Based on Appliance Magazine, Portrait of the U.S. Appliance Industry 1998.

535 Some types of room air cleaners require filter replacement or periodic cleaning, but this is likely to be true for both efficient and baseline units and so no difference in cost is assumed.
Clothes Dryer
Unique Measure Code(s): RS_AP_TOS_CLTDRY_0415
Effective Date: June 2015
End Date: TBD

Measure Description
This measure relates to the installation of a residential clothes dryer meeting the ENERGY STAR criteria. ENERGY STAR qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions such as air flow and/or heat input rate, improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers. ENERGY STAR provides criteria for both gas and electric clothes dryers.

Definition of Baseline Condition
The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after January 1, 2015.

Definition of Efficient Condition
Clothes dryer must meet the ENERGY STAR criteria, as required by the program.

Annual Energy Savings Algorithm
\[\Delta \text{kWh} = (\text{Load}/\text{CEF}_{\text{base}} - \text{Load}/\text{CEF}_{\text{eff}}) \times \text{Ncycles} \times \%\text{Electric} \]

Where:
\[\text{Load} = \text{The average total weight (lbs) of clothes per drying cycle.} \]
\[\text{If dryer size is unknown, assume standard.} \]

<table>
<thead>
<tr>
<th>Dryer Size</th>
<th>Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>8.45</td>
</tr>
<tr>
<td>Compact</td>
<td>3</td>
</tr>
</tbody>
</table>

CEFbase = Combined energy factor (CEF) (lbs/kWh) of the baseline unit is based on existing federal standards energy factor and adjusted to CEF as performed in the ENERGY STAR analysis\(^{538}\). If product class unknown, assume electric, standard.

<table>
<thead>
<tr>
<th>Product Class</th>
<th>CEFbase (lbs/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vented Electric, Standard (≥ 4.4 ft(^3))</td>
<td>3.11</td>
</tr>
<tr>
<td>Vented Electric, Compact (120V) (< 4.4 ft(^3))</td>
<td>3.01</td>
</tr>
<tr>
<td>Vented Electric, Compact (240V) (<4.4 ft(^3))</td>
<td>2.73</td>
</tr>
<tr>
<td>Ventless Electric, Compact (240V) (<4.4 ft(^3))</td>
<td>2.13</td>
</tr>
<tr>
<td>Vented Gas</td>
<td>2.84(^{539})</td>
</tr>
</tbody>
</table>

CEFeff = CEF (lbs/kWh) of the ENERGY STAR unit based on ENERGY STAR requirements.\(^{540}\) If product class unknown, assume electric, standard.

<table>
<thead>
<tr>
<th>Product Class</th>
<th>CEFeff (lbs/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vented or Ventless Electric, Standard (≥ 4.4 ft(^3))</td>
<td>3.93</td>
</tr>
<tr>
<td>Vented or Ventless Electric, Compact (120V) (< 4.4 ft(^3))</td>
<td>3.80</td>
</tr>
<tr>
<td>Vented Electric, Compact (240V) (< 4.4 ft(^3))</td>
<td>3.45</td>
</tr>
<tr>
<td>Ventless Electric, Compact (240V) (<4.4 ft(^3))</td>
<td>2.68</td>
</tr>
<tr>
<td>Vented Gas</td>
<td>3.48(^{541})</td>
</tr>
</tbody>
</table>

Ncycles = Number of dryer cycles per year

537 Based on ENERGY STAR test procedures.
https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers
538 ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis
539 Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.
540 ENERGY STAR Clothes Dryers Key Product Criteria.
https://www.energystar.gov/index.cfm?c=clothesdry.pr_crit_clothes_dryers
541 Federal standards report CEF for gas clothes dryers in terms of lbs/kWh. To determine gas savings, this number is later converted to therms.
%Electric = The percent of overall savings coming from electricity

<table>
<thead>
<tr>
<th>Clothes Dryer Fuel Type</th>
<th>%Electric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Gas</td>
<td>16%</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \Delta kWh / \text{Hours} \times \text{CF}
\]

Where:

- \(\Delta kWh \) = Energy Savings as calculated above
- Hours = Annual run hours of clothes dryer.
 - = 290 hours per year\(^{544}\)
- \(\text{CF} \) = Summer Peak Coincidence Factor for measure
 - = 2.9\%\(^{545}\)

<table>
<thead>
<tr>
<th>Product Class</th>
<th>Algorithm</th>
<th>(\Delta kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vented or Ventless Electric, Standard (≥ 4.4 ft(^3))</td>
<td>(\frac{(8.45/3.11 - 8.45/3.93) \times 311 \times 100%}{290} \times 0.029)</td>
<td>0.018</td>
</tr>
<tr>
<td>Vented or Ventless Electric, Compact (120V) (< 4.4 ft(^3))</td>
<td>(\frac{(3/3.01 - 3/3.80) \times 311 \times 100%}{290} \times 0.029)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

\(^{543}\) %Electric accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 16\% was determined using a ratio of the electric to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

\(^{544}\) Assumes average of 56 minutes per cycle based on Ecova, ‘Dryer Field Study’, Northwest Energy Efficiency Alliance (NEEA) 2014

Annual Fossil Fuel Savings Algorithm

Natural gas savings only apply to ENERGY STAR vented gas clothes dryers.

$$\Delta \text{MMBTU} = \frac{\text{Load/CEFbase} - \text{Load/CEFeff}}{} \times \text{Ncycles} \times \text{MMBTU}_{\text{convert}} \times \%\text{Gas}$$

Where:

$$\text{MMBTU}_{\text{convert}} = \text{Conversion factor from kWh to MMBTU}$$

$$= 0.003413$$

$$\%\text{Gas} = \text{Percent of overall savings coming from gas}$$

<table>
<thead>
<tr>
<th>Clothes Dryer Fuel Type</th>
<th>%Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>0%</td>
</tr>
<tr>
<td>Gas</td>
<td>84%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Class</th>
<th>Algorithm</th>
<th>ΔMMBTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vented or Ventless Electric, Standard ($\geq 4.4 \text{ ft}^3$)</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Vented or Ventless Electric, Compact (120V) ($< 4.4 \text{ ft}^3$)</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Vented Electric, Compact (240V) ($< 4.4 \text{ ft}^3$)</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Ventless Electric, Compact (240V) ($< 4.4 \text{ ft}^3$)</td>
<td>n/a</td>
<td>0</td>
</tr>
<tr>
<td>Vented Gas</td>
<td>=\left(\frac{8.45}{2.84} - \frac{8.45}{3.48}\right) \times 311 \times 0.003413 \times 0.84</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

n/a

546 %Gas accounts for the fact that some of the savings on gas dryers comes from electricity (motors, controls, etc). 84% was determined using a ratio of the gas to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.
Incremental Cost
The lifecycle NPV incremental cost for a time of sale ENERGY STAR clothes dryer is assumed to be $75.547

Measure Life
The expected measure life is assumed to be 14 years548.

Operation and Maintenance Impacts
n/a

547 Energy Star Appliance Calculator, which cites “Cadmus Research on available models, July 2016.”
Dishwasher

Unique Measure Code(s): RS_AP_TOS_DISHWAS_0415
Effective Date: June 2015
End Date: TBD

Measure Description
A dishwasher meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard. This measure is only for standard dishwashers, not compact dishwashers. A compact dishwasher is a unit that holds less than eight place settings with six serving pieces.

Definition of Baseline Condition
The baseline for this measure is defined as a new dishwasher that meets the Federal Standard efficiency standards as defined below:\(^{549}\):

<table>
<thead>
<tr>
<th>Dishwasher Type</th>
<th>Maximum kWh/year</th>
<th>Maximum gallons/cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>307</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Definition of Efficient Condition
To qualify for this measure, the new dishwasher must meet the ENERGY STAR standards version 6.0 as defined below:

<table>
<thead>
<tr>
<th>Dishwasher Type</th>
<th>Maximum kWh/year</th>
<th>Maximum gallons/cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>270</td>
<td>3.50</td>
</tr>
</tbody>
</table>

Annual Energy Savings Algorithm
\[
\Delta \text{kWh}^{550} = ((\text{kWh}_{\text{Base}} - \text{kWh}_{\text{ESTAR}}) \times (%\text{kWh_op} + (%\text{kWh_heat} \times %\text{Electric_DHW})))
\]

Where:
\[
\text{kWh}_{\text{BASE}} = \text{Baseline kWh consumption per year}
\]

\(^{550}\) The Federal Standard and ENERGY STAR annual consumption values include electric consumption for both the operation of the machine and for heating the water that is used by the machine.
= 307 kWh

\[kWH_{\text{ESTAR}} = \text{ENERGY STAR kWh annual consumption} = 270 \]

\[\%kWh_{\text{op}} = \text{Percentage of dishwasher energy consumption used for unit operation} \]

\[= 1 - 56\%^{551} \]

\[= 44\% \]

\[\%kWh_{\text{heat}} = \text{Percentage of dishwasher energy consumption used for water heating} \]

\[= 56\%^{552} \]

\[\%\text{Electric_DHW} = \text{Percentage of DHW savings assumed to be electric} \]

<table>
<thead>
<tr>
<th>DHW fuel</th>
<th>%\text{Electric_DHW}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric</td>
<td>100%</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>0%</td>
</tr>
<tr>
<td>Unknown</td>
<td>65%^{553}</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{DHW Fuel} & \quad \text{Algorithm} & \quad \Delta kWh \\
\text{Electric} & \quad = ((307 - 270) \times (0.44 + (0.56 \times 1.0))) & \quad 37 \\
\text{Unknown} & \quad = ((307 - 270) \times (0.44 + (0.56 \times 0.65))) & \quad 29.7
\end{align*}
\]

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \Delta kWh/Hours \times CF \]

Where:

\[Hours = \text{Annual operating hours}^{554} \]

551 ENERGY STAR Dishwasher Calculator, see ‘EnergyStarCalculatorConsumerDishwasher.xls’.
552 Ibid.
553 Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for South Region, data for the Mid-Atlantic region.
554 Assuming one and a half hours per cycle and 140 cycles per year therefore 210 operating hours per year; 140 cycles per year is based on a weighted average of dishwasher usage in Mid-Atlantic region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/
\[CF = \text{Summer Peak Coincidence Factor} \]
\[CF = 2.6\% \]

\[
\begin{array}{|c|c|c|}
\hline
\text{DHW Fuel} & \text{Algorithm} & \Delta kW \\
\hline
\text{Electric} & 37/210 \times 0.026 & 0.0046 \\
\text{Unknown} & 29.75/210 \times 0.02 & 0.0037 \\
\hline
\end{array}
\]

\textbf{Annual Fossil Fuel Savings Algorithm}

\[\Delta \text{MMBTU} = (\text{kWh}_{\text{Base}} - \text{kWh}_{\text{ESTAR}}) \times \%\text{kWh}_{\text{heat}} \times \%\text{Natural Gas}_{\text{DHW}} \times R_{\text{eff}} \times 0.003413 \]

\textit{Where}

\[\%\text{kWh}_{\text{heat}} = \% \text{ of dishwasher energy used for water heating} \]
\[\%\text{Natural Gas}_{\text{DHW}} = \% \text{ of DHW savings assumed to be Natural Gas} \]

\[
\begin{array}{|c|c|}
\hline
\text{DHW fuel} & \%\text{Natural Gas}_{\text{DHW}} \\
\hline
\text{Electric} & 0\% \\
\text{Natural Gas} & 100\% \\
\text{Unknown} & 35\%^{556} \\
\hline
\end{array}
\]

555 Based on 8760 end use data for Missouri, provided to VEIC by Ameren for use in the Illinois TRM. The average DW load during peak hours is divided by the peak load. In the absence of a Mid Atlantic specific loadshape this is deemed a reasonable proxy since loads would likely be similar.

556 Default assumption for unknown fuel is based on EIA Residential Energy Consumption Survey (RECS) 2009 for South Region, data for the states of Delaware, Maryland, West Virginia and the District of Columbia. If utilities have specific evaluation results providing a more appropriate assumption for homes in a particular market or geographic area, then that should be used.
$R_{\text{eff}} = \text{Recovery efficiency factor} = 1.31^{557}$

$0.003413 = \text{factor to convert from kWh to MMBTU}$

<table>
<thead>
<tr>
<th>ENERGY STAR Specification</th>
<th>DHW Fuel</th>
<th>Algorithm</th>
<th>ΔMMBTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>Gas</td>
<td>= (307 - 270) * 0.56 * 1.0 * 1.31 * 0.003413</td>
<td>0.09</td>
</tr>
<tr>
<td>6.0</td>
<td>Unknown</td>
<td>= (307 - 270) * 0.56 * 0.35 * 1.31 * 0.003413</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

$\Delta CCF = (Water_{\text{Base}} - Water_{\text{EFF}}) \times \text{GalToCCF}$

Where

$Water_{\text{Base}} = \text{annual water consumption of conventional unit}$

$= 700 \text{ gallons}^{558}$

$Water_{\text{EFF}} = \text{annual water consumption of efficient unit:}$

<table>
<thead>
<tr>
<th>ENERGY STAR Specification</th>
<th>WaterEFF (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>490559</td>
</tr>
</tbody>
</table>

GalToCCF = factor to convert from gallons to CCF

$= 0.001336$

557 To account for the different efficiency of electric and Natural Gas water heaters (gas water heater: recovery efficiencies ranging from 0.74 to 0.85 (0.75 used to account for older existing units)), and electric water heater with 0.98 recovery efficiency (http://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/Waste_Water_Heat_Recovery_Guidelines.pdf). Therefore, a factor of 0.98/0.75 (1.31) is applied.

558 Assuming 5 gallons/cycle (maximum allowed) and 140 cycles per year based on a weighted average of dishwasher usage in the Mid-Atlantic Region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/

559 Assuming 3.50 gallons/cycle (maximum allowed) and 140 cycles per year based on a weighted average of dishwasher usage in the Mid-Atlantic Region derived from the 2009 RECs data; http://205.254.135.7/consumption/residential/data/2009/
Incremental Cost
The lifecycle NPV incremental capital cost for this time of sale measure is $0.560.

Measure Life
The measure life is assumed to be 10 years.561

Operation and Maintenance Impacts
n/a

560 Energy Star Appliance Calculator, which cites “Cadmus Research on available models, July 2016.”
561 ENERGY STAR Dishwasher Calculator, see ‘EnergyStarCalculatorConsumerDishwasher.xls’.
Shell Savings End Use

Air sealing

Unique Measure Code: RS_SL_RF_AIRSLG_0711
Effective Date: June 2014
End Date: TBD

Measure Description

This measure characterization provides a method of claiming both heating and cooling (where appropriate) savings from the improvement of a residential building’s air-barrier, which together with its insulation defines the thermal boundary of the conditioned space.

The measure assumes that a trained auditor, contractor or utility staff member is on location, and will measure and record the existing and post air-leakage rate using a blower door in accordance with industry best practices. Where possible, the efficiency of the heating and cooling system used in the home should be recorded, but default estimates are provided if this is not available.

This is a retrofit measure.

Definition of Baseline Condition

The existing air leakage prior to any air sealing work should be determined using a blower door.

Definition of Efficient Condition

Air sealing materials and diagnostic testing should meet all program eligibility qualification criteria. The post air sealing leakage rate should then be determined using a blower door.

Annual Energy Savings Algorithm

Total Annual Savings

\[\Delta \text{kWh} = \Delta \text{kWh}_{\text{cool}} + \Delta \text{kWh}_{\text{heat}} \]

Cooling savings from reduction in Air Conditioning Load:

\[
\Delta kWh_{cool} = \left(\frac{(CFM50Exist - CFM50New)}{N_{cool}} \right) \times 60 \times CDH \times DUA \times 0.018 \times \frac{1}{100 \times \eta_{Cool}} \times LM
\]

Where:

- \(CFM50exist \) = Blower Door result (CFM\(_{50}\)) prior to air sealing
- \(CFMnew \) = Blower Door result (CFM\(_{50}\)) after air sealing
- \(N_{cool} \) = conversion from CFM\(_{50}\) to CFM\(_{Natural}\)\(^{563}\)
- \(N_{cool} \) = dependent on location and number of stories:\(^{564}\)

<table>
<thead>
<tr>
<th>Location</th>
<th>N_cool (by # of stories)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wilmington, DE</td>
<td>38.4</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>38.4</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>40.3</td>
</tr>
</tbody>
</table>

\(CDH \) = Cooling Degree Hours\(^{565}\)
- \(CDH \) = dependent on location:

<table>
<thead>
<tr>
<th>Location</th>
<th>Cooling Degree Hours (75°F set point)</th>
</tr>
</thead>
</table>

\(^{563}\) N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and exposure of the home to wind, based on methodology developed by Lawrence Berkeley Laboratory (LBL). Since there is minimal stack effect due to low delta T, the height of the building is not included in determining n-factor for cooling savings.

\(^{564}\) N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, *Exegesis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings*; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30 year climate normals. For more information see Bruce Harley, CLEAResult “Infiltration Factor Calculations Methodology.doc”.

\(^{565}\) Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used), each hour of the year. Hourly temperature data obtained from TMY3 data (http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html)
<table>
<thead>
<tr>
<th>Location</th>
<th>SEER Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>7,514</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>9,616</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>13,178</td>
</tr>
</tbody>
</table>

DUA = Discretionary Use Adjustment\(^{566}\)
= 0.75

0.018 = The volumetric heat capacity of air (BTU/ft\(^3\)°F)

ηCool = Efficiency in SEER of Air Conditioning equipment
= actual. If not available, use\(^{567}\):

<table>
<thead>
<tr>
<th>Age of Equipment</th>
<th>SEER Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 2006</td>
<td>10</td>
</tr>
<tr>
<td>After 2006</td>
<td>13</td>
</tr>
</tbody>
</table>

LM = Latent Multiplier to account for latent cooling demand\(^{568}\)

<table>
<thead>
<tr>
<th>Location</th>
<th>LM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>4.09</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>3.63</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>3.63</td>
</tr>
</tbody>
</table>

Illustrative example – do not use as default assumption
A single story home in Wilmington, DE with a 12 SEER Air Conditioning unit, has pre and post blower door test results of 3,400 and 2,250.

\[\Delta k\text{Wh}_{\text{cool}} = \left[\frac{((3,400 - 2,250) / 38.4) * 60 * 7,514 * 0.75 * 0.018}{1,000 / 12}\right] * 4.09\]

\[= 62.1 \text{ kWh}\]

\(^{566}\) To account for the fact that people do not always operate their air conditioning system when the outside temperature is greater than 75°F. Based on Energy Center of Wisconsin, May 2008 metering study; “Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research”, p31.

\(^{567}\) These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

\(^{568}\) Derived by calculating the sensible and total loads in each hour. For more information see Bruce Harley, CLEAResult “Infiltration Factor Calculations Methodology.doc”.
Heating savings for homes with electric heat (Heat Pump or resistance):

\[
\Delta \text{kWh}_{\text{heat}} = \left(\frac{(\text{CFM}_{50 \text{Exist}} - \text{CFM}_{50 \text{New}})}{N_{\text{heat}}} \times 60 \times 24 \times \text{HDD} \times 0.018}{1,000,000} \times \eta_{\text{Heat}} \times 293.1 \right)
\]

Where:

\(N_{\text{heat}}\) = conversion from CFM\(_{50}\) to CFM\(_{\text{Natural}}\)

\(=\) Based on location and number of stories\(^{569}\):

<table>
<thead>
<tr>
<th>Location</th>
<th>N(_{\text{heat}}) (by # of stories)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wilmington, DE</td>
<td>24.5</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>25.1</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>25.7</td>
</tr>
</tbody>
</table>

\(\text{HDD}\) = Heating Degree Days

\(=\) dependent on location\(^{570}\)

<table>
<thead>
<tr>
<th>Location</th>
<th>Heating Degree Days (60°F set point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>3,275</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>3,457</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>2,957</td>
</tr>
</tbody>
</table>

\(^{569}\) N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and \# of stories. These were developed by applying the LBNL infiltration model (see LBNL paper 21040, Exegesis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30-year climate normals. For more information, see Bruce Harley, CLEAResult “Infiltration Factor Calculations Methodology.doc”.

\(^{570}\) The 10-year average annual heating degree day value is calculated for each location, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60-degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.
η_{Heat} = Efficiency in COP of Heating equipment
= actual. If not available, use571:

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>COP Estimate572</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>After 2006</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td>Resistance</td>
<td>n/a</td>
<td>n/a</td>
<td>1.00</td>
</tr>
</tbody>
</table>

293.1 = Converts MMBTU to kWh

Illustrative example – do not use as default assumption
A two-story home in Wilmington, DE with a heat pump with COP of 2.5, has pre and post blower door test results of 3,400 and 2,250.

\[
\Delta \text{kWh}_{\text{heat}} = \frac{[((3,400 - 2,250) / 24.5) * 60 * 24 * 3,275 * 0.018})}{1,000,000 / 2.5} * 293.1
\]

\[
= 467.1 \text{ kWh}
\]

Summer Coincident Peak kW Savings Algorithm

\[
\Delta \text{kW}_{\text{cool}} = \Delta \text{kWh} / \text{FLH}_{\text{cool}} * \text{CF}
\]

Where:

\[
\text{FLH}_{\text{cool}} = \text{Full Load Cooling Hours}
\]

Dependent on location as below:

<table>
<thead>
<tr>
<th>Location</th>
<th>FLH\textsubscript{cool}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>524573</td>
</tr>
</tbody>
</table>

571 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time means that using the minimum standard is appropriate.

572 To convert HSPF to COP, divide the HSPF rating by 3.413.

573 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or
Illustrative example – do not use as default assumption
A single story home in Wilmington, DE with a 12 SEER Air Conditioning unit, has pre and post blower door test results of 3,400 and 2,250.

\[
\Delta kW = \frac{62.1}{524} \times 0.69
\]

= 0.08 kW

Annual Fossil Fuel Savings Algorithm

For homes with Fossil Fuel Heating:

\[
\Delta \text{MMBTU} = \frac{((\text{CFM50Exist} - \text{CFM50New}) / N \text{- heat}) \times 60 \times 24 \times \text{HDD} \times 0.018}{1,000,000 / \eta \text{Heat}}
\]

Where:

N-heat = conversion from CFM\text{50} to CFM\text{Natural}

= Based on location and number of stories577

575 Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.

576 Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.

577 N-factor is used to convert 50-pascal blower door air flows to natural air flows and is dependent on geographic location and # of stories. These were developed by applying the LBNL...
N_heat (by # of stories)

<table>
<thead>
<tr>
<th>Location</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>24.5</td>
<td>21.7</td>
<td>19.9</td>
<td>17.6</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>25.1</td>
<td>22.3</td>
<td>20.4</td>
<td>18.1</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>25.7</td>
<td>22.7</td>
<td>20.8</td>
<td>18.5</td>
</tr>
</tbody>
</table>

$HDD = \text{Heating Degree Days}
= \text{dependent on location}^{578}$

Heating Degree Days (60°F set point)

<table>
<thead>
<tr>
<th>Location</th>
<th>Heating Degree Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>3,275</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>3,457</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>2,957</td>
</tr>
</tbody>
</table>

$\eta_{\text{Heat}} = \text{Efficiency of Heating equipment (equipment efficiency * distribution efficiency)}
= \text{actual}^{579}. \text{If not available, use 84\% for equipment efficiency and 78\% for distribution efficiency to give 66\%}^{580}$

infiltration model (see LBNL paper 21040, *Exegesis of Proposed ASHRAE Standard 119: Air Leakage Performance for Detached Single-Family Residential Buildings*; Sherman, 1986; page v-vi, Appendix page 7-9) to the reported wind speeds and outdoor temperatures provided by the NRDC 30-year climate normals. For more information, see Bruce Harley, CLEAResult “Infiltration Factor Calculations Methodology.doc”.

578 The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://www.engr.udayton.edu/weather/). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

579 Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-Bluesheet.pdf) or by performing duct blaster testing.

580 The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32\% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92\% for the condensing furnaces and 80\% for the non-condensing furnaces gives a weighted average of 83.8\%. The
Illustrative example – do not use as default assumption
A single story home in Wilmington, DE with a 70% heating system efficiency, has pre and post blower door test results of 3,400 and 2,250.

\[
\Delta\text{MMBTU} = \frac{(((3,400 - 2,250) / 24.5) * 60 * 24 * 3,275 * 0.018)}{1,000,000 / 0.7} = 5.7 \text{ MMBTU}
\]

Annual Water Savings Algorithm

n/a

Incremental Cost
The incremental cost for this retrofit measure should be the actual installation and labor cost to perform the air sealing work.

Measure Life
The measure life is assumed to be 15 yrs\(^5\)\(^8\)\(^1\).

Operation and Maintenance Impacts
n/a

Attic/ceiling/roof insulation

Unique Measure Code: RS_SL_RF_ATTICI_0711
Effective Date: June 2014
End Date: TBD

Measure Description
This measure characterization is for the installation of new insulation in the attic/roof/ceiling of a residential building. The measure assumes that an auditor, contractor or utility staff member is on location, and will measure and record the existing and new insulation depth and type (to calculate R-values), the surface area of insulation added, and where possible the efficiency of the heating and cooling system used in the home.

This is a retrofit measure.

Definition of Baseline Condition
The existing insulation R-value should include the total attic floor / roof assembly. An R-value of 5 should be assumed for the roof assembly plus the R-value of any existing insulation. Therefore, if there is no insulation currently present, the R-value of 5 should be used.

Definition of Efficient Condition
The new insulation should meet any qualification criteria required for participation in the program. The new insulation R-value should include the total attic floor / roof assembly and include the effective R-value of any existing insulation that is left in situ.

Annual Energy Savings Algorithm

Savings from reduction in Air Conditioning Load:

\[\Delta kWh = \frac{(1/R_{exist} - 1/R_{new}) \times CDH \times DUA \times Area}{1,000 / \eta_{Cool} \times AdjCool} \]

582 The R-5 assumption for roof assembly is based on J.Neymark & Associates and National Renewable Energy Laboratory, June 2009; “BESTEST-EX Interim Test Procedure” p27. The attic floor and roof should be modeled as a system including solar gains and attic ventilation, and R-5 is the standard assumption for the thermal resistance of the whole attic/roof system.
Where:

\[R_{\text{exist}} = R\text{-value of roof assembly plus any existing insulation} = \text{actual (minimum of R-5)} \]

\[R_{\text{new}} = R\text{-value of roof assembly plus new insulation} = \text{actual} \]

\[CDH = \text{Cooling Degree Hours}^{583} = \text{dependent on location:} \]

<table>
<thead>
<tr>
<th>Location</th>
<th>Cooling Degree Hours (75°F set point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>7,514</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>9,616</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>13,178</td>
</tr>
</tbody>
</table>

\[DUA = \text{Discretionary Use Adjustment}^{584} = 0.75 \]

\[\text{Area} = \text{square footage of area covered by new insulation} = \text{actual} \]

\[\eta_{\text{cool}} = \text{Efficiency in SEER of Air Conditioning equipment} = \text{actual. If not available, use}^{585} \]

<table>
<thead>
<tr>
<th>Age of Equipment</th>
<th>SEER Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 2006</td>
<td>10</td>
</tr>
<tr>
<td>After 2006</td>
<td>13</td>
</tr>
</tbody>
</table>

\[\text{Adj}_{\text{cool}} = 0.8^{586} \]

Illustrative example – do not use as default assumption

583 Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used), each hour of the year. Hourly temperature data obtained from TMY3 data (http://rredc.nrel.gov/solar/)

584 To account for the fact that people do not always operate their air conditioning system when the outside temperature is greater than 75°F. Based on Energy Center of Wisconsin, May 2008 metering study; “Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research”, p31.

585 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

586 From Illinois TRM, 9 as demonstrated in two years of metering evaluation by Opinion Dynamics. Adjusts savings derived through engineering algorithms to actual savings measured in field.
Insulating 1200 square feet of attic from R-5 to R-30 in a home with a 12 SEER central Air Conditioning unit in Baltimore, MD.

\[
\Delta kWh = \frac{(1/5 - 1/30) \times 9,616 \times 0.75 \times 1,200}{1,000} / 12 \times 0.8
\]

= 96 kWh

Savings for homes with electric heat (Heat Pump or resistance):

\[
\Delta kWh = \frac{((1/R_{\text{exist}} - 1/R_{\text{new}}) \times \text{HDD} \times 24 \times \text{Area})}{1,000,000} / \eta_{\text{Heat}} \times 293.1 \times \text{Adjheat}
\]

\(HDD\) = Heating Degree Days

\(= \) dependent on location\(^{587}\)

<table>
<thead>
<tr>
<th>Location</th>
<th>Heating Degree Days (60°F set point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>3,275</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>3,457</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>2,957</td>
</tr>
</tbody>
</table>

1,000,000 = Converts BTU to MMBTU

\(\eta_{\text{Heat}}\) = Efficiency in COP of Heating equipment

= actual. If not available, use\(^{588}\):

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>COP Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>After 2006</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td>Resistance</td>
<td>n/a</td>
<td>n/a</td>
<td>1.00</td>
</tr>
</tbody>
</table>

293.1 = Converts MMBTU to kWh

\(^{587}\) The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.

\(^{588}\) These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.
Illustrative example – do not use as default assumption

Insulating 1200 square feet of attic from R-5 to R-30 in a home with a 2.5COP Heat Pump in Baltimore, MD.

\[
\Delta kWh = \frac{((1/5 - 1/30) \times 3457 \times 24 \times 1200)}{1,000,000 / 2.5} \times 293.1 \times 0.6 \\
= 1,167 \text{kWh}
\]

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \frac{\Delta kWh}{\text{FLHcool}} \times \text{CF}
\]

Where:

- \(FLHcool\) = Full Load Cooling Hours
- \(CF\) = Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday)
- \(CF_{SSP}\) = 0.69
- \(CF_{PJM}\) = PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2pm and 6pm) valued at peak weather

<table>
<thead>
<tr>
<th>Location</th>
<th>FLHcool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>524</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>542</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>681</td>
</tr>
</tbody>
</table>

\(\text{FLHcool}\) = Dependent on location as below:

- Wilmington, DE = 524
- Baltimore, MD = 542
- Washington, DC = 681

589 From Illinois TRM, 9 as demonstrated in two years of metering evaluation by Opinion Dynamics

590 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

592 Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.
Illustrative example – do not use as default assumption
Insulating 1200 square feet of attic from R-5 to R-30 in a home with a 12 SEER central Air Conditioning unit in Baltimore, MD.

$$\Delta kW = \frac{96}{542} \times 0.69$$

$$= 0.12 kW$$

Annual Fossil Fuel Savings Algorithm

$$\Delta \text{MMBTU} = \frac{\left(\frac{1}{R_{\text{exist}}} - \frac{1}{R_{\text{new}}}\right) \times \text{HDD} \times 24 \times \text{Area}}{1,000,000} / \eta_{\text{Heat}} \times \text{Adjheat}$$

Where:

$$\text{HDD} = \text{Heating Degree Days}$$

$$= \text{dependent on location}$$

<table>
<thead>
<tr>
<th>Location</th>
<th>Heating Degree Days (60°F set point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>3,275</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>3,457</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>2,957</td>
</tr>
</tbody>
</table>

$$\eta_{\text{Heat}} = \text{Efficiency of Heating equipment (equipment efficiency \times distribution efficiency)}$$

593 Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.

594 The 10-year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60-degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.
= actual\(^{595}\). If not available, use 84% for equipment efficiency and 78% for distribution efficiency to give 66\(^{596}\).

Adjheat = 0.60\(^{597}\)

Illustrative example – do not use as default assumption
Insulating 1200 square feet of attic from R-5 to R-30 in a home with a 75% efficiency heating system in Baltimore, MD.

\[
\Delta \text{MMBTU} = ((1/5 - 1/30) \times 3457 \times 24 \times 1200) / 1,000,000 / 0.75 \times 0.60
\]

\[
= 13 \text{ MMBTU}
\]

Annual Water Savings Algorithm
n/a

Incremental Cost
The incremental cost for this retrofit measure should be the actual installation and labor cost to perform the insulation work.

Measure Life
The measure life is assumed to be 25 years\(^{598}\).

Operation and Maintenance Impacts

\(^{595}\) Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

\(^{596}\) The equipment efficiency default is based on data provided by GAMA during the Federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%. The distribution efficiency default is based on assumption that 50% of duct work is inside the envelope, with some leaks and no insulation. VEIC did not have any more specific data to provide any additional defaults.

\(^{597}\) From Illinois TRM, 9 as demonstrated in two years of metering evaluation by Opinion Dynamics. Factor adjusts predicted values from engineering estimates to better match the actual values as measured in the field.

Efficient Windows - Energy Star, Time of Sale

Unique Measure Code(s): RS_SL_TOS_WINDOW_0510
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes the purchase of Energy Star Windows (u-0.32; SHGC-0.40 minimum requirement for North Central region) at natural time of replacement or new construction outside of the Energy Star Homes program. This does not relate to a window retrofit program. Measure characterization assumes electric heat- either resistance or heat pump.

Definition of Baseline Condition
The baseline condition is a standard double pane window with vinyl sash, (u-0.49 SHGC-0.58).

Definition of Efficient Condition
The efficient condition is an ENERGY STAR window (u-0.32; SHGC-0.40 minimum requirement for North Central region).

Annual Energy Savings Algorithm\(^{599}\)

Heating kWh Savings (Electric Resistance) = 356 kWh per 100 square feet window area

Heating kWh Savings (Heat Pump COP 2.0) = 194 kWh per 100 square feet window area

Cooling kWh Savings (SEER 10) = 205 kWh per 100 square feet window area

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW_{cooling} = \Delta kW_{REM} \times CF \]

\(^{599}\) Based on REMRate modeling of New Jersey baseline existing home moved to Baltimore climate with electric furnace or air source heat pump HSPF 2.0, SEER 10 AC. Ducts installed in un-conditioned basement. Duct leakage set at RESNET/HERS qualitative default.
Where:

\[\Delta kW_{REM} = \text{Delta kW calculated in REMRate model} \]
\[= 0.12 \text{ kW per 100 square feet window area} \]
\[\Delta kW_{SSP} = \text{Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday)} \]
\[= 0.69^{600} \]
\[\Delta kW_{PJM} = \text{PJM Summer Peak Coincidence Factor for Central A/C (June to August weekdays between 2 pm and 6 pm) valued at peak weather} \]
\[= 0.66^{601} \]

\[\Delta kW_{SSP \text{ cooling}} = 0.12 \times 0.69 \]
\[= 0.083 \text{ kW per 100 square feet of windows} \]

\[\Delta kW_{PJM \text{ cooling}} = 0.12 \times 0.66 \]
\[= 0.079 \text{ kW per 100 square feet of windows} \]

Annual Fossil Fuel Savings Algorithm

n/a for homes with electric heat.

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is assumed to be $2.20 square foot of windows.\(^{602}\)

Measure Life

\(^{600}\) Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.

\(^{601}\) Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.

The measure life is assumed to be 25 years.603

Operation and Maintenance Impacts

n/a

Crawl Space Insulation and Encapsulation

Unique Measure Code(s): RS_SL_RF_CRLINS_0616
Effective Date: June 2016
End Date: TBD

Measure Description
This measure relates to the insulation and/or encapsulation to a crawl space under a single family home. This measure also allows for the possibility that the crawl space will be encapsulated. This encapsulation in effect changes the crawlspace from an unconditioned space to a conditioned space, thus eliminating losses from any duct work that may run through the space.

Definition of Baseline Condition
The baseline depends on site specific conditions. However, it is most likely to be an unencapsulated, uninsulated crawlspace.

Definition of Efficient Condition
The efficient condition is a crawlspace that is insulated and/or encapsulated.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \text{kWh}_{\text{cooling}} + \text{kWh}_{\text{heating}} + \text{kWh}_{\text{ducts}} \]

Where:
\[\text{kWh}_{\text{cooling}} = \text{reduction in cooling requirement. Only applicable to homes with central cooling} \]
\[= ((1 / R_{\text{Old AG}} - 1 / (R_{\text{Old AG}} + R_{\text{Added AG}})) * L_{\text{Basement Wall}} * H_{\text{Basement Wall AG}} * (1 - \text{Framing Factor}) * CDH * DUA) / (1000 * \eta_{\text{Cool}}) * \text{Adj}_{\text{Basementcool}} \]

Where:
\[R_{\text{Old AG}} = \text{R_Value of foundation wall above grade} \]
\[= \text{Actual, if unknown assume 1.0} \]

When possible, energy savings should be determined through a custom analysis such as building simulation. If that option is not feasible, savings may be estimated using the algorithms in this section.

\[R_{\text{Added_AG}} = \text{R-Value of additional insulation} \]
\[L_{\text{Basement_Wall}} = \text{Length of basement wall around the insulated perimeter} \]
\[H_{\text{Basement_Wall_AG}} = \text{Height of basement wall above grade} \]
\[\text{Framing_Factor} = \text{Adjustment to account for area of framing if cavity insulation} \]
\[= 0\% \text{ if spray foam or rigid foam} \]
\[= 25\% \text{ if studs and cavity insulation}^{606} \]
\[24 = \text{converts days to hours} \]
\[CDH = \text{Cooling Degree Hours}^{607} \]
\[= \text{dependent on location:} \]

<table>
<thead>
<tr>
<th>Location</th>
<th>Cooling Degree Hours (75°F set point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>7,514</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>9,616</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>13,178</td>
</tr>
</tbody>
</table>

\[DUA = \text{Discretionary Use Adjustment, to account for the fact that people do not always operate AC when conditions call for it.} \]
\[= 0.75^{608} \]

\[\eta_{\text{Cool}} = \text{Efficiency in SEER of Cooling Equipment.} \]
\[= \text{Actual. If unknown use}^{609}: \]

<table>
<thead>
<tr>
<th>Age of Equipment</th>
<th>SEER Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before 2006</td>
<td>10</td>
</tr>
<tr>
<td>After 2006</td>
<td>13</td>
</tr>
</tbody>
</table>

606 ASHRAE, 2001, “Characterization of Framing Factors for New Low-Rise Residential Building Envelopes (904-RP),” Table 7.1

607 Derived by summing the delta between the average outdoor temperature and the base set point of 75 degrees (above which cooling is assumed to be used), each hour of the year. Hourly temperature data obtained from TMY3 data (http://rredc.nrel.gov/solar/)

608 This factor’s source is: Energy Center of Wisconsin, May 2008 metering study; “Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research”, p31.

609 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Central AC was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.
\[\text{Adj}_{\text{BasementCool}} = \text{Adjustment to take into account prescriptive algorithms overclaiming savings} = 80\% \]

\[\text{kWh}_{\text{heating}} = \text{Reduction in annual heating requirement, if electric heat (resistance or heat pump)} = (\text{kWh}_{\text{AG}} + \text{kWh}_{\text{BG}}) \times \text{Adj}_{\text{Basement}} \]

Where:

\[\text{kWh}_{\text{AG}} = \text{Savings from insulation on walls or crawlspaces above grade} = ((1/R_{\text{Old AG}} - 1/(R_{\text{Old AG}} + R_{\text{Added}})) \times L_{\text{Basement Wall}} \times H_{\text{Basement Wall AG}} \times (1 - \text{Framing Factor}) \times \text{HDD} \times 24) / (3412 \times \eta_{\text{Heat}}) \]

\[\text{kWh}_{\text{BG}} = \text{Savings from insulation on walls or crawlspaces below grade} = ((1/R_{\text{Old BG}} - 1/(R_{\text{Old BG}} + R_{\text{Added}})) \times L_{\text{Basement Wall}} \times H_{\text{Basement Wall BG}} \times (1 - \text{Framing Factor}) \times \text{HDD} \times 24) / (3412 \times \eta_{\text{Heat}}) \]

Where:

\[\text{HDD} = \text{Heating Degree Days} = \text{Dependent on location}. \]

<table>
<thead>
<tr>
<th>Location</th>
<th>Heating Degree Days (60°F set point)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>3,275</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>3,457</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>2,957</td>
</tr>
</tbody>
</table>

\[3412 = \text{Converts kWh to BTU} \]

611 The 10 year average annual heating degree day value is calculated for a number of locations, using a balance point for heating equipment use of 60 degrees (based on data obtained from http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm). The 60 degree balance point is used based on a PRISM evaluation of approximately 600,000 Ohio residential single family customers showing this is the point below which heating is generally used.
\[\eta_{\text{Heat}} = \text{Efficiency of Heating system, in COP. If not available, use}^{612}: \]

<table>
<thead>
<tr>
<th>System Type</th>
<th>Age of Equipment</th>
<th>HSPF Estimate</th>
<th>COP Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Pump</td>
<td>Before 2006</td>
<td>6.8</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>After 2006</td>
<td>7.7</td>
<td>2.26</td>
</tr>
<tr>
<td>Resistance</td>
<td>n/a</td>
<td>n/a</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[R_{\text{Old_BG}} = \text{R-Value of Wall below Grade} \]
\[= \text{Dependent on depth of foundation}^{613} \]

<table>
<thead>
<tr>
<th>Depth below grade (ft)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth R-value</td>
<td>2.44</td>
<td>4.5</td>
<td>6.3</td>
<td>8.4</td>
<td>10.44</td>
<td>12.66</td>
<td>14.49</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Average Earth R-value</td>
<td>2.44</td>
<td>3.16</td>
<td>3.79</td>
<td>4.40</td>
<td>4.97</td>
<td>5.53</td>
<td>6.07</td>
<td>6.60</td>
<td>7.13</td>
</tr>
<tr>
<td>Total Below Grade R-value (earth + R-1.0 foundation) default</td>
<td>3.44</td>
<td>4.47</td>
<td>5.41</td>
<td>6.41</td>
<td>7.42</td>
<td>8.46</td>
<td>9.46</td>
<td>10.53</td>
<td>11.69</td>
</tr>
</tbody>
</table>

\[H_{\text{Basement_Wall_BG}} = \text{Height of basement wall below grade} \]
\[Adj_{\text{Basementheat}} = \text{Adjustment to account for prescriptive algorithms overclaiming savings} \]
\[= 60\%^{614} \]
\[kWh_{\text{ducts}} = \text{electric savings from loss of duct leaks, if more than 50\% of ducts are in a conditioned area} \]
\[= kWh_{\text{duct_cool}} + kWh_{\text{duct_heat}} \]

And:
\[kWh_{\text{duct_cool}} = \text{Hours_Cool} \times \text{BTU/\text{Hour}} \times \left(1 / \text{SEER}\right) \times \text{Duct_Factor} / 1000 \]
\[kWh_{\text{duct_heat}} = \text{Hours_Heat} \times \text{BTU/\text{Hour}} \times \left(1 / \text{HSPF}\right) \times \text{Duct_Factor} / 1000 \]

Where:

612 These default system efficiencies are based on the applicable minimum Federal Standards. In 2006 the Federal Standard for Heat Pumps was adjusted. While one would expect the average system efficiency to be higher than this minimum, the likely degradation of efficiencies over time mean that using the minimum standard is appropriate.

613 Adapted from Table 1, page 24.4, of the 1977 ASHRAE Fundamentals Handbook.

\[
\text{Hours_Cool} = \text{Full load cooling hours}
\]

Dependent on location as below:

<table>
<thead>
<tr>
<th>Location</th>
<th>Run Hours</th>
</tr>
</thead>
</table>
| Wilmington, DE | 524
d615 |
| Baltimore, MD | 542
d616 |
| Washington, DC | 681 |

\[
\text{BTU/Hour} = \text{Size of equipment in BTU/hour (note 1 ton = 12,000 BTU/hour)}
\]

\[
\text{SEER} = \text{Seasonal Efficiency of conditioning equipment}
\]

\[
\text{Duct_Factor} = \text{Factor to account for elimination of duct losses from encapsulation} = 0.05
\]

\[
\text{Hours_Heat} = \text{Full Load Heating Hours}
\]

Dependent on location as below:

<table>
<thead>
<tr>
<th>Location</th>
<th>FLHheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>935\d617</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>866\d618</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>822</td>
</tr>
</tbody>
</table>

615 Full Load Cooling Hours assumptions for Wilmington, DE and Washington, DC calculated by multiplying the EmPower average Maryland full load hours determined for Maryland (542 from the research referenced below) by the ratio of full load hours in Wilmington, DE (1,015) or Washington, DC (1,320) to Baltimore MD (1,050) from the ENERGY STAR calculator. (http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/Calc_CAC.xls)

Illustrative examples – do not use as default assumption

A single family home in Wilmington is getting its crawlspace insulated with R-13 spray foam and encapsulated. The crawlspace currently has an R-value of 2.25, and a significant portion of the home’s ductwork runs through the crawlspace. The house has a 20x25 footprint, and the crawlspace walls are 7 feet tall, 3 of which are above grade. The HVAC unit is a heat pump with 13 SEER and 2.26 COP.

\[\Delta \text{kWh} = \text{kWh}_{\text{cooling}} + \text{kWh}_{\text{heating}} + \text{kWh}_{\text{ducts}} \]

\[\text{kWh}_{\text{cooling}} = \left(\frac{1}{2.25} - \frac{1}{2.25 + 13} \right) \times (20*2 + 25*2) \times 3 \times (1-0) \times 7514 \times 0.75 / (1,000 \times 13) \times 0.8 \]

\[= 35 \text{ kWh} \]

\[\text{kWh}_{\text{heating}} = \left(\frac{1}{2.25} - \frac{1}{2.25 + 13} \right) \times (20*2 + 25*2) \times 3 \times (1-0) \times 3275 \times 24 / (3412 \times 2.26) + \left(\frac{1}{6.42 + 2.25} \right) \times (20*2 + 25*2) \times 4 \times (1-0) \times 3275 \times 24 / (3412 \times 2.26) \times 0.6 \]

\[= 722 \text{ kWh} \]

\[\text{kWh}_{\text{ducts}} = 524 \times 36,000 \times (1/13) \times 0.05 / 1000 + 935 \times 36,000 \times (1/8) \times 0.05 / 1,000 \]

\[= 283 \text{ kWh} \]

\[\Delta \text{kWh} = 35 + 722 + 283 \]

\[= 1,040 \text{ kWh} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = \text{kWh}_{\text{cooling}} / \text{Hours}_\text{Cool} \times \text{CF} \]

Where:

\[CF_{SSP} = \text{Summer System Peak Coincidence Factor for Central A/C (hour ending 5pm on hottest summer weekday)} \]

\[= 0.69 \]

\[619 \text{ Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the Maryland Peak Definition coincidence factor is 0.69.} \]
Illustrative examples – do not use as default assumption

For the house described above:
\[
\Delta kW = 35 / 524 \times 0.69 \\
= 0.046 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm

If Natural Gas heating:
\[
\Delta \text{therms} = (\text{therms}_{AG} + \text{therms}_{BG}) \times \text{Adj}_{\text{Basement}} + \text{therms}_{\text{duct}}
\]

Where:

\[
\text{therms}_{AG} = \text{Savings from insulation on walls or crawlspaces above grade} \\
= \left(1/R_{\text{Old}_{\text{AG}}} - 1/(R_{\text{Old}_{\text{AG}}} + R_{\text{Added}})\right) \times L_{\text{Basement Wall}} \times H_{\text{Basement Wall}_{\text{AG}}} \times (1-\text{Framing Factor}) \times \text{HDD} \times 24 / (100,067 \times \eta_{\text{Heat}})
\]

\[
\text{therms}_{BG} = \text{Savings from insulation on walls or crawlspaces below grade} \\
= \left(1/R_{\text{Old}_{\text{BG}}} - 1/(R_{\text{Old}_{\text{BG}}} + R_{\text{Added}})\right) \times L_{\text{Basement Wall}} \times H_{\text{Basement Wall}_{\text{BG}}} \times (1-\text{Framing Factor}) \times \text{HDD} \times 24 / (100,067 \times \eta_{\text{Heat}})
\]

\[
\text{therms}_{\text{duct}} = \text{Hours}_{\text{Heat}} \times \text{BTU/ Hour} \times \text{AFUE} \times \text{Duct Factor} / 100,000
\]

Where:

\[
\text{Hours}_{\text{heat}} = \text{Equivalent Full Load Heating Hours}
\]

<table>
<thead>
<tr>
<th>Location</th>
<th>EFLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>848</td>
</tr>
</tbody>
</table>

620 Based on BG&E “Development of Residential Load Profiler for Central Air Conditioners and Heat Pumps” research, the PJM Peak Definition coincidence factor is 0.66.

ηHeat = Efficiency of Heating equipment (equipment efficiency * distribution efficiency)
= actual. If not available, use 84% for equipment efficiency and 78% for distribution efficiency to give 66%.

Other factors as defined above

Illustrative examples – do not use as default assumption

For the house described above, but with a central furnace:

\[
\Delta \text{therms} = (\text{therms}_{AG} + \text{therms}_{BG}) \times \text{Adj}_{\text{Basement}} + \text{therms}_{\text{duct}}
\]

\[
\text{therms}_{AG} = ((1/2.25 - 1/(2.25+13)) \times (20 \times 2 + 25 \times 2) \times 3 \times (1-0) \times 3275 \times 24) / (100,067 \times 0.66)
= 122 \text{ therms}
\]

\[
\text{therms}_{BG} = ((1/(2.25+6.42)-1/(2.25+6.42+13)) \times (20 \times 2 + 25 \times 2) \times 4 \times (1-0) \times 3275 \times 24) / (100,067 \times 0.66)
= 30 \text{ therms}
\]

622 Based on assumption from BG&E billing analysis of furnace program in the '90s, from conversation with Mary Straub; “Evaluation of the High efficiency heating and cooling program, technical report”, June 1995. For other utilities offering this measure, a Heating Degree Day adjustment may be appropriate to this FLHheat assumption.

623 Full load heating hours derived by adjusting FLHheat for Baltimore, MD based on Washington, DC HDD base 60°F: 620 *2957/3457 = 528 hours.

624 Ideally, the System Efficiency should be obtained either by recording the AFUE of the unit, or performing a steady state efficiency test. The Distribution Efficiency can be estimated via a visual inspection and by referring to a look up table such as that provided by the Building Performance Institute: (http://www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf) or by performing duct blaster testing.

625 The equipment efficiency default is based on data provided by GAMA during the federal rule-making process for furnace efficiency standards, suggesting that in 2000, 32% of furnaces purchased in Maryland were condensing units. Assuming an efficiency of 92% for the condensing furnaces and 80% for the non-condensing furnaces gives a weighted average of 83.8%. The distribution efficiency default is based on assumption that 50% of duct work is inside the envelope, with some leaks and no insulation. VEIC did not have any more specific data to provide any additional defaults.
\[
\text{therms}_{\text{duct}} = 848 \times 100,000 \times 0.84 \times 0.05 / 100,000 \\
= 36 \text{ therms}
\]
\[
\Delta \text{therms} = (122 + 30) \times 0.6 + 36 \\
= 127
\]

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this retrofit measure should be the actual installation and labor cost to perform the insulation work.

Measure Life

The expected measure life is assumed to be 25 years.

Operation and Maintenance Impacts

n/a

Pool Pump End Use

Pool pump-two speed

Unique Measure Code: RS_PP_TOS_PPTWO_0711
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes the purchase of a two speed swimming pool pump capable of running at 50% speed and being run twice as many hours to move the same amount of water through the filter. The measure could be installed in either an existing or new swimming pool. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition
The baseline condition is a standard efficiency, 1.36 kW electric pump operating 5.18 hours per day.

Definition of Efficient Condition
The efficient condition is an identically sized two speed pump operating at 50% speed (50% flow) for 10.36 hours per day.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \text{kWh}_{\text{Base}} - \text{kWh}_{\text{Two Speed}}
\]

Where:

\[
\text{kWh}_{\text{Base}} = \text{typical consumption of a single speed motor in a cool climate (assumes 100 day pool season)}
\]
\[
= 707 \text{ kWh}
\]

\[
\text{kWh}_{\text{Two Speed}} = \text{typical consumption for an efficient two speed pump motor}
\]
\[
= 177 \text{ kWh}
\]

\[
\Delta \text{kWh} = 707 - 177 = 530 \text{ kWh}
\]

Based on INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report
Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = (kW_{\text{Base}} - kW_{\text{Two Speed}}) \times CF \]

Where:
- \(kW_{\text{Base}} \) = Connected load of baseline motor = 1.36 kW
- \(kW_{\text{Two Speed}} \) = Connected load of two speed motor = 0.171 kW
- \(CF_{\text{SSP}} \) = Summer System Peak Coincidence Factor for pool pumps (hour ending 5pm on hottest summer weekday) = 0.20

\[\Delta kW_{\text{SSP}} = (1.3 - 0.171) \times 0.20 \]

\[= 0.23 \text{ kW} \]

\[\Delta kW_{\text{SSP}} = (1.3 - 0.171) \times 0.27 \]

\[= 0.31 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

628 All factors are based on data from INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report
629 Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE Design and Engineering, Table 16
630 Ibid.
The incremental cost for this time of sale measure is assumed to be $175 for a two speed pool pump motor631.

Measure Life

The measure life is assumed to be 10 yrs632.

Operation and Maintenance Impacts

n/a

631 Based on review of Lockheed Martin pump retail price data, July 2009.

632 VEIC estimate.
Pool pump-variable speed
Unique Measure Code: RS_PP_TOS_PPVAR_0711
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes the purchase of a variable speed swimming pool pump capable of running at 40% speed and being run two and a half times as many hours to move the same amount of water through the filter. The measure could be installed in either an existing or new swimming pool. The installation is assumed to occur during a natural time of sale.

Definition of Baseline Condition
The baseline condition is a standard efficiency, 1.36 kW electric pump operating 5.18 hours per day.

Definition of Efficient Condition
The efficient condition is an identically sized variable speed pump operating at 40% flow for 13 hours per day.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \text{kWh}_{\text{Base}} - \text{kWh}_{\text{Variable Speed}} \]

Where:
- \(\text{kWh}_{\text{Base}} \) = typical consumption of a single speed motor in a cool climate (assumes 100 day pool season) = 707 kWh
- \(\text{kWh}_{\text{Variable Speed}} \) = typical consumption for an efficient variable speed pump motor = 113 kWh

\[\Delta \text{kWh} = 707 - 113 \]

\[= 594 \text{kWh} \]

\[^{633} \text{Based on INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report} \]
Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = (kW_{\text{Base}} - kW_{\text{Two Speed}}) \times CF \]

Where:

- \(kW_{\text{Base}} \) = Connected load of baseline motor
 - \(1.3 \text{ kW} \)
- \(kW_{\text{Two Speed}} \) = Connected load of variable speed motor
 - \(0.087 \text{ kW} \)
- \(CF_{\text{SSP}} \) = Summer System Peak Coincidence Factor for pool pumps (hour ending 5pm on hottest summer weekday)
 - \(0.20 \)
- \(CF_{\text{PJM}} \) = PJM Summer Peak Coincidence Factor for pool pumps (June to August weekdays between 2 pm and 6 pm) valued at peak weather
 - \(0.27 \)

\[\Delta kW_{\text{SSP}} = (1.3 - 0.087) \times 0.20 \]

\[= 0.24 \text{ kW} \]

\[\Delta kW_{\text{SSP}} = (1.3 - 0.087) \times 0.27 \]

\[= 0.34 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

\[\text{All factors are based on data from INTEGRATION OF DEMAND RESPONSE INTO TITLE 20 FOR RESIDENTIAL POOL PUMPS, SCE Design & Engineering; Phase1: Demand Response Potential DR 09.05.10 Report} \]

\[\text{Derived from Pool Pump and Demand Response Potential, DR 07.01 Report, SCE Design and Engineering, Table 16} \]

\[\text{Ibid.} \]
The incremental cost for this time of sale measure is assumed to be $549 for a variable speed pool pump motor637.

Measure Life

The measure life is assumed to be 10 yrs638.

Operation and Maintenance Impacts

n/a

638 VEIC estimate.
Plug Load End Use

Tier 1 Advanced Power Strip

Unique Measure Code: RS_PL_TOSAPS_0711

Effective Date: June 2014

End Date: TBD

Measure Description

This measure describes savings associated with the purchase and use of a Current-Sensing Master/Controlled Advanced Power Strip (APS). These multi-plug power strips have the ability to automatically disconnect specific connected loads depending upon the power draw of a control load, also plugged into the strip. Power is disconnected from the switched (controlled) outlets when the control load power draw is reduced below a certain adjustable threshold, thus turning off the appliances plugged into the switched outlets. By disconnecting, the standby load of the controlled devices, the overall load of a centralized group of equipment (i.e. entertainment centers and home office) can be reduced.

This measure characterization provides a single prescriptive savings assumption based on office and entertainment savings from a 2011 NYSERDA Advanced Power Strip Research Report and weightings and in service rates based on EmPower evaluations.

Definition of Baseline Condition

The assumed baseline is a standard power strip that does not control any of the connected loads.

Definition of Efficient Condition

The efficient case is the use of a Current-Sensing Master/Controlled Advanced Power Strip.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = (\text{kWh}_{\text{office}} \times \text{Weighting}_{\text{Office}} + \text{kWh}_{\text{Ent}} \times \text{Weighting}_{\text{Ent}}) \times \text{ISR}
\]

Where:

- \(\text{kWh}_{\text{office}}\) = Estimated energy savings from using an APS in a home office
Weighting\textsubscript{Office} = Relative penetration of computers
= 41\%640

kWh\textsubscript{Ent} = Estimated energy savings from using an APS in a home entertainment system
= 75.1 kWh641

Weighting\textsubscript{Ent} = Relative penetration of televisions
= 59\%642

ISR = In service rate
= 89\%643

\(\Delta \text{kWh} = (31 \times 41\% + 75.1 \times 59\%) \times 89\%\)
= 50.7 kWh

Summer Coincident Peak kW Savings Algorithm

\(\Delta \text{kW} = \frac{\Delta \text{kWh}}{\text{Hours}} \times \text{CF}\)

\textit{Where:}

639 NYSERDA 2011, Advanced Power Strip Research Report, \url{http://www.nyserda.ny.gov/-/media/Files/EERP/Residential/Energy-Efficient-and-ENERGY-STAR-Products/Power-Management-Research-Report.pdf}. Note that estimates are not based on pre/post metering but on analysis based on frequency and consumption of likely products in active, standby and off modes. This measure should be reviewed frequently to ensure that assumptions continue to be appropriate.

640 EmPower 2012 Residential Retrofit evaluation

641 NYSERDA 2011, Advanced Power Strip Research Report

642 EmPower 2012 Residential Retrofit evaluation

643 EmPower EY6 QHEC Survey data.
\[\text{Hours} = \text{Annual hours when controlled standby loads are turned off} \]
\[= 6,351^{644} \]
\[\text{CF} = \text{Coincidence Factor} \]
\[= 0.8^{645} \]

\[\Delta kW = \left(\frac{50.7}{6,351} \right) \times 0.8 \]
\[= 0.0064 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this measure is assumed to be $18^{646}.

Measure Life

The measure life is assumed to be 4 years^{647}.

Operation and Maintenance Impacts

n/a

^{644} EmPower 2012 Residential Retrofit evaluation

^{645} Ibid

^{646} IILSAG 2015 Analysis

^{647} David Rogers, Power Smart Engineering, October 2008: "Smart Strip electrical savings and usability", p22. Assumes that the unit can only take one surge and then needs to be replaced.
ENERGY STAR Air Cleaner

Unique Measure Code(s): RS_AP_TOS_RPPAPU_0616
Effective Date: June 2016
End Date: TBD

Measure Description
An air cleaner is a portable electric appliance that removes dust and fine particles from indoor air. This measure characterizes the purchase and installation of a unit meeting the efficiency specifications of ENERGY STAR in place of a baseline model. Note that this characterization only specifies gross savings. It is up to the individual program administrators and stakeholders to use proper net to gross ratios.

Definition of Baseline Condition
The baseline equipment is assumed to be a standard non-ENERGY STAR unit.

Definition of Efficient Condition
The efficient equipment is defined as an air cleaner meeting the efficiency specifications of ENERGY STAR as provided below:

- Clean Air Delivery Rate (CADR)/Watt Requirement: Must be equal to or greater than 2.0 CADR/Watt (Dust).
- UL Safety Requirements for Ozone Emitting Models: Measured ozone shall not exceed 50 parts per billion.
- Standby Power Requirements: Measured standby power shall not exceed 2 Watts.

Annual Energy Savings Algorithm

\[\Delta kWH = kWH_{Base} - kWH_{ESTAR} \]

Where:

649 Baseline and ENERGY STAR energy consumptions are calculated by taking a weighted average of five product category sub types: 51-100 CADR, 101-150 CADR, 151-200 CADR, 201-250 CADR, and >250 CADR. Wattages for all five product sub types are derived from AHAM data. Duty cycle assumes 16 hours per day, 365 days per year based on filter replacement instructions.
\[\text{kWh}_{\text{BASE}} = \text{Baseline kWh consumption per year} \]
\[= \text{see table below} \]
\[\text{kWh}_{\text{ESTAR}} = \text{ENERGY STAR kWh consumption per year} \]
\[= \text{see table below} \]

<table>
<thead>
<tr>
<th>kWh\text{BASE}</th>
<th>kWh\text{ESTAR}</th>
<th>kWh\text{Savings}</th>
</tr>
</thead>
<tbody>
<tr>
<td>530.98</td>
<td>317.10</td>
<td>213.88</td>
</tr>
</tbody>
</table>

The retail products platform may also be used to incent air cleaners that are 30% and 50% better than energy star. In this case, the efficient consumption would be 222 kWh and 156 kWh, respectively.

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = \Delta \text{kWh/Hours} \times \text{CF} \]

Where:

\[\Delta \text{kWh} = \text{Gross customer annual kWh savings for the measure} \]
\[\text{Hours} = \text{Average hours of use per year} \]
\[= 5840 \text{ hours}^{650} \]
\[\text{CF} = \text{Summer Peak Coincidence Factor for measure} \]
\[= 0.67^{651} \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

650 Consistent with ENERGY STAR Qualified Room Air Cleaner Calculator; 16 hours a day, 365 days a year.

651 Assumes appliance use is equally likely at any hour of the day or night.
The lifecycle NPV incremental cost for this time of sale measure is $0.652

Measure Life

The measure life is assumed to be 9 years653.

Operation and Maintenance Impacts

There are no operation and maintenance cost adjustments for this measure.654

652 ENERGY STAR Appliance Savings Calculator, which cites “EPA research on available models, 2012”

654 Some types of room air cleaners require filter replacement or periodic cleaning, but this is likely to be true for both efficient and baseline units and so no difference in cost is assumed.
Room Air Conditioners (Upstream)

Unique Measure Code(s): RS_HV_TOS_RPPRAC_0616
Effective Date: June 2016
End Date: TBD

Measure Description
This measure relates to the purchase (time of sale) and installation of a room air conditioning unit that meets the ENERGY STAR minimum qualifying efficiency specifications presented below:

<table>
<thead>
<tr>
<th>Product Type and Class (BTU/hour)</th>
<th>Federal Standard with louvered sides (EER)</th>
<th>Federal Standard without louvered sides (EER)</th>
<th>ENERGY STAR with louvered sides (EER)</th>
<th>ENERGY STAR without louvered sides (EER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Reverse Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 6,000</td>
<td>11.0</td>
<td>10.0</td>
<td>12.1</td>
<td>11.0</td>
</tr>
<tr>
<td>6,000 to 7,999</td>
<td>11.0</td>
<td>10.0</td>
<td>12.1</td>
<td>11.0</td>
</tr>
<tr>
<td>8,000 to 13,999</td>
<td>10.9</td>
<td>9.6</td>
<td>12.0</td>
<td>10.6</td>
</tr>
<tr>
<td>14,000 to 19,999</td>
<td>10.7</td>
<td>9.5</td>
<td>12.0</td>
<td>10.5</td>
</tr>
<tr>
<td>20,000 to 24,999</td>
<td>9.4</td>
<td>9.3</td>
<td>10.3</td>
<td>10.2</td>
</tr>
<tr>
<td>>=25,000</td>
<td>9.0</td>
<td>9.4</td>
<td>9.9</td>
<td>10.3</td>
</tr>
<tr>
<td>With Reverse Cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 14,000</td>
<td>n/a</td>
<td>9.3</td>
<td>n/a</td>
<td>10.2</td>
</tr>
<tr>
<td>>=14,000</td>
<td>n/a</td>
<td>8.7</td>
<td>n/a</td>
<td>9.6</td>
</tr>
<tr>
<td>< 20,000</td>
<td>9.8</td>
<td>n/a</td>
<td>10.8</td>
<td>n/a</td>
</tr>
<tr>
<td>>=20,000</td>
<td>9.3</td>
<td>n/a</td>
<td>10.2</td>
<td>n/a</td>
</tr>
<tr>
<td>Casement only</td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casement-Slider</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that this characterization only specifies gross savings. It is up to the individual program administrators and stakeholders to use proper net to gross ratios.

Definition of Baseline Condition
The baseline condition is a window AC unit that meets the minimum federal efficiency standards as of June 1, 2014 presented above. 655

Definition of Efficient Condition

The baseline condition is a window AC unit that meets the ENERGY STAR v4.0 as of October 26, 2015 presented above.656

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \text{kWh}_{\text{Base}} - \text{kWh}_{\text{ESTAR}} \]

Where:

- \(\text{kWh}_{\text{BASE}} = \) Baseline kWh consumption per year
- \(\text{see table below for calculated values} \)
- \(\text{kWh}_{\text{ESTAR}} = \) ENERGY STAR kWh consumption per year
- \(\text{see table below for calculated values} \)

<table>
<thead>
<tr>
<th>Location</th>
<th>Full-Load Cooling Hours</th>
<th>Savings (kWh/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilmington, DE</td>
<td>1,015</td>
<td>74.72</td>
</tr>
<tr>
<td>Baltimore, MD</td>
<td>1,050</td>
<td>77.30</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>1,320</td>
<td>97.18</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = \text{BTU/hour} \times \left(\frac{1}{\text{EER}_{\text{base}}} - \frac{1}{\text{EER}_{\text{est}}})/1000 \times \text{CF} \right. \]

Where:

\[\text{CF} = \text{Summer Peak Coincidence Factor for measure} \]

656 http://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%204.0%20Room%20Air%20Conditioners%20Program%20Requirements.pdf

657 Baseline energy consumption is based on the federal standard for room air conditioners, available at: http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/41. The unit energy savings are calculated by taking a market share weighted average of the unit energy consumption of all product subtypes listed in the ENERGY STAR specification. See ‘RPP Product Analysis 9-23-15.xlsx’
\[CF_{SSP} = Summer\ System\ Peak\ Coincidence\ Factor\ for\ Central\ A/C\ (hour\ ending\ 5pm\ on\ hottest\ summer\ weekday) \]
\[= 0.31^{658} \]

\[CF_{PJM} = PJM\ Summer\ Peak\ Coincidence\ Factor\ for\ Central\ A/C\ (June\ to\ August\ weekdays\ between\ 2\ pm\ and\ 6\ pm)\ \text{valued\ at\ peak\ weather} \]
\[= 0.3^{659} \]

Using deemed values above:

\[\Delta kW_{\text{ENERGY STAR SSP}} = \frac{8500 \times (1/10.9 - 1/11.3)}{1000} \times 0.31 \]
\[= 0.009\ kW \]

\[\Delta kW_{\text{CEE TIER 1 SSP}} = \frac{8500 \times (1/10.9 - 1/11.8)}{1000} \times 0.31 \]
\[= 0.018\ kW \]

\[\Delta kW_{\text{ENERGY STAR PJM}} = \frac{8500 \times (1/10.9 - 1/11.3)}{1000} \times 0.30 \]
\[= 0.008\ kW \]

\[\Delta kW_{\text{CEE TIER 1 PJM}} = \frac{8500 \times (1/10.9 - 1/11.8)}{1000} \times 0.30 \]
\[= 0.018\ kW \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is $20.

658 Calculated by multiplying the ratio of SSP:PJM for the Central AC measure (0.69:0.66) to the assumption for PJM.

Measure Life
The measure life is assumed to be 9 years.660

Operation and Maintenance Impacts
n/a

Retail Products Platform

ENERGY STAR Freezer

Unique Measure Code(s): RS_RF_TOS_RPPFRZ_0616
Effective Date: June 2016
End Date: TBD

Measure Description
This measure relates to the upstream promotion of residential freezers meeting the ENERGY STAR criteria through the Energy Star Retail Products Program. In the measure, a freezer meeting the efficiency specifications of ENERGY STAR is installed in place of a model meeting the federal standard (NAECA). Energy usage specifications are defined in the table below (note, AV is the freezer Adjusted Volume and is calculated as 1.73*Total Volume).661

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Federal Baseline Maximum Energy Usage in kWh/year 662</th>
<th>ENERGY STAR Maximum Energy Usage in kWh/year 663</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright Freezers</td>
<td>8.62*AV+228.3</td>
<td>7.76*AV+205.5</td>
</tr>
<tr>
<td>Chest Freezers</td>
<td>7.29*AV+107.8</td>
<td>6.56*AV+97.0</td>
</tr>
</tbody>
</table>

Note that this characterization only specifies gross savings. It is up to the individual program administrators and stakeholders to use proper net to gross ratios.

Definition of Baseline Condition
The baseline equipment is assumed to be a model that meets the federal minimum

662 https://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43

663 http://www.energystar.gov/ia/partners/product_specs/program_reqs/Refrigerators_and_Freezers_Program_Requirements_V5.0.pdf
standard for energy efficiency. The standard varies depending on the type of the freezer (chest or upright freezer) and is defined in the table above.

Definition of Efficient Condition
The efficient equipment is defined as a freezer meeting the efficiency specifications of ENERGY STAR, as calculated above, or meeting the next tier promoted by RPP, which is 5% more efficient than the EnergyStar minimum.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \text{kWh}_{\text{Base}} - \text{kWh}_{\text{ESTAR}}
\]

Where:

\[
\text{kWh}_{\text{BASE}} = \text{Baseline kWh consumption per year} \\
= \text{As calculated in the table below}
\]

\[
\text{kWh}_{\text{ESTAR}} = \text{ENERGY STAR kWh consumption per year} \\
= \text{As calculated in the table below}
\]

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Adj. Volume Use</th>
<th>kWh_\text{BASE}</th>
<th>kWh_\text{ESTAR}</th>
<th>kWh_\text{ESTAR} + 5%</th>
<th>kWh - Estar</th>
<th>kWh - Estar + 5%</th>
<th>Weighting for unknown configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upright Freezer</td>
<td>24.4</td>
<td>439</td>
<td>395</td>
<td>375</td>
<td>43.78</td>
<td>64</td>
<td>36.74%</td>
</tr>
<tr>
<td>Chest Freezer</td>
<td>18.0</td>
<td>239</td>
<td>215</td>
<td>204</td>
<td>23.97</td>
<td>35</td>
<td>63.26%</td>
</tr>
<tr>
<td>Weighted Average</td>
<td>313</td>
<td>281</td>
<td>267</td>
<td>31.25</td>
<td>46</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

If product category is unknown assume weighted average values665.

Summer Coincident Peak kW Savings Algorithm

664 Savings values come from Energy Star Calculations. See ‘RPP Product Analysis 9-23-15.xlsx’

665 The weighted average unit energy savings is calculated using the market share of upright and chest freezers. The assumed market share, as presented in the table above, comes from 2011 NIA-Frz-2008 Shipments data.
\[\Delta kW = (\Delta kWh/8760) \times TAF \times LSAF \]

Where:

- \(TAF \) = Temperature Adjustment Factor
 \[= 1.23 \]
- \(LSAF \) = Load Shape Adjustment Factor
 \[= 1.15 \]

Annual Fossil Fuel Savings Algorithm

- n/a

Annual Water Savings Algorithm

- n/a

Incremental Cost

The incremental cost for this time of sale measure is $12.14 for an upright freezer and $6.62 for a chest freezer.

Measure Life

The measure life is assumed to be 11 years.

Operation and Maintenance Impacts

- n/a

666 Temperature adjustment factor based on Blasnik, Michael, “Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study”, July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space. Although this evaluation is based upon refrigerators only it is considered a reasonable estimate of the impact of cycling on freezers and gave exactly the same result as an alternative methodology based on Freezer eShape data.

ENERGY STAR Clothes Dryer

Unique Measure Code(s): RS_AP_TOS_RPPDRY_0616
Effective Date: June 2016
End Date: TBD

Measure Description
This measure relates to the upstream promotion of residential clothes dryer meeting the ENERGY STAR criteria through the Energy Star Retail Products Program. ENERGY STAR qualified clothes dryers save energy through a combination of more efficient drying and reduced runtime of the drying cycle. More efficient drying is achieved through increased insulation, modifying operating conditions such as air flow and/or heat input rate, improving air circulation through better drum design or booster fans, and improving efficiency of motors. Reducing the runtime of dryers through automatic termination by temperature and moisture sensors is believed to have the greatest potential for reducing energy use in clothes dryers\(^{670}\). ENERGY STAR provides criteria for both gas and electric clothes dryers. Note that this characterization only specifies gross savings. It is up to the individual program administrators and stakeholders to use proper net to gross ratios.

Definition of Baseline Condition
The baseline condition is a clothes dryer meeting the minimum federal requirements for units manufactured on or after June 1, 2015.

Definition of Efficient Condition
Clothes dryer must meet the ENERGY STAR criteria, as required by the program.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} \stackrel{671}{=} \text{kWh}_{\text{Base}} - \text{kWh}_{\text{ESTAR}}
\]

The goal of the translation is to account for the use of the amended DOE test procedure 10 CFR 430, Subpart B, Appendix D2 which assesses energy efficiency as a result of clothes dryer
Where:

\[\text{kWh}_{\text{BASE}} = \text{Baseline kWh consumption per year} \]
\[\text{kWh}_{\text{ESTAR}} = \text{ENERGY STAR kWh consumption per year} \]

<table>
<thead>
<tr>
<th>Product Category</th>
<th>kWh\text{BASE}</th>
<th>kWh\text{ESTAR}</th>
<th>kWh Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vented Gas Dryer</td>
<td>42.10</td>
<td>34.36</td>
<td>7.74</td>
</tr>
<tr>
<td>Ventless or Vented Electric Dryer</td>
<td>768.92</td>
<td>608.49</td>
<td>160.44</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

\[\Delta k\text{W} = \Delta \text{kWh/Hours} \times \text{CF} \]

Where:

\[\Delta \text{kWh} = \text{Energy Savings as calculated above} \]
\[\text{Hours} = \text{Annual run hours of clothes dryer}. \]

automatic cycle termination controls. The DOE 2015 standard CEF values are based on the DOE Appendix D1 test. ENERGY STAR is requiring an updated DOE test, published in Appendix D2. On average, clothes dryers use more energy when tested under Appendix D2, and so the translation adjusts the D1 Federal standard to reflect the estimated average energy efficiency performance of minimally-compliant 2015 models under D2. The translation values (-16.6% for the electric standard and -13.9% for the gas dryers) are based on DOE testing published in their NOPR test procedure in January 2013. Performance requirements for ENERGY STAR certified clothes dryers can be found in the ENERGY STAR specifications (V 1.0) (available at: http://www.energystar.gov/sites/default/files/specs//ENERGY%20STAR%20Final%20Version%201%20%20Clothes%20Dryers%20Program%20Requirements.pdf). Calculations assume 283 cycles per year and an 8.45 lb load for standard sized dryers (≥ 4.4 cu-ft capacity).

\[^{672} \text{Savings values come from Energy Star Calculations. See ‘RPP Product Analysis 9-23-15.xlsx’} \]
=290 hours per year.673

\[CF = \text{Summer Peak Coincidence Factor for measure} \]

= 2.9%674

Annual Fossil Fuel Savings Algorithm

Natural gas savings only apply to ENERGY STAR vented gas clothes dryers.

\[\Delta \text{MMBTU} = \text{MMBTU}_{\text{BASE}} - \text{MMBTU}_{\text{ESTAR}} \]

Where:

\[\text{MMBTU}_{\text{BASE}} = \text{Baseline MMBTU consumption per year} \]

= As presented in the table below

\[\text{MMBTU}_{\text{ESTAR}} = \text{ENERGY STAR MMBTU consumption per year} \]

= As presented in the table below

<table>
<thead>
<tr>
<th>Product Category</th>
<th>MMBTU<sub>BASE</sub></th>
<th>MMBTU<sub>ESTAR</sub></th>
<th>MMBTU<sub>Savings</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vented Gas Dryer</td>
<td>2.72</td>
<td>2.22</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for a time of sale ENERGY STAR clothes dryer is assumed to be $75.676

Measure Life

673 Assumes average of 56 minutes per cycle based on Ecova, ‘Dryer Field Study’, Northwest Energy Efficiency Alliance (NEEA) 2014

675 Savings values come from Energy Star Calculations. See ‘RPP Product Analysis 9-23-15.xlsx’

676 Energy Star Appliance Calculator, which cites “Cadmus Research on available models, July 2016.”
The expected measure life is assumed to be 12 years\(^{677}\).

Operation and Maintenance Impacts

n/a

ENERGY STAR Soundbar

Unique Measure Code(s): RS_PL_TOS_RPPSND_0616
Effective Date: June 2016
End Date: TBD

Measure Description

This measure relates to the upstream promotion of residential soundbar meeting the ENERGY STAR criteria through the Energy Star Retail Products Program. This measure assumes a more stringent requirement than ENERGY STAR Version 3.0.\(^{678}\) Note that this characterization only specifies gross savings. It is up to the individual program administrators and stakeholders to use proper net to gross ratios.

Definition of Baseline Condition

The baseline condition is assumed to be a standard soundbar.

Definition of Efficient Condition

The RPP offers two tiers of incentives for this product – ENERGY STAR + 15% and ENERGY STAR +50% soundbar. Savings for both measures are given below. They were developed by decreasing the power requirements and increasing the efficiency requirements by the appropriate amount.

Annual Energy Savings Algorithm\(^{679}\)

\[
\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}}
\]

Where:

\(^{677}\) Based on Appliances Magazine (Appliance Magazine. US Appliance Industry: Market Value, Life Expectancy & Replacement Picture). Please note that this report provides slightly different average life expectancies for gas and electric. To minimize confusion, ENERGY STAR uses 12 years for both product types.
\(^{679}\) Energy Savings from this measure are derived from Energy Star estimates. See ‘RPP Product Analysis 9-23-15.xlsx’
$kWh_{\text{base}} = \text{Baseline unit energy consumption} = \text{Assumed to be 69 kWh/year}^{680}$

$kWh_{\text{eff}} = \text{Efficient unit energy consumption} = \text{Assumed to be 25 kWh/year}^{681} \text{ for the ENERGY STAR +50% Tier and 42.5 kWh/year for the ENERGY STAR +15% Tier.}$

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = 0.0005^{682}$$

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is 0^{683}.

Measure Life

The expected measure life is assumed to be 7 years.684

Operation and Maintenance Impacts

n/a

ENERGY STAR Air Cleaner

Unique Measure Code(s): RS_AP_TOS_RPPAPU_0616

Effective Date: June 2016

681 Due to the high market penetration of ENERGY STAR certified soundbars, a weighted average of the unit energy consumption of both non-ENERGY STAR and ENERGY STAR models was calculated in order to accurately provide savings estimates for the market in 2016.

682 Wattage difference between base and efficient sound bars when in sleep mode

683 Incremental cost comes from Energy Star characterization. See ‘RPP Product Analysis 9-23-15.xlsx’

684 ENERGY STAR assumes a 7-year useful life.
End Date: TBD

Measure Description
An air cleaner is a portable electric appliance that removes dust and fine particles from indoor air. This measure characterizes the purchase and installation of a unit meeting the efficiency specifications of ENERGY STAR in place of a baseline model. Note that this characterization only specifies gross savings. It is up to the individual program administrators and stakeholders to use proper net to gross ratios.

Definition of Baseline Condition
The baseline equipment is assumed to be a standard non-ENERGY STAR unit.

Definition of Efficient Condition
The efficient equipment is defined as an air cleaner meeting the efficiency specifications of ENERGY STAR as provided below.

- Clean Air Delivery Rate (CADR)/Watt Requirement: Must be equal to or greater than 2.0 CADR/Watt (Dust).
- UL Safety Requirements for Ozone Emitting Models: Measured ozone shall not exceed 50 parts per billion.
- Standby Power Requirements: Measured standby power shall not exceed 2 Watts.

Annual Energy Savings Algorithm

\[\Delta kWh = kWh_{BASE} - kWh_{ESTAR} \]

Where:
- \(kWh_{BASE} \) = Baseline kWh consumption per year
 = see table below
- \(kWh_{ESTAR} \) = ENERGY STAR kWh consumption per year
 = see table below

686 Baseline and ENERGY STAR energy consumptions are calculated by taking a weighted average of five product category sub types: 51-100 CADR, 101-150 CADR, 151-200 CADR, 201-250 CADR, and >250 CADR. Wattages for all five product sub types are derived from AHAM data. Duty cycle assumes 16 hours per day, 365 days per year based on filter replacement instructions.
The retail products platform may also be used to incent air cleaners that are 30% and 50% better than energy star. In this case, the efficient consumption would be 222 kWh and 156 kWh, respectively.

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \Delta kWh / \text{Hours} \times CF \]

Where:

- \(\Delta kWh \) = Gross customer annual kWh savings for the measure
- Hours = Average hours of use per year
 = 5840 hours\(^{687}\)
- CF = Summer Peak Coincidence Factor for measure
 = 0.67\(^{688}\)

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is $0.\(^{689}\)

Measure Life

\(^{687}\) Consistent with ENERGY STAR Qualified Room Air Cleaner Calculator; 16 hours a day, 365 days a year.

\(^{688}\) Assumes appliance use is equally likely at any hour of the day or night.

\(^{689}\) ENERGY STAR Appliance Savings Calculator, which cites “EPA research on available models, 2012”
The measure life is assumed to be 9 years.

Operation and Maintenance Impacts
There are no operation and maintenance cost adjustments for this measure.

ENERGY STAR Desktop Computer

Unique Measure Code(s): RS_PL_TOS_RPPSDC_xx18
Effective Date: xx 2018
End Date: TBD

Measure Description
This measure relates to the upstream promotion of desktop computers meeting the ENERGY STAR Computer Eligibility Criteria Version 6.1.

Definition of Baseline Condition
The baseline condition is assumed to be a standard desktop computer used in a residential setting.

Definition of Efficient Condition
The efficient condition is an ENERGY STAR desktop computer meeting the current Eligibility Criteria Version 6.1 and used in a residential setting.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}}
\]

Where:

- \(\text{kWh}_{\text{base}} \) = *Baseline unit energy consumption*
 = *Assumed to be 275 kWh/year* \(^{693}\)
- \(\text{kWh}_{\text{eff}} \) = *Efficient unit energy consumption*

\(^{691}\) Some types of room air cleaners require filter replacement or periodic cleaning, but this is likely to be true for both efficient and baseline units and so no difference in cost is assumed.

\(^{692}\) https://www.energystar.gov/sites/default/files/specs/Version%206%201%20Computers%20Final%20Program%20Requirements.pdf

\(^{693}\) Baseline kWh is derived from the ENERGY STAR Office Equipment Calculator October 2016. Set to residential use and default medium performance level.
= Assumed to be 156 kWh/year\(^{694}\)

Summer Coincident Peak kW Savings Algorithm

\[\Delta kWh = kWh_{base} - kWh_{eff} \times CF \]

Where:

- \(kWh_{base} = \text{Baseline unit wattage} \)
- \(kWh_{eff} = \text{Efficient unit wattage} \)
- \(CF = 38\%^{697} \)

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is $18.50.\(^{698}\)

Measure Life

The expected measure life is assumed to be 4 years.\(^{699}\)

Operation and Maintenance Impacts

n/a

\(^{694}\) Efficient kWh is derived from the ENERGY STAR Office Equipment Calculator. October 2016. Set to residential use and default medium performance level.

\(^{695}\) Baseline wattage is for idle power (highest draw) from ENERGY STAR Office Equipment Calculator. Set to residential use and default medium performance level.

\(^{696}\) Efficient wattage is idle power (highest draw) from ENERGY STAR Office Equipment Calculator. Set to residential use and default medium performance level.

\(^{698}\) ENERGY STAR Office Equipment Calculator.

\(^{699}\) ENERGY STAR Office Equipment Calculator.
ENERGY STAR Laptop Computer
Unique Measure Code(s): RS_PL_TOS_RPPSLC_xx18
Effective Date: xx 2018
End Date: TBD

Measure Description
This measure relates to the upstream promotion of laptop computers meeting the ENERGY STAR Computer Eligibility Criteria Version 6.1.

Definition of Baseline Condition
The baseline condition is assumed to be a standard laptop computer used in a residential setting.

Definition of Efficient Condition
The efficient condition is an ENERGY STAR laptop computer meeting the current Eligibility Criteria Version 6.1 and used in a residential setting. 700

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}} \]

Where:
\[\text{kWh}_{\text{base}} = \text{Baseline unit energy consumption} \]
\[= \text{Assumed to be 53 kWh/year}^{701} \]
\[\text{kWh}_{\text{eff}} = \text{Efficient unit energy consumption} \]
\[= \text{Assumed to be 31 kWh/year}^{702} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}} \times \text{CF} \]

701 Baseline kWh is derived from the ENERGY STAR Office Equipment Calculator October 2016. Set to residential use and default medium performance level.
702 Efficient kWh is derived from the ENERGY STAR Office Equipment Calculator. October 2016. Set to residential use and default medium performance level.
Where:
\[k\text{Wh}_\text{base} \] = Baseline unit wattage
\[k\text{Wh}_\text{eff} \] = Efficient unit wattage
\[CF \] = 38%\(^{705}\)

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
The incremental cost for this time of sale measure is $18.50.\(^{706}\)

Measure Life
The expected measure life is assumed to be 4 years.\(^{707}\)

Operation and Maintenance Impacts
n/a

ENERGY STAR Computer Monitor
Unique Measure Code(s): RS_PL_TOS_RPPSCM_xx18

\(^{703}\) Baseline wattage is for idle power (highest draw) from ENERGY STAR Office Equipment Calculator. Set to residential use and default medium performance level.

\(^{704}\) Efficient wattage is idle power (highest draw) from ENERGY STAR Office Equipment Calculator. Set to residential use and default medium performance level.

\(^{705}\) Estimate based on idle hours as a percentage of all hours.

\(^{707}\) ENERGY STAR Office Equipment Calculator.
Effective Date: xx 2018
End Date: TBD

Measure Description
This measure relates to the upstream promotion of monitors meeting the ENERGY STAR Display Eligibility Criteria Version 7.1.

Definition of Baseline Condition
The baseline condition is assumed to be a standard computer monitor used in a residential setting.

Definition of Efficient Condition
The efficient condition is an ENERGY STAR computer monitor meeting the current Eligibility Criteria Version 6.1 and used in a residential setting.

Annual Energy Savings Algorithm
\[
\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}}
\]

Where:

\[\text{kWh}_{\text{base}} = \text{Baseline unit energy consumption. If screen size is known:}\]

<table>
<thead>
<tr>
<th>Diagonal screen size</th>
<th>Conventional</th>
<th>ENERGY STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 12 inches</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>12.0 - 16.9 inches</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>17.0 - 22.9 inches</td>
<td>33</td>
<td>26</td>
</tr>
<tr>
<td>23.0 - 24.9 inches</td>
<td>41</td>
<td>35</td>
</tr>
<tr>
<td>25.0 - 60.9 inches</td>
<td>65</td>
<td>49</td>
</tr>
</tbody>
</table>

Otherwise
\[\text{kWh}_{\text{eff}} = \text{Assumed to be 41 kWh/ year}\]

\[\text{kWh}_{\text{eff}} = \text{Efficient unit energy consumption. If screen size is known, see above.}\]

709 Baseline kWh is derived from the ENERGY STAR Office Equipment Calculator October 2016. Set to residential use and default to 23.0-24.9 diagonal screen size.
Otherwise:
= Assumed to be 35 kWh/year710

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}} \times \text{CF} \]

Where:

\[\text{kWh}_{\text{base}} = \text{Baseline unit wattage. If screen size is known:} \]

<table>
<thead>
<tr>
<th>Diagonal screen size</th>
<th>Conventional</th>
<th>ENERGY STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 12 inches</td>
<td>6.6</td>
<td>5.0</td>
</tr>
<tr>
<td>12.0 - 16.9 inches</td>
<td>8.2</td>
<td>5.8</td>
</tr>
<tr>
<td>17.0 - 22.9 inches</td>
<td>16.3</td>
<td>12.9</td>
</tr>
<tr>
<td>23.0 - 24.9 inches</td>
<td>20.3</td>
<td>17.2</td>
</tr>
<tr>
<td>25.0 - 60.9 inches</td>
<td>33.1</td>
<td>24.5</td>
</tr>
</tbody>
</table>

Otherwise
= Assumed to be 20.3.11711

\[\text{kWh}_{\text{eff}} = \text{Efficient unit wattage} \]

\[\text{CF} = \text{22\%}713 \]

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

The incremental cost for this time of sale measure is $2.714

710 Baseline wattage is for active power (highest draw) from ENERGY STAR Office Equipment Calculator. Set to residential use and default to 23.0-24.9 diagonal screen size.

711 Efficient wattage is active power (highest draw) from ENERGY STAR Office Equipment Calculator. Set to residential use and default to 23.0-24.9 diagonal screen size.

712 Estimate based on active hours as a percentage of all hours.

714
Measure Life
The expected measure life is assumed to be 7 years.715

Operation and Maintenance Impacts
n/a

ENERGY STAR Television
Unique Measure Code(s): RS_PL_TOS_RPPSTV_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure relates to the upstream promotion of monitors meeting the ENERGY STAR Television Eligibility Criteria Version 7.0.

Definition of Baseline Condition
The baseline condition is assumed to be a standard television used in a residential setting.

Definition of Efficient Condition
The efficient condition is an ENERGY STAR television meeting the current Eligibility Criteria Version 7.0 and used in a residential setting.716

Annual Energy Savings Algorithm
\[
\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}}
\]

Where:
\[
\text{kWh}_{\text{base}} = \text{Baseline unit energy consumption varies by diagonal screen size}.717
\]

<table>
<thead>
<tr>
<th>Diagonal screen size</th>
<th>Conventional</th>
<th>ENERGY STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>20" and under</td>
<td>45</td>
<td>30</td>
</tr>
</tbody>
</table>

715 ENERGY STAR Office Equipment Calculator.
716 \url{https://www.energystar.gov/sites/default/files/FINAL%20Version%20Television%20Program%20Requirements%28Dec-2014%29_0.pdf}
717 ENERGY STAR Consumer Electronics Calculator. October 2016.
Summer Coincident Peak kW Savings Algorithm

$$\Delta kWh = kWh_{\text{base}} - kWh_{\text{eff}} \times CF$$

Where:

$$kWh_{\text{base}} = \text{Baseline unit wattage varies by diagonal screen size:}$$

<table>
<thead>
<tr>
<th>Diagonal screen size</th>
<th>Conventional</th>
<th>ENERGY STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>20" and under</td>
<td>23</td>
<td>15</td>
</tr>
<tr>
<td>21" - 23"</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>24" - 29"</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>30" - 34"</td>
<td>35</td>
<td>26</td>
</tr>
<tr>
<td>35" - 39"</td>
<td>46</td>
<td>33</td>
</tr>
<tr>
<td>40" - 44"</td>
<td>54</td>
<td>37</td>
</tr>
<tr>
<td>45" - 49"</td>
<td>69</td>
<td>45</td>
</tr>
<tr>
<td>50" - 54"</td>
<td>74</td>
<td>52</td>
</tr>
<tr>
<td>55" - 59"</td>
<td>87</td>
<td>57</td>
</tr>
<tr>
<td>60" - 64"</td>
<td>88</td>
<td>66</td>
</tr>
<tr>
<td>65" or greater</td>
<td>160</td>
<td>74</td>
</tr>
</tbody>
</table>

$$kWh_{\text{eff}} = \text{Efficient unit wattage varies by diagonal screen size. See above.}$$

$$kWh_{\text{base}} = \text{Baseline unit wattage varies by diagonal screen size. See above.}$$
\[CF = 21\%^{718} \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is $0.\(^{719}\)

Measure Life

The expected measure life is assumed to be 6 years.\(^{720}\)

Operation and Maintenance Impacts

n/a

\(^{718}\) Estimate based on On-mode hours per day (5 hours/day) as a percentage of all hours.

\(^{720}\) ENERGY STAR Consumer Electronics Calculator.
COMMERCIAL & INDUSTRIAL MARKET SECTOR

Lighting End Use

LED Exit Sign

Unique Measure Code(s): CI_LT_EREP_LEDEXI_0518
Effective Date: May 2018
End Date: TBD

Measure Description

This measure relates to the installation of an exit sign illuminated with light emitting diodes (LED). This measure should be limited to early replacement applications.

Note: While this measure is characterized as an early replacement, a dual baseline is not used as it is assumed that the existing fixture would have been maintained with new baseline lamps (and ballasts, if required) for the duration of the measure life.

Definition of Baseline Condition

The baseline condition is an existing exit sign with a non-LED light-source.

Definition of Efficient Condition

The efficient condition is a new exit sign illuminated with light emitting diodes (LED).

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \left(\frac{\text{Watts}_{\text{BASE}} - \text{WattsEE}}{1000} \right) \times \text{HOURS} \times \text{ISR} \times \text{WHFe} \]

Where:

- \(\text{WattsBASE} \) = Actual Connected load of existing exit sign. If connected load of existing exit sign is unknown, assume 16 W.\(^{721}\)
- \(\text{WattsEE} \) = Actual Connected load of LED exit sign
- \(\text{HOURS} \) = Average hours of use per year

ISR = In Service Rate or percentage of units rebated that get installed
 = 1.00

WHFe = Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.
 = Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \frac{(Watts_{BASE} - Watts_{EE})}{1000} \times ISR \times WHFd \times CF \]

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.
 = Varies by utility, building type, and equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure
 = 1.0

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[\Delta MMBTU = (-\Delta kWh / WHFe) \times 0.70 \times 0.003413 \times 0.23 / 0.75. \]

\[= (-\Delta kWh / WHFe) \times 0.00073. \]

722 Assumes operation 24 hours per day, 365 days per year.
Where:

\[0.7 \] = Aspect ratio 225 \\
\[0.003413 \] = Constant to convert kWh to MMBTU \\
\[0.23 \] = Fraction of lighting heat that contributes to space heating 226 \\
\[0.75 \] = Assumed heating system efficiency 227

Annual Water Savings Algorithm

\textit{n/a}

Incremental Cost

The lifecycle NPV incremental cost for this retrofit measure is $35.228

Measure Life

The measure life is assumed to be 5 years.229

Operation and Maintenance Impacts

<table>
<thead>
<tr>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFL</td>
</tr>
<tr>
<td>Replacement Cost</td>
</tr>
<tr>
<td>Component Life (years)</td>
</tr>
</tbody>
</table>

225 HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

226 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

227 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

228 Represents the full installed cost of an LED exit sign. LED exit signs can typically be purchased for ~$25 (see http://www.exitlightco.com/Exit_Signs and “http://www.simplyexit signs.com”). Assuming replacing exit sign requires 15 minutes of a common building laborer’s time in Washington D.C. (RSMeans Electrical Cost Data 2008), the total installed cost would be approximately $35.

229 To be ENERGY STAR labeled, an LED exit sign must be guaranteed to last at least 5 years, however, many manufacturers state that their lamps will maintain National Fire Protection Association compliant levels of luminance for 10 to 25 years.

230 Represents the full installed cost of a replacement fluorescent lamp. Replacement lamps can typically be purchased for $3.38 (based on 2017 Apex analysis). Assuming lamp replacement requires 15 minutes of a common building laborer’s time in Washington D.C. (RSMeans Electrical Cost Data 2008), the total installed cost would be approximately $8.

231 Assumes rated life of fluorescent replacement lamp is 10,000 hours. Assuming annual exit sign operating hours of 8,760, estimated lamp life is 1.14 years.
The calculated net present value of the baseline replacement costs are presented below:732:

<table>
<thead>
<tr>
<th>Baseline</th>
<th>NPV of Baseline Replacement Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2017</td>
</tr>
<tr>
<td>CFL</td>
<td>$26.92</td>
</tr>
</tbody>
</table>

732 See “Mid-Atlantic TRM Lighting Adjustments and O&M.xls” for calculations. Analysis assumes a discount rate of 5%.
Solid State Lighting (LED) Recessed Downlight Luminaire

Unique Measure Code: CI_LT_TOS_SSLDWN_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure describes savings from the purchase and installation of a Solid State Lighting (LED) Recessed Downlight luminaire in place of an incandescent downlight lamp (i.e. time of sale, including Midstream programs). The SSL downlight should meet the ENERGY STAR Luminaires Version 2.0 specification. The characterization of this measure should not be applied to other types of LEDs.

Note, this measure assumes the baseline is a Bulged Reflector (BR) lamp. This lamp type is generally the cheapest and holds by far the largest market share for this fixture type.

Definition of Baseline Condition
The baseline is the purchase and installation of a standard BR30-type incandescent downlight light bulb.

Definition of Efficient Condition
The efficient condition is the purchase and installation of an ENERGY STAR Solid State Lighting (LED) Recessed Downlight luminaire.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \left(\frac{\text{WattsBase} - \text{WattsEE}}{1,000} \right) \times \text{ISR} \times \text{HOURS} \times \text{WHFe} \]

Where:
\[\text{WattsBase} = \text{Connected load of baseline lamp} \]

733 ENERGY STAR specification can be viewed here: https://www.energystar.gov/sites/default/files/asset/document/Luminaires%20V2%20Final.pdf
Find the equivalent baseline wattage based on the LED initial lumen output from the table below; if unknown assume 65W pre-2020 or 23W after January 1st, 2020.

<table>
<thead>
<tr>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>2018-2019 WattsBase</th>
<th>2020+ WattsBase*</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>449</td>
<td>40</td>
<td>*</td>
</tr>
<tr>
<td>450</td>
<td>499</td>
<td>45</td>
<td>*</td>
</tr>
<tr>
<td>500</td>
<td>649</td>
<td>50</td>
<td>*</td>
</tr>
<tr>
<td>650</td>
<td>1419</td>
<td>65</td>
<td>*</td>
</tr>
<tr>
<td>1420</td>
<td>1789</td>
<td>75</td>
<td>*</td>
</tr>
<tr>
<td>1790</td>
<td>2049</td>
<td>90</td>
<td>*</td>
</tr>
<tr>
<td>2050</td>
<td>2579</td>
<td>100</td>
<td>*</td>
</tr>
<tr>
<td>2580</td>
<td>3299</td>
<td>120</td>
<td>*</td>
</tr>
<tr>
<td>3300</td>
<td>4270</td>
<td>150</td>
<td>150</td>
</tr>
</tbody>
</table>

*For lamps and fixtures < 3300 lumens, the baseline after 2020 should be calculated as WattsBase = (LumensEE / 45).

LumensEE = Lumen output of efficient lamp.
WattsEE = Connected load of efficient lamp
ISR = In Service Rate or percentage of units rebated that get installed.

734 Based on ENERGY STAR equivalence table; http://www.energystar.gov/index.cfm?c=cfls_pr_cfls_lumens
https://www.energystar.gov/products/lighting_fans/light_bulbs/learn_about_brightness

735 Energy Efficient wattage based on 12 Watt LR6 Downlight from LLF Inc. Adjusted by ratio of lm/w in ENERGY STAR V2.1 compared to ENERGY STAR V1.2 specification.

736 Different jurisdictions may have different implementation start dates for the 2020 baseline shift.

737 In 2020 the EISA backstop takes effect and the minimum efficacy for all lamps and fixtures becomes 45 lumens/W.

738 Calculated using the minimum lumen output for a BR lamp of 650 lumens.

739 Calculated using the minimum lumen output for a BR lamp of 650 lumens and the 60 lumens per watt specified by ENERGY STAR v2. 1 for luminaires with a CRI < 90.

\[\text{HOURS} = 1.0^{740} \]

\[\text{HOURS} = \text{Average hours of use per year} \]

\[\text{HOURS} = \text{If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D. Otherwise, use site specific annual operating hours information.}^{741} \]

\[\text{WHFe} = \text{Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.} \]

\[\text{WHFe} = \text{Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta k\text{W} = \left(\frac{(\text{WattsBase} - \text{WattsEE})}{1000} \right) \times \text{ISR} \times \text{WHFd} \times \text{CF} \]

Where:

\[\text{WHFd} = \text{Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.} \]

\[\text{WHFd} = \text{Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.} \]

\[\text{CF} = \text{Summer Peak Coincidence Factor for measure} \]

\[\text{CF} = \text{See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.} \]

741 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.
Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[\Delta \text{MMBTU} = (-\Delta \text{kWh} / \text{WHFe}) \times 0.70 \times 0.003413 \times 0.23 / 0.75 \]

\[= (-\Delta \text{kWh} / \text{WFHe}) \times 0.00073 \]

Where:
- 0.7 = Aspect ratio\(^{742}\)
- 0.003413 = Constant to convert kWh to MMBTU
- 0.23 = Fraction of lighting heat that contributes to space heating\(^{743}\)
- 0.75 = Assumed heating system efficiency\(^{744}\)

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment.

The lifecycle NPV incremental costs, based on an average value for a wide range of applicable LED lamps, are provided below for time of sale\(^{745}\). If additional detail is needed, a further disaggregation of the IMCs, based on wattage ranges, can be found in the cited workbook.

\(^{742}\) HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

\(^{743}\) Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

\(^{744}\) Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

\(^{745}\) Costs are from Itron, Mid-Atlantic TRM Version 7.0 Incremental Costs Update, 2017. Measure and baseline costs were calculated using data from California IOU work papers cited in that document. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5548/download?token=pLlMjfvz.
$11

Measure Life

Measure life is the rated life in hours of the actual LED fixture divided by the *average hours of use per year* (HOURS), and then rounded to the nearest whole number. However, measure life is not to exceed 15 years. The fixture life should be assumed to be 25,000 hours for separable luminaires and 50,000 hours for inseparable luminaires.

Operation and Maintenance Impacts

The leveled baseline replacement cost over the lifetime of the SSL is presented below. The key assumptions used in this calculation are documented below:

<table>
<thead>
<tr>
<th>BR-type Incandescent</th>
<th>Replacement Lamp Cost</th>
<th>Replacement Labor Cost</th>
<th>Component Life (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR-type Incandescent</td>
<td>$7.77</td>
<td>$4.48</td>
<td>0.57</td>
</tr>
</tbody>
</table>

The calculated net present value of the baseline replacement costs is $210 for downlights featuring inseparable components and $118 for downlights with replaceable parts.

Delamping

Unique Measure Code(s): CI_LT_ERT_DELAMP_0518

Effective Date: May 2018

End Date: TBD

746 Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

747 The ENERGY STAR specification for solid state recessed downlights requires luminaires using LED lamps to maintain >=70% initial light output for 25,000 hours in an indoor application for separable luminaires and 50,000 for inseparable luminaires.

748 Costs are from Itron, Mid-Atlantic TRM Version 7.0 Incremental Costs Update, 2017. Component costs were calculated using data from California IOU work papers cited in that document. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5548/download?token=pLMjfvz.

749 Assumes rated life of BR incandescent bulb of 2,000 hours, based on product review. Lamp life is therefore 2,000/3,500 = 0.57 years.

750 See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%.
Measure Description
This measure relates to the permanent removal of a lamp and the associated electrical sockets (or “tombstones”) from a fixture.

Definition of Baseline Condition
The baseline conditions will vary dependent upon the characteristics of the existing fixture.

Definition of Efficient Condition
The efficient condition will vary depending on the existing fixture and the number of lamps removed.

Annual Energy Savings Algorithm

$$\Delta k\text{Wh} = ((\text{WattsBASE} - \text{WattsEE}) / 1000) \times \text{HOURS} \times \text{WHFe}$$

Where:
- WattsBASE = Actual Connected load of baseline fixture
- WattsEE = Actual Connected load of delamped fixture
- HOURS = Average hours of use per year
 = If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D.
 Otherwise, use site specific annual operating hours information.
- WHFe = Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.
 = Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm

751 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.
\[\Delta kW = \left(\frac{\text{Watts}_{\text{BASE}} - \text{Watts}_{\text{EE}}}{1000} \right) \times \text{WHFd} \times \text{CF} \]

Where:

- \(\text{WHFd} \): Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.
 - Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.
- \(\text{CF} \): Summer Peak Coincidence Factor for measure
 - See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[\Delta \text{MMBTU} = \left(-\frac{\Delta \text{kWh}}{\text{WHFe}} \right) \times 0.70 \times 0.003413 \times 0.23 / 0.75. \]

Where:

- 0.7: Aspect ratio752
- 0.003413: Constant to convert kWh to MMBTU
- 0.23: Fraction of lighting heat that contributes to space heating753
- 0.75: Assumed heating system efficiency754

752 HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zoneheat, therefore it must be adjusted to account for lighting in core zones.

753 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

754 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.
Annual Water Savings Algorithm
n/a

Incremental Cost
The lifecycle NPV incremental cost for this retrofit measure is assumed to be $18.50 per fixture.755

Measure Life
The measure life is assumed to be 15 years.756

Operation and Maintenance Impacts
Due to differences in costs and lifetimes of baseline lamps, actual operation and maintenance costs should be estimated on a case-by-case basis. If actual O&M costs are unknown, the calculated default net present value of lamp replacements over the measure life is $2.79 per lamp757.

755 Assumes delamping a single fixture requires 15 minutes at an hourly rate of $74 assuming population weighted average of electrician labor costs for the Mid-Atlantic region from Electrical Costs with RSMeans Data 2017.
757 See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%.
Occupancy Sensor – Wall-, Fixture-, or Remote-Mounted

Unique Measure Code(s): CI_LT_RF_OSWALL_0518, CI_LT_RF_OSFIX/REM_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure defines the savings associated with installing a wall-, fixture, or remote-mounted occupancy sensor that switches lights off after a brief delay when it does not detect occupancy.

Definition of Baseline Condition
The baseline condition is lighting that is controlled with a manual switch.

Definition of Efficient Condition
The efficient condition is lighting that is controlled with an occupancy sensor.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = kW_{\text{connected}} \times \text{HOURS} \times SVGe \times ISR \times WHFe \]

Where:
- \(kW_{\text{connected}} \) = Assumed kW lighting load connected to control.
- \(\text{HOURS} \) = Average hours of use per year.
 = If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D.
 Otherwise, use site specific annual operating hours information.\(^{758}\)
- \(SVGe \) = Percentage of annual lighting energy saved by lighting control; determined on a site-specific basis or using default below.

\(^{758}\) Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.
= 0.28

\[ISR = \text{In Service Rate or percentage of units rebated that get installed} \]

= 1.00

\[WHFe = \text{Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.} \]

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = kW_{\text{connected}} \times SVGd \times ISR \times WHFd \times CF \]

Where:

\[SVGd = \text{Percentage of lighting demand saved by lighting control; determined on a site-specific basis or using default below.} \]

= 0.14

\[WHFd = \text{Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.} \]

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

\[CF = \text{Summer Peak Coincidence Factor for measure} \]

= See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.

Illustrative examples – do not use as default assumption.
For example, a 400W connected load being controlled in a conditioned office building with gas heat in BGE service territory in 2014 and estimating PJM summer peak coincidence:

\[
\Delta kW = 0.4 \times 0.14 \times 1.00 \times 1.32 \times 0.69 \\
= 0.051 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[
\Delta \text{MMBTU} = (\frac{-\Delta kWh}{\text{WHFe}}) \times 0.70 \times 0.003413 \times 0.23 / 0.75. \\
= (\frac{-\Delta kWh}{\text{WHFe}}) \times 0.00073.
\]

Where:
- 0.7 = Aspect ratio
- 0.003413 = Constant to convert kWh to MMBTU
- 0.23 = Fraction of lighting heat that contributes to space heating
- 0.75 = Assumed heating system efficiency

Annual Water Savings Algorithm

n/a

Incremental Cost

762 HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

763 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

764 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.
The lifecycle NPV incremental cost for this time of sale measure is assumed to be $130 for per control for an occupancy sensors without ultrasonic capabilities, $176 per control for occupancy sensors with ultrasonic capabilities.

Measure Life

The measure life is assumed to be 10 years.

Operation and Maintenance Impacts

n/a
Daylight Dimming Control

Unique Measure Code(s): CI_LT_TOS_DDIM_0518, CI_LT_RF_DDIM_0518

Effective Date: May 2018
End Date: TBD

Measure Description
This measure defines the savings associated with installing a daylighting dimming control system to reduce electric lighting levels during periods of high natural light. Systems typical include daylight sensors, control electronics, and, if necessary, dimmable ballasts.

Definition of Baseline Condition
The baseline condition is lighting that is controlled with a manual switch.

Definition of Efficient Condition
The efficient condition is lighting that is controlled with a daylight dimming system capable of continuous dimming to reduce electric lighting to the lowest possible levels during periods of adequate natural light.

Annual Energy Savings Algorithm

\[\Delta kWh = kW_{connected} \times HOURS \times SVG \times ISR \times WHFe \]

Where:
- \(kW_{connected} \) = Assumed kW lighting load connected to control.
- \(HOURS \) = Average hours of use per year
 - If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D.
 - Otherwise, use site specific annual operating hours information.\(^{767}\)

\(^{767}\) Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.
$SVG = \text{Percentage of annual lighting energy saved by lighting control; determined on a site-specific basis or using default below.}$
$= 0.28$768

$ISR = \text{In Service Rate or percentage of units rebated that get installed}$
$= 1.00$769

$WHFe = \text{Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.}$
$= \text{Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume } WHFe = WHFd = 1.0.$

Summer Coincident Peak kW Savings Algorithm770

$$\Delta kW = kW_{\text{connected}} \times SVG \times ISR \times WHFd \times CF$$

Where:

$WHFd = \text{Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.}$
$= \text{Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume } WHFe = WHFd = 1.0.$

$CF = \text{Summer Peak Coincidence Factor for measure}$
$= \text{See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.}$

Illustrative examples – do not use as default assumption

770 As a conservative assumption, the peak demand savings algorithm assumes the same annual savings factor (SVG) as the energy savings equation. It is probable that higher than average availability of daylight coincides with summer peak periods. This factor is a candidate for future study as increased accuracy will likely lead to increased peak demand savings estimates.
For example, a 400W connected load being controlled in a conditioned office building with gas heat in BGE service territory in 2014 and estimating PJM summer peak coincidence:

\[
\Delta kW = 0.4 \times 0.28 \times 1.00 \times 1.32 \times 0.69
\]

\[
= 0.10 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

\[
\Delta \text{MMBTU} = (-\Delta kWh / \text{WHFe}) \times 0.70 \times 0.003413 \times 0.23 / 0.75.
\]

\[
= (-\Delta kWh / \text{WHFe}) \times 0.00073.
\]

Where:

- 0.7 = Aspect ratio
- 0.003413 = Constant to convert kWh to MMBTU
- 0.23 = Fraction of lighting heat that contributes to space heating
- 0.75 = Assumed heating system efficiency

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is assumed to be $100 per ballast controlled for both fixture-mounted and remote-mounted daylight sensors.

771 HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

772 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

773 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

Measure Life
The measure life is assumed to be 10 years.775

Operation and Maintenance Impacts
n/a

Advanced Lighting Design – Commercial
Unique Measure Code(s): CI_LT_NC_ADVLTNG_0615
Effective Date: June 2015
End Date: TBD

Measure Description
Advanced lighting design refers to the implementation of various lighting design principles aimed at creating a quality and appropriate lighting experience while reducing unnecessary light usage. This is often done by a professional in a new construction situation. Advanced lighting design uses techniques like maximizing task lighting and efficient fixtures to create a system of optimal energy efficiency and functionality to ultimately reduce the wattage required per square foot while maintaining acceptable lumen levels.

This measure characterization is intended for use in new construction or in existing buildings where significant lighting renovations are taking place and energy code requirements must be met.

Definition of Baseline Condition
The baseline condition assumes compliance with lighting power density requirements as mandated by jurisdiction: Maryland Building Performance Standards (2015 International Energy Conservation Code); Title 16, Chapter 76 of the Delaware Code (2012 International Energy Conservation Code); and District of Columbia Construction Codes Supplement of 2013 (2012 International Energy Conservation Code). Because lighting power density requirements differ by jurisdiction, this measure entry presents two different baseline conditions to be used in each of the three relevant

jurisdictions. For completeness, the lighting power density requirements for both the Building Area Method and the Space-by-Space Method are presented.\footnote{776}

Definition of Efficient Condition

The efficient condition assumes lighting systems that achieve lighting power densities below the maximum lighting power densities required by the relevant jurisdictional energy codes as described above. Actual lighting power densities should be determined on a site-specific basis.

Annual Energy Savings Algorithm\footnote{777}

\[
\Delta \text{kWh} = \frac{(\text{LPDBASE} - \text{LPDEE})}{1000} \times \text{AREA} \times \text{HOURS} \times \text{WHFe}
\]

Where:

- **LPDBASE** = Baseline lighting power density for building or space type (W/ft\(^2\)). See tables below for values by jurisdiction and method.\footnote{778}
- **LPDEE** = Efficient lighting power density (W/ft\(^2\)) = Actual calculated
- **AREA** = Building or space area (ft\(^2\))
- **HOURS** = Average hours of use per year
 - If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D.
 - Otherwise, use site specific annual operating hours information.\footnote{779}

\footnote{776}{Energy code lighting power density requirements can generally be satisfied by using one of two methods. The Building Area Method simply applies a blanket LPD requirement to the entire building based on the building type. Broadly speaking, as long as the total connected lighting wattage divided by the total floor space does not exceed the LPD requirement, the code is satisfied. The second method, the Space-by-Space Method, provides LPD requirements by space type based on the function of the particular space (e.g., “Hospital - Operating Room”, “Library - Reading Room”). LPD requirements must be satisfied for each individual space in the building. This method usually allows a higher total connected wattage as compared to the Building Area Method.}

\footnote{777}{If the Space-by-Space Method is used, the total energy savings will be the sum of the energy savings for each individual space type.}

\footnote{778}{Codes changes affecting lighting power density requirements are likely to occur for at least some jurisdictions between June 2017 and June 2018; however, revised requirements are not yet known. Any code updated will be reflected in the June 2018-May 2019 TRM (V8).}

\footnote{779}{Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.}
\[WHFe = \text{Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.} \]
\[= \text{Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix D. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.} \]

Building Area Method Baseline LPD Requirements by Jurisdiction

<table>
<thead>
<tr>
<th>Building Area Type</th>
<th>Washington, D.C. and Delaware</th>
<th>Maryland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Facility</td>
<td>0.90</td>
<td>0.80</td>
</tr>
<tr>
<td>Convention Center</td>
<td>1.20</td>
<td>1.01</td>
</tr>
<tr>
<td>Court House</td>
<td>1.20</td>
<td>1.01</td>
</tr>
<tr>
<td>Dining: Bar Lounge/Leisure</td>
<td>1.30</td>
<td>1.01</td>
</tr>
<tr>
<td>Dining: Cafeteria/Fast Food</td>
<td>1.40</td>
<td>0.90</td>
</tr>
<tr>
<td>Dining: Family</td>
<td>1.60</td>
<td>0.95</td>
</tr>
<tr>
<td>Dormitory</td>
<td>1.00</td>
<td>0.57</td>
</tr>
<tr>
<td>Exercise Center</td>
<td>1.00</td>
<td>0.84</td>
</tr>
<tr>
<td>Fire Station</td>
<td>0.80</td>
<td>0.67</td>
</tr>
<tr>
<td>Gymnasium</td>
<td>1.10</td>
<td>0.94</td>
</tr>
<tr>
<td>Healthcare-Clinic</td>
<td>1.00</td>
<td>0.90</td>
</tr>
<tr>
<td>Hospital</td>
<td>1.20</td>
<td>1.05</td>
</tr>
<tr>
<td>Hotel</td>
<td>1.00</td>
<td>0.87</td>
</tr>
<tr>
<td>Library</td>
<td>1.30</td>
<td>1.19</td>
</tr>
<tr>
<td>Manufacturing Facility</td>
<td>1.30</td>
<td>1.17</td>
</tr>
<tr>
<td>Motel</td>
<td>1.00</td>
<td>0.87</td>
</tr>
<tr>
<td>Motion Picture Theatre</td>
<td>1.20</td>
<td>0.76</td>
</tr>
</tbody>
</table>

780 IECC 2015, Table C405.4.2 (1); IECC 2012, Table C405.5.2 (1). Note that the Delaware energy code may also be satisfied by meeting the requirements of ASHRAE 90.1-2010, Table 9.5.1. As the IECC 2012 requirements are less stringent they are presented here.
Lighting Power Density (W/ft²)

<table>
<thead>
<tr>
<th>Building Area Type</th>
<th>Washington, D.C. and Delaware</th>
<th>Maryland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Family</td>
<td>0.70</td>
<td>0.51</td>
</tr>
<tr>
<td>Museum</td>
<td>1.10</td>
<td>1.02</td>
</tr>
<tr>
<td>Office</td>
<td>0.90</td>
<td>0.82</td>
</tr>
<tr>
<td>Parking Garage</td>
<td>0.30</td>
<td>0.21</td>
</tr>
<tr>
<td>Penitentiary</td>
<td>1.00</td>
<td>0.81</td>
</tr>
<tr>
<td>Performing Arts Theatre</td>
<td>1.60</td>
<td>1.39</td>
</tr>
<tr>
<td>Police Station</td>
<td>1.00</td>
<td>0.87</td>
</tr>
<tr>
<td>Post Office</td>
<td>1.10</td>
<td>0.87</td>
</tr>
<tr>
<td>Religious Building</td>
<td>1.30</td>
<td>1.00</td>
</tr>
<tr>
<td>Retail</td>
<td>1.40</td>
<td>1.26</td>
</tr>
<tr>
<td>School/University</td>
<td>1.20</td>
<td>0.87</td>
</tr>
<tr>
<td>Sports Arena</td>
<td>1.10</td>
<td>0.91</td>
</tr>
<tr>
<td>Town Hall</td>
<td>1.10</td>
<td>0.89</td>
</tr>
<tr>
<td>Transportation</td>
<td>1.00</td>
<td>0.70</td>
</tr>
<tr>
<td>Warehouse</td>
<td>0.60</td>
<td>0.66</td>
</tr>
<tr>
<td>Workshop</td>
<td>1.40</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Space-by-Space Method Baseline LPD Requirements for Washington, D.C. and Delaware

Common Space-By-Space Types

<table>
<thead>
<tr>
<th>Common Space-By-Space Types</th>
<th>Lighting Power Density (W/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrium - First 40 feet in height</td>
<td>0.03 per ft. ht.</td>
</tr>
<tr>
<td>Atrium - Above 40 feet in height</td>
<td>0.02 per ft. ht.</td>
</tr>
<tr>
<td>Audience/seating area - Permanent</td>
<td></td>
</tr>
</tbody>
</table>

781 IECC 2012, Table C405.5.2(2). Note that the Delaware energy code may also be satisfied by meeting the requirements of ASHRAE 90.1-2010, Table 9.5.1. As the IECC 2012 requirements are less stringent they are presented here.
<table>
<thead>
<tr>
<th>Room Type</th>
<th>R Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>For auditorium</td>
<td>0.9</td>
</tr>
<tr>
<td>For performing arts theater</td>
<td>2.6</td>
</tr>
<tr>
<td>For motion picture theater</td>
<td>1.2</td>
</tr>
<tr>
<td>Classroom/lecture/training</td>
<td>1.3</td>
</tr>
<tr>
<td>Conference/meeting/multipurpose</td>
<td>1.2</td>
</tr>
<tr>
<td>Corridor/transition</td>
<td>0.7</td>
</tr>
<tr>
<td>Dining Area</td>
<td></td>
</tr>
<tr>
<td>Bar/lounge/leisure dining</td>
<td>1.4</td>
</tr>
<tr>
<td>Family dining area</td>
<td>1.4</td>
</tr>
<tr>
<td>Dressing/fitting room performing arts theater</td>
<td>1.1</td>
</tr>
<tr>
<td>Electrical/mechanical</td>
<td>1.1</td>
</tr>
<tr>
<td>Food preparation</td>
<td>1.2</td>
</tr>
<tr>
<td>Laboratory for classrooms</td>
<td>1.3</td>
</tr>
<tr>
<td>Laboratory for medical/industrial/research</td>
<td>1.8</td>
</tr>
<tr>
<td>Lobby</td>
<td></td>
</tr>
<tr>
<td>Behavioral health</td>
<td>1.1</td>
</tr>
<tr>
<td>Lobby for performing arts theater</td>
<td>3.3</td>
</tr>
<tr>
<td>Lobby for motion picture theater</td>
<td>1.0</td>
</tr>
<tr>
<td>Locker room</td>
<td>0.8</td>
</tr>
<tr>
<td>Lounge recreation</td>
<td>0.8</td>
</tr>
<tr>
<td>Office – enclosed</td>
<td>1.1</td>
</tr>
<tr>
<td>Office - open plan</td>
<td>1.0</td>
</tr>
<tr>
<td>Restroom</td>
<td>1.0</td>
</tr>
<tr>
<td>Sales area</td>
<td>1.6</td>
</tr>
<tr>
<td>Stairway</td>
<td>0.7</td>
</tr>
<tr>
<td>Storage</td>
<td>0.8</td>
</tr>
<tr>
<td>Workshop</td>
<td>1.6</td>
</tr>
<tr>
<td>Courthouse/police station/penitentiary</td>
<td></td>
</tr>
<tr>
<td>Courtroom</td>
<td>1.9</td>
</tr>
<tr>
<td>Confinement cells</td>
<td>1.1</td>
</tr>
<tr>
<td>Building Specific Space-By-Space Types</td>
<td>Lighting Power Density (W/ft²)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Judge chambers</td>
<td>1.3</td>
</tr>
<tr>
<td>Penitentiary audience seating</td>
<td>0.5</td>
</tr>
<tr>
<td>Penitentiary classroom</td>
<td>1.3</td>
</tr>
<tr>
<td>Penitentiary dining</td>
<td>1.1</td>
</tr>
<tr>
<td>Automobile – service/repair</td>
<td>0.7</td>
</tr>
<tr>
<td>Bank/office - banking activity area</td>
<td>1.5</td>
</tr>
<tr>
<td>Dormitory living quarters</td>
<td>1.1</td>
</tr>
<tr>
<td>Gymnasium/fitness center</td>
<td></td>
</tr>
<tr>
<td>Fitness area</td>
<td>0.9</td>
</tr>
<tr>
<td>Gymnasium audience/seating</td>
<td>0.4</td>
</tr>
<tr>
<td>Playing area</td>
<td>1.4</td>
</tr>
<tr>
<td>Healthcare clinic/hospital</td>
<td></td>
</tr>
<tr>
<td>Corridor/transition</td>
<td>1.0</td>
</tr>
<tr>
<td>Exam/treatment</td>
<td>1.7</td>
</tr>
<tr>
<td>Emergency</td>
<td>2.7</td>
</tr>
<tr>
<td>Public and staff lounge</td>
<td>0.8</td>
</tr>
<tr>
<td>Medical supplies</td>
<td>1.4</td>
</tr>
<tr>
<td>Nursery</td>
<td>0.9</td>
</tr>
<tr>
<td>Nurse station</td>
<td>1.0</td>
</tr>
<tr>
<td>Physical therapy</td>
<td>0.9</td>
</tr>
<tr>
<td>Patient Room</td>
<td>0.7</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>1.2</td>
</tr>
<tr>
<td>Radiology/imaging</td>
<td>1.3</td>
</tr>
<tr>
<td>Operating room</td>
<td>2.2</td>
</tr>
<tr>
<td>Recovery</td>
<td>1.2</td>
</tr>
<tr>
<td>Lounge/recreation</td>
<td>0.8</td>
</tr>
<tr>
<td>Laundry - washing</td>
<td>0.6</td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Hotel</td>
<td></td>
</tr>
<tr>
<td>Dining area</td>
<td>1.3</td>
</tr>
<tr>
<td>Guest rooms</td>
<td>1.1</td>
</tr>
<tr>
<td>Hotel lobby</td>
<td>2.1</td>
</tr>
<tr>
<td>Highway lodging dining</td>
<td>1.2</td>
</tr>
<tr>
<td>Highway lodging guest rooms</td>
<td>1.1</td>
</tr>
<tr>
<td>Library</td>
<td></td>
</tr>
<tr>
<td>Stacks</td>
<td>1.7</td>
</tr>
<tr>
<td>Card file and cataloging</td>
<td>1.1</td>
</tr>
<tr>
<td>Reading area</td>
<td>1.2</td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Corridor/transition</td>
<td>0.4</td>
</tr>
<tr>
<td>Detailed manufacturing</td>
<td>1.3</td>
</tr>
<tr>
<td>Equipment room</td>
<td>1.0</td>
</tr>
<tr>
<td>Extra high bay (>50-foot floor-ceiling height)</td>
<td>1.1</td>
</tr>
<tr>
<td>High bay (25-50-foot floor-ceiling height)</td>
<td>1.2</td>
</tr>
<tr>
<td>Low bay (<25-foot floor-ceiling height)</td>
<td>1.2</td>
</tr>
<tr>
<td>Museum</td>
<td></td>
</tr>
<tr>
<td>General exhibition</td>
<td>1.0</td>
</tr>
<tr>
<td>Restoration</td>
<td>1.7</td>
</tr>
<tr>
<td>Parking garage – garage areas</td>
<td>0.2</td>
</tr>
<tr>
<td>Convention center</td>
<td></td>
</tr>
<tr>
<td>Exhibit space</td>
<td>1.5</td>
</tr>
<tr>
<td>Audience/seating area</td>
<td>0.9</td>
</tr>
<tr>
<td>Fire stations</td>
<td></td>
</tr>
<tr>
<td>Engine room</td>
<td>0.8</td>
</tr>
<tr>
<td>Sleeping quarters</td>
<td>0.3</td>
</tr>
<tr>
<td>Post office – sorting area</td>
<td>0.9</td>
</tr>
<tr>
<td>Religious building</td>
<td></td>
</tr>
</tbody>
</table>
Space-by-Space Method Baseline LPD Requirements for Maryland

Common Space-By-Space Types

<table>
<thead>
<tr>
<th>Common Space-By-Space Types</th>
<th>Lighting Power Density (W/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrium</td>
<td></td>
</tr>
<tr>
<td>Less than 40 feet in height</td>
<td>0.03 per foot in total height</td>
</tr>
<tr>
<td>Greater than 40 feet in height</td>
<td>0.40 + 0.02 per foot in total height</td>
</tr>
</tbody>
</table>

782 IECC 2015, Table C405.4.2 (2).
<table>
<thead>
<tr>
<th>Audience seating area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In an auditorium</td>
<td>0.63</td>
</tr>
<tr>
<td>In a convention center</td>
<td>0.82</td>
</tr>
<tr>
<td>In a gymnasium</td>
<td>0.65</td>
</tr>
<tr>
<td>In a motion picture theater</td>
<td>1.14</td>
</tr>
<tr>
<td>In a penitentiary</td>
<td>0.28</td>
</tr>
<tr>
<td>In a performing arts theater</td>
<td>2.43</td>
</tr>
<tr>
<td>In a religious building</td>
<td>1.53</td>
</tr>
<tr>
<td>In a sports arena</td>
<td>0.43</td>
</tr>
<tr>
<td>Otherwise</td>
<td>0.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Banking activity area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Breakroom (See Lounge/Breakroom)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classroom/lecture hall/training room</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In a penitentiary</td>
<td>1.34</td>
</tr>
<tr>
<td>Otherwise</td>
<td>1.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conference/meeting/multipurpose room</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copy/print room</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corridor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In a facility for the visually impaired (and not used primarily by staff)</td>
<td>0.92</td>
</tr>
<tr>
<td>In a hospital</td>
<td>0.79</td>
</tr>
<tr>
<td>In a manufacturing facility</td>
<td>0.41</td>
</tr>
<tr>
<td>Otherwise</td>
<td>0.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Courtroom</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer room</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dining area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In a penitentiary</td>
<td>0.96</td>
</tr>
<tr>
<td>In a facility for the visually impaired (and not used primarily by staff)</td>
<td>1.9</td>
</tr>
<tr>
<td>In bar/lounge or leisure dining</td>
<td>1.07</td>
</tr>
<tr>
<td>In cafeteria or fast food dining</td>
<td>0.65</td>
</tr>
<tr>
<td>Location</td>
<td>Factor</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>In family dining</td>
<td>0.89</td>
</tr>
<tr>
<td>Otherwise</td>
<td>0.65</td>
</tr>
<tr>
<td>Electrical/mechanical room</td>
<td>0.95</td>
</tr>
<tr>
<td>Emergency vehicle garage</td>
<td>0.56</td>
</tr>
<tr>
<td>Food preparation area</td>
<td>1.21</td>
</tr>
<tr>
<td>Guest room</td>
<td>0.47</td>
</tr>
<tr>
<td>Laboratory</td>
<td></td>
</tr>
<tr>
<td>In or as a classroom</td>
<td>1.43</td>
</tr>
<tr>
<td>Otherwise</td>
<td>1.81</td>
</tr>
<tr>
<td>Laundry/washing area</td>
<td>0.6</td>
</tr>
<tr>
<td>Loading dock, interior</td>
<td>0.47</td>
</tr>
<tr>
<td>Lobby</td>
<td></td>
</tr>
<tr>
<td>In a facility for the visually impaired (and not used primarily by the staff)</td>
<td>1.8</td>
</tr>
<tr>
<td>For an elevator</td>
<td>0.64</td>
</tr>
<tr>
<td>In a hotel</td>
<td>1.06</td>
</tr>
<tr>
<td>In a motion picture theater</td>
<td>0.59</td>
</tr>
<tr>
<td>In a performing arts theater</td>
<td>2.0</td>
</tr>
<tr>
<td>Otherwise</td>
<td>0.9</td>
</tr>
<tr>
<td>Locker room</td>
<td>0.75</td>
</tr>
<tr>
<td>Lounge/breakroom</td>
<td></td>
</tr>
<tr>
<td>In a healthcare facility</td>
<td>0.92</td>
</tr>
<tr>
<td>Otherwise</td>
<td>0.73</td>
</tr>
<tr>
<td>Office</td>
<td></td>
</tr>
<tr>
<td>Enclosed</td>
<td>1.11</td>
</tr>
<tr>
<td>Open plan</td>
<td>0.98</td>
</tr>
<tr>
<td>Parking area, interior</td>
<td>0.19</td>
</tr>
<tr>
<td>Pharmacy area</td>
<td>1.68</td>
</tr>
<tr>
<td>Restroom</td>
<td></td>
</tr>
<tr>
<td>In a facility for the visually impaired (and not used primarily by the staff)</td>
<td>1.21</td>
</tr>
<tr>
<td>Building Type Specific Space Types</td>
<td>Lighting Power Density (W/ft²)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Otherwise</td>
<td>0.98</td>
</tr>
<tr>
<td>Sales area</td>
<td>1.59</td>
</tr>
<tr>
<td>Seating area, general</td>
<td>0.54</td>
</tr>
<tr>
<td>Stairway (See space containing stairway)</td>
<td></td>
</tr>
<tr>
<td>Stairwell</td>
<td>0.69</td>
</tr>
<tr>
<td>Storage room</td>
<td>0.63</td>
</tr>
<tr>
<td>Vehicular maintenance area</td>
<td>0.67</td>
</tr>
<tr>
<td>Workshop</td>
<td>1.59</td>
</tr>
<tr>
<td>Building Type Specific Space Types</td>
<td>Lighting Power Density (W/ft²)</td>
</tr>
<tr>
<td>Facility for the visually impaired</td>
<td></td>
</tr>
<tr>
<td>In a chapel (and not used primarily by the staff)</td>
<td>2.21</td>
</tr>
<tr>
<td>In a recreation room (and not used primarily by the staff)</td>
<td>2.41</td>
</tr>
<tr>
<td>Automotive (See Vehicular Maintenance Area above)</td>
<td></td>
</tr>
<tr>
<td>Convention Center – exhibit space</td>
<td>1.45</td>
</tr>
<tr>
<td>Dormitory – living quarters</td>
<td>0.38</td>
</tr>
<tr>
<td>Fire Station – sleeping quarters</td>
<td>0.22</td>
</tr>
<tr>
<td>Gymnasium/fitness center</td>
<td></td>
</tr>
<tr>
<td>In an exercise area</td>
<td>0.72</td>
</tr>
<tr>
<td>In a playing area</td>
<td>1.2</td>
</tr>
<tr>
<td>Healthcare facility</td>
<td></td>
</tr>
<tr>
<td>In an exam/treatment room</td>
<td>1.66</td>
</tr>
<tr>
<td>In an imaging room</td>
<td>1.51</td>
</tr>
<tr>
<td>In a medical supply room</td>
<td>0.74</td>
</tr>
<tr>
<td>In a nursery</td>
<td>0.88</td>
</tr>
<tr>
<td>In a nurse’s station</td>
<td>0.71</td>
</tr>
<tr>
<td>In an operating room</td>
<td>2.48</td>
</tr>
<tr>
<td>In a patient room</td>
<td>0.62</td>
</tr>
<tr>
<td>Location</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>In a physical therapy room</td>
<td>0.91</td>
</tr>
<tr>
<td>In a recovery room</td>
<td>1.15</td>
</tr>
<tr>
<td>Library</td>
<td></td>
</tr>
<tr>
<td>In a reading area</td>
<td>1.06</td>
</tr>
<tr>
<td>In the stacks</td>
<td>1.71</td>
</tr>
<tr>
<td>Manufacturing facility</td>
<td></td>
</tr>
<tr>
<td>In a detailed manufacturing facility</td>
<td>1.29</td>
</tr>
<tr>
<td>In an equipment room</td>
<td>0.74</td>
</tr>
<tr>
<td>In an extra high bay area (greater than 50’ floor-to-ceiling height)</td>
<td>1.05</td>
</tr>
<tr>
<td>In a high bay area (25’-50’ floor-to-ceiling height)</td>
<td>1.23</td>
</tr>
<tr>
<td>In a low bay area (less than 25’ floor-to-ceiling height)</td>
<td>1.19</td>
</tr>
<tr>
<td>Museum</td>
<td></td>
</tr>
<tr>
<td>In a general exhibition area</td>
<td>1.05</td>
</tr>
<tr>
<td>In a restoration room</td>
<td>1.02</td>
</tr>
<tr>
<td>Performing arts theater – dressing room</td>
<td>0.61</td>
</tr>
<tr>
<td>Post Office – Sorting Area</td>
<td>0.94</td>
</tr>
<tr>
<td>Religious buildings</td>
<td></td>
</tr>
<tr>
<td>In a fellowship hall</td>
<td>0.64</td>
</tr>
<tr>
<td>In a worship/pulpit/choir area</td>
<td>1.53</td>
</tr>
<tr>
<td>Retail facilities</td>
<td></td>
</tr>
<tr>
<td>In a dressing/fitting room</td>
<td>0.71</td>
</tr>
<tr>
<td>In a mall concourse</td>
<td>1.1</td>
</tr>
<tr>
<td>Sports arena – playing area</td>
<td></td>
</tr>
<tr>
<td>For a Class I facility</td>
<td>3.68</td>
</tr>
<tr>
<td>For a Class II facility</td>
<td>2.4</td>
</tr>
<tr>
<td>For a Class III facility</td>
<td>1.8</td>
</tr>
<tr>
<td>For a Class IV facility</td>
<td>1.2</td>
</tr>
<tr>
<td>Location</td>
<td>LPDEE</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>In a baggage/carousel area</td>
<td>0.53</td>
</tr>
<tr>
<td>In an airport concourse</td>
<td>0.36</td>
</tr>
<tr>
<td>At a terminal ticket counter</td>
<td>0.8</td>
</tr>
<tr>
<td>Warehouse – storage area</td>
<td></td>
</tr>
<tr>
<td>For medium to bulky, palletized items</td>
<td>0.58</td>
</tr>
<tr>
<td>For smaller, hand-carried items</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Illustrative examples – do not use as default assumption

For example, assuming a 15,000 ft² conditioned office building with gas heat in in DE using the Building Area Method with an LPDEE of 0.75:

\[
\Delta kWh = \left(\frac{(0.9 - 0.75)}{1000} \right) \times 15,000 \times 2,969 \times 1.10
\]

\[
= 7,348 \text{ kWh}
\]

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \left(\frac{\text{LPDBASE} - \text{LPDEE}}{1000} \right) \times \text{AREA} \times \text{WHFd} \times \text{CF}
\]

Where:

\(\text{WHFd}\) = Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.

\(\text{WHFd}\) varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix D. If HVAC type is unknown or the space is unconditioned, assume \(\text{WHFe} = \text{WHFd} = 1.0\).

\(\text{CF}\) = Summer Peak Coincidence Factor for measure

\(\text{CF}\) = See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.

Illustrative examples – do not use as default assumption
For example, assuming a 15,000 ft\(^2\) conditioned office building with gas heat in DE using the Building Area Method with an LPDEE of 0.75 and estimating PJM summer peak coincidence:

\[
\Delta \text{kWh} = \left(\frac{(0.9 - 0.75)}{1000}\right) \times 15,000 \times 1.32 \times 0.69
\]

\[= 2.05 \text{ kW}\]

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes *increased* fossil fuel consumption.

\[
\Delta \text{MMBTU} = \left(\frac{-\Delta \text{kWh}}{\text{WHFe}}\right) \times 0.70 \times 0.003413 \times 0.23 / 0.75
\]

\[= \left(\frac{-\Delta \text{kWh}}{\text{WHFe}}\right) \times 0.00073\]

Where:

0.7	= Aspect ratio\(^{783}\)
0.003413	= Constant to convert kWh to MMBTU
0.23	= Fraction of lighting heat that contributes to space heating\(^{784}\)
0.75	= Assumed heating system efficiency\(^{785}\)

Illustrative examples – do not use as default assumption

For example, assuming a 15,000 ft\(^2\) conditioned office building with gas heat in DE using the Building Area Method with an LPDEE of 0.75:

\[
\Delta \text{kWh} = \left(-\frac{7,348}{1.10}\right) \times 0.00073
\]

\[= -4.88 \text{ MMBTU}\]

Annual Water Savings Algorithm

n/a

\(^{783}\) HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

\(^{784}\) Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

\(^{785}\) Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.
Incremental Cost

Incremental costs will vary greatly from project to project depending on the advanced lighting design principles and lighting technologies used. Incremental costs should be estimated on a case-by-case basis.

Measure Life

The measure life is assumed to be 15 years.786

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of the efficient and baseline replacement components, there may be significant operation and maintenance impacts associated with this measure. Actual operation and maintenance costs should be estimated on a case-by-case basis.

786 Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, June 2007, \url{http://www.ctsavesenergy.org/files/Measure%20Life%20Report%202007.pdf}. Assumes Advanced Lighting Design lifetime will be consistent with that of the “Fluorescent Fixture” measure from the reference document. This measure life assumes that the most common implementation of this measure will be for new construction or major renovation scenarios where new fixtures are installed. In such cases, adopting the fixture lifetime for the LPD reduction measure seems most appropriate.
LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Luminaires and Retrofit Kits

Unique Measure Code(s): CI_LT_TOS_LEDODPO_0518, CI_LT_RF_LEDODPO_0518

Effective Date: May 2018
End Date: TBD

Measure Description

This measure relates to the installation of an LED outdoor pole/arm- or wall-mounted luminaire or retrofit kit for parking lot, street, or general area illumination in place of a high-intensity discharge light source. Eligible applications include time of sale or new construction and retrofit applications.

Definition of Baseline Condition

The baseline condition is defined as an outdoor pole/arm- or wall-mounted luminaire with a high intensity discharge light-source. Typical baseline technologies include metal halide (MH) and high pressure sodium (HPS) lamps.

Definition of Efficient Condition

The efficient condition is defined as an LED outdoor pole/arm- or wall-mounted luminaire or retrofit kit. Eligible fixtures and retrofit kits must be listed on the DesignLights Consortium Qualified Products List.

Annual Energy Savings Algorithm

\[\Delta k\text{Wh} = ((\text{WattsBASE} - \text{WattsEE}) / 1000) \times \text{HOURS} \]

Where:

- \(\text{WattsBASE} \) = Actual Connected load of baseline fixture
 = If the actual baseline fixture wattage is unknown, use the default values presented in the “Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Baseline and Efficient Wattage” table below.

- \(\text{WattsEE} \) = Actual Connected load of the LED fixture
 = If the actual LED fixture wattage is unknown, use the default values presented in the “Outdoor Pole/Arm- or Wall-Mounted

\(^{787}\) DesignLights Consortium Qualified Products List
<http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php>
Area and Roadway Lighting Baseline and Efficient Wattage table below based on the appropriate baseline description.

Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Lighting Baseline and Efficient Wattage

<table>
<thead>
<tr>
<th>Measure Category</th>
<th>Baseline Description</th>
<th>WattsBASE</th>
<th>Efficient Description</th>
<th>WattsEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Outdoor Area Fixture replacing up to 175W HID</td>
<td>175W or less base HID</td>
<td>171</td>
<td>DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires</td>
<td>99</td>
</tr>
<tr>
<td>LED Outdoor Area Fixture replacing 176-250W HID</td>
<td>176W up to 250W base HID</td>
<td>288</td>
<td>DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires</td>
<td>172</td>
</tr>
<tr>
<td>LED Outdoor Area Fixture replacing 251-400W HID</td>
<td>251W up to 400W base HID</td>
<td>452</td>
<td>DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires</td>
<td>293</td>
</tr>
<tr>
<td>LED Outdoor Area Fixture replacing 401-1000W HID</td>
<td>401W up to 1000W base HID</td>
<td>1075</td>
<td>DLC Qualified LED Outdoor Pole/Arm- or Wall-Mounted Area and Roadway Luminaires</td>
<td>663</td>
</tr>
</tbody>
</table>

788 Baseline and efficient fixtures have been grouped into wattage categories based on typical applications. The typical baseline equipment in each group was weighted based on personal communication with Kyle Hemmi, CLEAResult on Sept. 18, 2012. Weighting reflects implementation program data from Texas, Nevada, Rocky Mountain, and Southwest Regions. When adequate program data is collected from the implementation of this measure in the Mid-Atlantic region, these weightings should be updated accordingly. Baseline fixture wattage assumptions developed from multiple TRMs including: Arkansas TRM Version 2.0, Volume 2: Deemed Savings, Frontier Associates, LLC, 2012; Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2012 Program Year - Plan Version, Massachusetts Electric and Gas Energy Efficiency Program Administrators, 2011, and 2012 Statewide Customized Offering Procedures Manual for Business - Appendix B Table of Standard Fixture Wattages and Sample Lighting Table, Southern California Edison et al., 2012. As the total wattage assumptions for like fixtures typically do not vary by more than a few watts between sources, the values from the Arkansas document have been adopted here. Efficient fixture wattage estimated assuming mean delivered lumen equivalence between the baseline and efficient case. Baseline initial lamp lumen output was reduced by estimates of lamp lumen depreciation and optical efficiency. Efficient wattage and lumen information was collected from appropriate product categories listed in the DesignLights Consortium Qualified Products List - Updated 11/21/2012. Analysis presented in the “Mid Atlantic C&I LED Lighting Analysis.xlsx” supporting workbook.
HOURS = Average hours of use per year
= If annual operating hours are unknown, assume 3,338.
Otherwise, use site specific annual operating hours information.

Illustrative examples – do not use as default assumption

For example, a 250W metal halide fixture is replaced with an LED fixture:

$$\Delta \text{kWh} = \left(\frac{288 - 172}{1000}\right) \times 3,338$$

$$= 387 \text{kWh}$$

Summer Coincident Peak kW Savings Algorithm

$$\Delta \text{kW} = \left(\frac{\text{WattsBASE} - \text{WattsEE}}{1000}\right) \times \text{CF}$$

Where:

$$\text{CF} = \text{Summer Peak Coincidence Factor for measure}$$

$$= 0$$

Illustrative examples – do not use as default assumption

For example, a 250W metal halide fixture is replaced with an LED fixture:

$$\Delta \text{kW} = \left(\frac{288 - 172}{1000}\right) \times 0$$

$$= 0 \text{kW}$$

Annual Fossil Fuel Savings Algorithm

n/a

790 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.

791 It is assumed that efficient outdoor area lighting, when functioning properly, will never result in coincident peak demand savings.
Annual Water Savings Algorithm
n/a

Incremental Cost
Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment. The table below shows average NPV lifecycle incremental costs for time of sale and early replacement. If additional detail is needed, a further disaggregation of the IMCs, based on wattage ranges, can be found in the cited workbook.

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Time of Sale / New</th>
<th>Early Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Fixtures up to 150 W</td>
<td>$228</td>
<td>$419</td>
</tr>
<tr>
<td>LED Fixtures between 150W to 265W</td>
<td>$750</td>
<td>$1,002</td>
</tr>
</tbody>
</table>

Measure Life
Measure life is the rated life in hours of the actual LED fixture divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 50,000 hours. However, measure life is not to exceed 15 years.

Operation and Maintenance Impacts

792 Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using data from California IOU work papers cited in that document. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5548/download?token=pLlMjfvz.

793 The minimum rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 4/14/2018 <https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/> is 50,000 hours for exterior fixtures. Assuming average annual operating hours of 3,338 (Efficiency Vermont TRM User Manual No. 2014-85b; based on 5 years of metering on 235 outdoor circuits in New Jersey), the estimated measure life is 15 years.

794 Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

795 Component information for the <175W HID and 176-250W HID categories adopted from Efficiency Vermont TRM User Manual No. 2012-77a. The remaining categories are based on a
Due to differences in costs and lifetimes of baseline lamps, actual operation and maintenance costs should be estimated on a case-by-case basis. If actual O&M costs are unknown, the calculated default net present value of lamp replacements over the measure life is $30.50 per lamp for time of sale and $29.49 per lamp for early replacement.\(^{796}\)

\[^{796}\] See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%.

\[^{796}\] See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%.
LED High-Bay Luminaires and Retrofit Kits
Unique Measure Code(s): CI_LT_TOS_LEDHB_0518, CI_LT_RF_LEDHB_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure relates to the installation of an LED high-bay luminaire or retrofit kit for general area illumination in place of a high-intensity discharge or fluorescent light source. Eligible applications include time of sale or new construction luminaires and retrofit kits installed at a minimum height of 20 feet. Because of the improved optical control afforded by LED luminaires and retrofit kits, LED lighting systems can typically reduce total lumen output while maintaining required illuminance on work surfaces. Therefore, illuminance calculations should be performed in the process of selecting LED luminaires.

Definition of Baseline Condition
The baseline condition is defined as a high-bay luminaire with a high intensity discharge or fluorescent light-source. Typical baseline technologies include pulse-start metal halide (PSMH) and fluorescent T5 high-output fixtures. For time of sale applications, the baseline condition will vary depending upon the specific characteristics of the fixtures installed (e.g. light source technology, number of lamps). For retrofit applications, the baseline is the existing fixture.

Definition of Efficient Condition
The efficient condition is defined as an LED high-bay luminaire. Eligible fixtures must be listed on the DesignLights Consortium Qualified Products List797.

Annual Energy Savings Algorithm
\[\Delta \text{kWh} = ((\text{WattsBASE} - \text{WattsEE}) \times 1000) \times \text{HOURS} \times \text{ISR} \times \text{WHFe} \]

Where:
\[\text{WattsBASE} = \text{Actual Connected load of baseline fixture} \]
\[\text{WattsEE} = \text{Actual Connected load of the LED fixture} \]
\[\text{HOURS} = \text{Average hours of use per year} \]

797 DesignLights Consortium Qualified Products List <http://www.designlights.org/QPL>
If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D. Otherwise, use site specific annual operating hours information.

ISR

= In Service Rate or percentage of units rebated that get installed
= 1.00 \(^{799}\)

WHe

= Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.
= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume \(WHe = WHFd = 1.0\).

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \frac{(Watts_{BASE} - Watts_{EE})}{1000} \times ISR \times WHFd \times CF \]

Where:

WHFd

= Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.
= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume \(WHe = WHFd = 1.0\).

CF

= Summer Peak Coincidence Factor for measure
= See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.

\(^{798}\) Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.

\(^{799}\) Because of the comparatively high cost of LED equipment, it is likely that the ISR will be near 1.0. Additionally, it may be inappropriate to assume the “Equipment” category ISR from the EmPOWER Maryland DRAFT 2010 Interim Evaluation Report, Chapter 2: Commercial and Industrial Prescriptive, Navigant Consulting, 2010.
Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[
\Delta \text{MMBTU} = (-\Delta \text{kWh} / \text{WHFe}) \times 1.0 \times 0.003413 \times 0.23 / 0.75.
\]
\[
= (-\Delta \text{kWh} / \text{WHFe}) \times 0.00073.
\]

Where:
- \(1.0\) = Aspect ratio
- \(0.003413\) = Constant to convert kWh to MMBTU
- \(0.23\) = Fraction of lighting heat that contributes to space heating
- \(0.75\) = Assumed heating system efficiency

Annual Water Savings Algorithm
n/a

Incremental Cost

Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment. The table below shows average NPV lifecycle incremental cost for time of sale and early replacement. If additional detail is needed, a further disaggregation of the IMCs, based on wattage ranges, can be found in the cited workbook.

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Time of Sale</th>
<th>Early Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

800 As this measure will likely be installed in building types without defined perimeter zones (e.g., warehouses, gymnasiuums, and manufacturing) no adjustment for perimeter zone aspect ratio is necessary.

801 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

802 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

803 Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using data from California IOU work papers cited in that document. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5548/download?token=pLIMjfvz.
LED High Bay Fixture up to 220W
- $160
- $304

LED High Bay Fixture between 220 - 320W
- $397
- $555

LED High Bay Fixture greater than 320 W
- $1,013
- $1,188

Measure Life
Measure life is the rated life in hours of the actual LED lamp divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 50,000 hours. However, measure life is not to exceed 15 years.

Operation and Maintenance Impacts
Due to differences in costs and lifetimes of baseline lamps, actual operation and maintenance costs should be estimated on a case-by-case basis. If actual O&M costs are unknown, the calculated default net present value of lamp replacements over the measure life is $32.50 per lamp for time of sale and $31.63 per lamp for early replacement.

LED High-Intensity Discharge Screw Base

Unique Measure Code(s): CI_LT_TOS_LEDHID_0518, CI_LT_RF_LEDHID_0518

Effective Date: May 2018

End Date: TBD

Measure Description
This measure relates to the installation of a screw based LED lamp in place of a high-intensity discharge lamp. Eligible applications include time of sale or retrofit lamps.

Definition of Baseline Condition

804 Minimum DesignLights Consortium requirement is 50,000 hours for high bay fixtures.
<https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/>

805 Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

806 See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%.

The baseline condition is defined as a mogul (E39 or EX39) screw based high-intensity discharge bulb, using metal halide technology. For time of sale applications, the baseline condition will vary depending upon the specific characteristics of the lamp installed (e.g., wattage). For retrofit applications, the baseline is the existing bulb.

Definition of Efficient Condition

The efficient condition is defined as a mogul (E39 or EX39) screw-based LED lamp. Eligible bulbs must be listed on the DesignLights Consortium Qualified Products List.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \frac{(\text{WattsBASE} - \text{WattsEE})}{1000} \times \text{HOURS} \times \text{ISR} \times \text{WHFe} \]

Where:

- \(\text{WattsBASE} \) = Rated wattage of in-situ lamp. If the actual baseline lamp wattage is unknown, use the default values presented in the “LED Screw-Base Retrofit HID Lamps Baseline and Efficient Wattage” table below based on the appropriate baseline description.

LED Screw-Base Retrofit HID Lamps Baseline and Efficient Wattage

<table>
<thead>
<tr>
<th>Measure Category</th>
<th>Baseline Description</th>
<th>WattsBASE</th>
<th>Efficient Description</th>
<th>WattsEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Retrofit Lamp replacing up to 175W HID</td>
<td>175W or less base HID</td>
<td>175</td>
<td>DLC Qualified LED Screw-In with Mogul Base (E39 or EX39)</td>
<td>45</td>
</tr>
<tr>
<td>LED Retrofit Lamp replacing 176-250W HID</td>
<td>176W up to 250W base HID</td>
<td>250</td>
<td>DLC Qualified LED Screw-In with Mogul Base (E39 or EX39)</td>
<td>75</td>
</tr>
<tr>
<td>LED Retrofit Lamp replacing 251-400W HID</td>
<td>251W up to 400W base HID</td>
<td>400</td>
<td>DLC Qualified LED Screw-In with Mogul Base (E39 or EX39)</td>
<td>132</td>
</tr>
</tbody>
</table>

\(\text{WattsEE} \) = Rated wattage of the LED replacement bulb

807 DesignLights Consortium Qualified Products List <http://www.designlights.org/QPL>
808 Baseline and efficient lamps have been grouped into wattage categories based on typical applications. Efficient wattage and lumen information was collected from appropriate product categories listed in the DesignLights Consortium Qualified Products List - Updated 3/16/2018.
HOURS

- Average hours of use per year
- If annual operating hours are unknown, for interior lamps see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D. For exterior lamps, assume 3,338. Otherwise, use site specific annual operating hours information.

ISR

- In Service Rate or percentage of units rebated that get installed
- 1.00

WHFe

- Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.
- Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is outdoors or unconditioned, assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = ((\text{WattsBASE} - \text{WattsEE}) / 1000) \times \text{ISR} \times \text{WHFd} \times \text{CF} \]

Where:

- **WHFd**
 - Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.
 - Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is outdoors or unconditioned, assume WHFe = WHFd = 1.0.

810 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.

811 Because of the comparatively high cost of LED equipment, it is likely that the ISR will be near 1.0. Additionally, it may be inappropriate to assume the “Equipment” category ISR from the EmPOWER Maryland DRAFT 2010 Interim Evaluation Report, Chapter 2: Commercial and Industrial Prescriptive, Navigant Consulting, 2010.
unknown or if the space is outdoors or unconditioned, assume
WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure
= For interior lamps, see table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.
= For exterior lamps, 0

Annual Fossil Fuel Savings Algorithm
Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

$$\Delta\text{MMBTU} = \left(-\frac{\Delta\text{kWh}}{\text{WHFe}} \right) \times 1.0 \times 0.003413 \times 0.23 / 0.75$$

$$\Delta\text{MMBTU} = \left(-\frac{\Delta\text{kWh}}{\text{WHFe}} \right) \times 0.00105$$

Where:

1.0 = Aspect ratio
0.003413 = Constant to convert kWh to MMBTU
0.23 = Fraction of lighting heat that contributes to space heating
0.75 = Assumed heating system efficiency

Annual Water Savings Algorithm
n/a

Incremental Cost

Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment. The table below shows average NPV lifecycle incremental cost for time of sale and early replacement.

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Time of Sale</th>
<th>Early Replacement</th>
</tr>
</thead>
</table>

812 It is assumed that efficient outdoor area lighting, when functioning properly, will never result in coincident peak demand savings.
813 As this measure will likely be installed in building types without defined perimeter zones (e.g., warehouses, gymnasiums, and manufacturing) no adjustment for perimeter zone aspect ratio is necessary.
814 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).
815 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.
816 Measure and baseline costs were calculated using bulb cost and specification data gathered from vendor websites in Q1 2018.
LED Retrofit Lamp replacing up to 175W HID	$53	$103
LED Retrofit Lamp replacing 176-250W HID | $75 | $126
LED Retrofit Lamp replacing 251-400W HID | $134 | $185

Measure Life

Measure life is the rated life in hours of the actual LED lamp divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 50,000 hours. However, measure life is not to exceed 15 years.

Operation and Maintenance Impacts

A baseline condition lamp with a typical 4-year lifetime would need to be replaced several times before an efficient condition lamp with a 12-year lifetime. The default net present value of savings over the measure life from avoided lamp replacements is $23.27 per lamp for time of sale and $23.80 for early replacement.

817 Minimum DesignLights Consortium requirement is 50,000 hours for applicable E39 replacement lamp products. [<https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/>](https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/)

818 Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

819 Due to differences in costs and lifetimes of baseline lamps, actual operation and maintenance costs should be estimated on a case-by-case basis. If actual O&M costs are unknown, the calculated default net present value of lamp replacements over the measure life. Cost information for baseline HID lamps is based on a review of pricing for available products from multiple online bulb vendors, conducted 3/16/2018. NPV O&M Savings calculated assuming a 5% discount rate; detailed calculation presented in the “Mid Atlantic C&I LED Lighting Analysis.xlsx” workbook.
LED 1x4, 2x2, and 2x4 Luminaires and Retrofit Kits

Unique Measure Code(s): CI_LT_TOS_LED1x4_0518, CI_LT_TOS_LED2x2_0615, CI_LT_TOS_LED2x4_0518, CI_LT_RF_LED1x4_0518, CI_LT_RF_LED2x2_0518, CI_LT_RF_LED2x4_0518

Effective Date: May 2018

End Date: TBD

Measure Description

This measure relates to the installation of an LED 1x4, 2x2, or 2x4 luminaire or retrofit kit for general area illumination in place of a fluorescent light source. These luminaires and retrofit kits are typically recessed, suspended, or surface-mounted and intended to provide ambient lighting in settings such as office spaces, schools, retail stores, and other commercial environments. Eligible applications include time of sale or new construction and retrofits applications. Because of the improved optical control afforded by LED luminaires and retrofit kits, LED lighting systems can typically reduce total lumen output while maintaining required illuminance on work surfaces. Therefore, illuminance calculations should be performed in the process of selecting LED luminaires and retrofit kits.

Definition of Baseline Condition

The baseline condition is defined as a 1x4, 2x2, or 2x4 fixture with a fluorescent light-source. Typical baseline technologies include fluorescent T8 fixtures. For time of sale applications, the baseline condition will vary depending upon the specific characteristics of the fixtures installed (e.g. number of lamps).

Definition of Efficient Condition

The efficient condition is defined as an LED high-bay luminaire. Eligible fixtures must be listed on the DesignLights Consortium Qualified Products List\(^2\)\(^2\)\(^2\).

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \left(\left(\text{WattsBASE} - \text{WattsEE} \right) / 1000 \right) \times \text{HOURS} \times \text{ISR} \times \text{WHFe}
\]

Where:

- \(\text{WattsBASE}\) = Actual Connected load of baseline fixture
- \(\text{WattsEE}\) = Actual Connected load of the LED fixture
- \(\text{HOURS}\) = Average hours of use per year

\(^2\)\(^2\)\(^2\) DesignLights Consortium Qualified Products List <http://www.designlights.org/QPL>
= If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D.821 Otherwise, use site specific annual operating hours information.822

\(ISR = \text{In Service Rate or percentage of units rebated that get installed} = 1.00 823 \)

\(WHFe = \text{Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.} \)

\(= \text{Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C\&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume } WHFe = WHFd = 1.0. \)

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \left(\frac{\text{WattsBASE} - \text{WattsEE}}{1000}\right) \times ISR \times WHFd \times CF
\]

Where:

\(WHFd = \text{Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.} \)

\(= \text{Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C\&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume } WHFe = WHFd = 1.0. \)

\(CF = \text{Summer Peak Coincidence Factor for measure} \)

821 The lighting hours of use tables in Appendix D are primarily based on fluorescent lamp operating hours. It is assumed that, for general ambient lighting applications, LED operating hours will be similar to fluorescent operating hour; however, LED operating hours are a potential candidate for future study.

822 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.

823 Because of the comparatively high cost of LED equipment, it is likely that the ISR will be near 1.0. Additionally, it may be inappropriate to assume the “Equipment” category ISR from the EmPOWER Maryland DRAFT 2010 Interim Evaluation Report, Chapter 2: Commercial and Industrial Prescriptive, Navigant Consulting, 2010.
= See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[
\Delta \text{MMBTU} = (-\Delta \text{kWh} / \text{WHFe}) \times 0.70 \times 0.003413 \times 0.23 / 0.75.
\]

\[
= (-\Delta \text{kWh} / \text{WHFe}) \times 0.00073.
\]

Where:

- 0.7 = Aspect ratio
- 0.003413 = Constant to convert kWh to MMBTU
- 0.23 = Fraction of lighting heat that contributes to space heating
- 0.75 = Assumed heating system efficiency

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment. The table below shows average NPV lifecycle incremental cost for time of sale and early replacement presented per kilolumen of luminaire initial lumen output. If additional detail is needed, a further disaggregation of the IMCs, based on wattage ranges, can be found in the cited workbook. 827

824 HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

825 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

826 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

827 Costs are from Itron, Mid-Atlantic TRM Version 7.0 Incremental Costs Update, 2017. Measure and baseline costs were calculated using data from California IOU work papers cited in that document. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5548/download?token=pLIMjfvz.
<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Time of Sale ($/klm)</th>
<th>Retrofit ($/klm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New LED linear recessed troffer/panel for 2x2, 1x4, and 2x4 luminaires</td>
<td>$20</td>
<td>$35</td>
</tr>
<tr>
<td>LED integrated retrofit kit for 2x2, 1x4 and 2x4 fixtures</td>
<td>$22</td>
<td>$37</td>
</tr>
</tbody>
</table>

Measure Life

Measure life is the rated life in hours of the actual LED lamp divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 50,000 hours. However, measure life is not to exceed 15 years.

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of baseline lamps, actual operation and maintenance costs should be estimated on a case-by-case basis. If actual O&M costs are unknown, the calculated default net present value of lamp replacements over the measure life is $2.23 per kilolumen of luminaire initial lumen output for time of sale and $3.00 per kilolumen of luminaire initial lumen output for early replacement.

828 Minimum DesignLights Consortium requirement is 50,000 hours for both luminaires and retrofit kits. https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/

829 Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

830 See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%.
LED Parking Garage/Canopy Luminaires and Retrofit Kits
Unique Measure Code(s): CI_LT_TOS_LEDODPG_0518, CI_LT_RF_LEDODPG_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure relates to the installation of an LED parking garage or fuel pump canopy luminaire or retrofit kit in place of a high-intensity discharge light source. Eligible applications include time of sale or new construction and retrofit applications.

Definition of Baseline Condition
The baseline condition is defined as a parking garage or canopy luminaire with a high intensity discharge light-source. Typical baseline technologies include metal halide (MH) and high pressure sodium (HPS) lamps.

Definition of Efficient Condition
The efficient condition is defined as an LED parking garage or canopy luminaire or retrofit kit. Eligible luminaires and retrofit kits must be listed on the DesignLights Consortium Qualified Products List.

Annual Energy Savings Algorithm

\[\Delta kWh = \left(\frac{WattsBASE - WattsEE}{1000} \right) \times HOURS \times ISR \]

Where:
- \(WattsBASE \) = Actual Connected load of baseline fixture
- If the actual baseline fixture wattage is unknown, use the default values presented in the “Parking Garage or Canopy Fixture Baseline and Efficient Wattage” table below.
- \(WattsEE \) = Actual Connected load of the LED fixture
- If the actual LED fixture wattage is unknown, use the default values presented in the “Parking Garage or Canopy Fixture Baseline and Efficient Wattage” table based on the appropriate baseline description.

831 DesignLights Consortium Qualified Products List
<http://www.designlights.org/solidstate.about.QualifiedProductsList_Publicv2.php>
Parking Garage or Canopy Fixture Baseline and Efficient Wattage

<table>
<thead>
<tr>
<th>Measure Category</th>
<th>Baseline Description</th>
<th>WattsBASE</th>
<th>Efficient Description</th>
<th>WattsEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Parking Garage/Canopy Fixture replacing up to 175W HID</td>
<td>175W or less base HID</td>
<td>171</td>
<td>DLC Qualified LED Parking Garage and Canopy Luminaires</td>
<td>94</td>
</tr>
<tr>
<td>LED Parking Garage/Canopy Fixture replacing 176-250W HID</td>
<td>176W up to 250W base HID</td>
<td>288</td>
<td>DLC Qualified LED Parking Garage and Canopy Luminaires</td>
<td>162</td>
</tr>
<tr>
<td>LED Parking Garage/Canopy Fixture replacing 251 and above HID</td>
<td>251W and above base HID</td>
<td>452</td>
<td>DLC Qualified LED Parking Garage and Canopy Luminaires</td>
<td>248</td>
</tr>
</tbody>
</table>

\[HOURS = \text{Average hours of use per year}\]

832 Baseline and efficient fixtures have been grouped into wattage categories based on typical applications. The typical baseline equipment in each group were weightings based on personal communication with Kyle Hemmi, CLEAResult on Sept. 18, 2012. Weighting reflects implementation program data from Texas, Nevada, Rocky Mountain, and Southwest Regions. When adequate program data is collected from the implementation of this measure in the Mid-Atlantic region, these weightings should be updated accordingly. Baseline fixture wattage assumptions developed from multiple TRMs including: Arkansas TRM Version 2.0, Volume 2: Deemed Savings, Frontier Associates, LLC, 2012; Massachusetts Technical Reference Manual for Estimating Savings from Energy Efficiency Measures, 2012 Program Year - Plan Version, Massachusetts Electric and Gas Energy Efficiency Program Administrators, 2011, and 2012 Statewide Customized Offering Procedures Manual for Business - Appendix B Table of Standard Fixture Wattages and Sample Lighting Table, Southern California Edison et al., 2012. As the total wattage assumptions for like fixture typically do not vary by more than a few watts between sources, the values from the Arkansas document have been adopted here. Efficient fixture wattage estimated assuming mean delivered lumen equivalence between the baseline and efficient case. Baseline initial lamp lumen output was reduced by estimates of lamp lumen depreciation and optical efficiency. Efficient wattage and lumen information was collected from appropriate product categories listed in the DesignLights Consortium Qualified Products List - Updated 11/21/2012. Analysis presented in the “Mid Atlantic C&I LED Lighting Analysis.xlsx” supporting workbook.
If annual operating hours are unknown, assume 3,338 for canopy applications and 8,760 for parking garage applications833. Otherwise, use site-specific annual operating hours information.834

$$ISR = \text{In Service Rate or percentage of units rebated that get installed}$$
\text{835}

Illustrative examples – do not use as default assumption

For example, a 250W parking garage standard metal halide fixture is replaced with an LED fixture:

$$\Delta kWh = \left(\frac{288 - 162}{1000}\right) \times 8,760 \times 1.00$$

$$= 1104 \text{ kWh}$$

Summer Coincident Peak kW Savings Algorithm

$$\Delta kW = \left(\frac{\text{WattsBASE} - \text{WattsEE}}{1000}\right) \times ISR \times CF$$

Where:

$$CF = \text{Summer Peak Coincidence Factor for measure}$$

$$= 0 \text{ for canopy applications and 1.0 for parking garage applications}$$
\text{836}

Illustrative examples – do not use as default assumption

833 Efficiency Vermont Technical Reference Manual 2009-55, December 2008; based on 5 years of metering on 235 outdoor circuits in New Jersey. Parking garages typically require artificial illumination 24 hours per day.

834 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

835 Because of the comparatively high cost of LED equipment, it is likely that the ISR will be near 1.0. Additionally, it may be inappropriate to assume the “Equipment” category ISR from the EmPOWER Maryland DRAFT 2010 Interim Evaluation Report, Chapter 2: Commercial and Industrial Prescriptive, Navigant Consulting, 2010.

836 It is assumed that efficient canopy lighting, when functioning properly, will never result in coincident peak demand savings. Parking garages typically require artificial illumination 24 hours per day and will therefore exhibit 100% peak coincidence.
For example, a 250W parking garage standard metal halide fixture is replaced with an LED fixture:

\[
\Delta kW = \frac{(288 - 162)}{1000} \times 1.00 \times 1.00
\]

\[
= 0.13 \text{ kW}
\]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment. The table below shows average NPV lifecycle incremental cost for time of sale and early replacement. If additional detail is needed, a further disaggregation of the IMCs, based on wattage ranges, can be found in the cited workbook.

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Time of Sale</th>
<th>Retrofit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Fixtures up to 150 W</td>
<td>$631</td>
<td>$809</td>
</tr>
<tr>
<td>LED Fixtures between 150W to 265W</td>
<td>$1,314</td>
<td>$1,521</td>
</tr>
<tr>
<td>LED Fixtures greater than 265 W</td>
<td>$2,378</td>
<td>$2,669</td>
</tr>
</tbody>
</table>

Measure Life

Measure life is the rated life in hours of the actual LED lamp divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number.

837 Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using data from California IOU work papers cited in that document. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5548/download?token=pLlMjfvz.
If rated life is unknown, then assume 50,000\(^{838}\) hours. However, measure life is not to exceed 15 years\(^{839}\).

Operation and Maintenance Impacts\(^{840}\)

Due to differences in costs and lifetimes of baseline lamps, actual operation and maintenance costs should be estimated on a case-by-case basis. If actual O&M costs are unknown, the calculated default net present value of lamp replacements over the measure life is $30.50 per lamp for time of sale and $29.49 per lamp for early replacement for canopy applications and $55.46 per lamp for time of sale and $50.21 per lamp for early replacement for parking garage applications \(^{841}\).

\(^{838}\) Minimum DesignLights Consortium requirement is 50,000 hours for both parking garage and canopy luminaires. https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/

\(^{839}\) Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

\(^{841}\) See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%.
ENERGY STAR Integrated Screw Based SSL (LED) Lamp – Commercial
Unique Measure Code: CI_LT_TOS_SSLDWN_0518, CI_LT_EREP_SSLDWN_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure describes savings from the purchase and installation of an ENERGY STAR Integrated Screw Based SSL (LED) Lamp V2.1 in place of an incandescent lamp. This includes lamps purchased through Midstream programs.

Definition of Baseline Condition
Time of Sale: The baseline wattage is assumed to be an incandescent or EISA complaint (where applicable) bulb installed in a screw-base socket. Note that the baseline will be EISA compliant for all categories to which EISA applies. If the in-situ lamp wattage is known and lower than the EISA mandated maximum wattage (where applicable), the baseline wattage should be assumed equal to the in-situ lamp wattage.

Early Replacement: The baseline wattage for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline wattage as defined above for the remainder of the measure life.

Definition of Efficient Condition
The high efficiency wattage is assumed to be an ENERGY STAR qualified Integrated Screw Based SSL (LED) Lamp. The ENERGY STAR specifications can be viewed here: http://1.usa.gov/1QJFLgT.

Annual Energy Savings Algorithm

Time of Sale:

\[\Delta kWh = \left(\frac{WattsBase - WattsEE}{1000} \right) \times HOURS \times ISR \times WHFe \]

For text of Energy and Independence and Security Act, see http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf
Early Replacement:

\[\Delta \text{kWh for remaining life of existing unit:} \]

\[\Delta \text{kWh} = \frac{(\text{Watts}_{\text{Exist}} - \text{Watts}_{\text{EE}})}{1000} \times \text{HOURS} \times \text{ISR} \times \text{WHFe} \]

\[\Delta \text{kWh for remaining measure life (i.e., measure life less the remaining useful life of existing equipment):} \]

\[\Delta \text{kWh} = \frac{(\text{Watts}_{\text{Base}} - \text{Watts}_{\text{EE}})}{1000} \times \text{HOURS} \times \text{ISR} \times \text{WHFe} \]

Where:

\[\text{Watts}_{\text{Base}} = \text{Based on lumens of the LED – find the equivalent baseline wattage from the table below.} \]

\[\text{Note: If Watts}_{\text{Exist}} < \text{Watts}_{\text{Base}}, \text{then set Watts}_{\text{Base}} \text{ equal to the Watts}_{\text{Exist}}. \]

\[\text{Note: For early replacement measures use the appropriate year column in the table below relative to the end of the in-situ lamp useful life.} \]

<table>
<thead>
<tr>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>2018-2019 WattsBase</th>
<th>2020+ WattsBase*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnidirectional, Medium Screw Base Lamps (A, BT, P, PS, S or T) (†, 0 see exceptions below)</td>
<td>250</td>
<td>309</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>749</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>1049</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>1050</td>
<td>1489</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>1490</td>
<td>2600</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>2601</td>
<td>3300</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>3301</td>
<td>3999</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>6000</td>
<td>300</td>
</tr>
</tbody>
</table>

843 The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.

844 Different jurisdictions may have different implementation start dates for the 2020 baseline shift.
<table>
<thead>
<tr>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>2018-2019 WattsBase</th>
<th>2020+ WattsBase</th>
</tr>
</thead>
<tbody>
<tr>
<td>†S Shape <=749 lumens and T Shape <=749 lumens or T>10" length</td>
<td>250</td>
<td>309</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>749</td>
<td>40</td>
</tr>
<tr>
<td>Decorative, Medium Screw Base (G Shape) (*see exceptions below)</td>
<td>250</td>
<td>309</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>749</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>750</td>
<td>1049</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>1050</td>
<td>1300</td>
<td>53</td>
</tr>
<tr>
<td>†G16-1/2, G25, G30 <=499 lumens</td>
<td>250</td>
<td>309</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>349</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>499</td>
<td>40</td>
</tr>
<tr>
<td>†G Shape with diameter >=5"</td>
<td>250</td>
<td>349</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>499</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>574</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>649</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>1099</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>1300</td>
<td>150</td>
</tr>
<tr>
<td>Decorative, Medium Screw Base (B, BA, C, CA, DC, and F, and ST) (*see exceptions below)</td>
<td>70</td>
<td>89</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>149</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>299</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>309</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>499</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>699</td>
<td>29</td>
</tr>
<tr>
<td>†B, BA, CA, and F <=499 lumens</td>
<td>70</td>
<td>89</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>149</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>299</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>309</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>499</td>
<td>40</td>
</tr>
<tr>
<td>Omnidirectional, Intermediate Screw Base Lamps (A, BT, P, PS, S or T) (*see exceptions below)</td>
<td>250</td>
<td>309</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>749</td>
<td>40</td>
</tr>
<tr>
<td>†S Shape that have a first number symbol <= 12.5 and T</td>
<td>250</td>
<td>309</td>
<td>25</td>
</tr>
<tr>
<td>Shape lamps with first number symbol <= 8 and nominal overall length <12"</td>
<td>Lower Lumen Range</td>
<td>Upper Lumen Range</td>
<td>2018-2019 WattsBase</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Decorative, Intermediate Screw Base (G Shape) (‡see exceptions below)</td>
<td>310</td>
<td>749</td>
<td>40</td>
</tr>
<tr>
<td>4G Shape with first numeral less than 12.5 or with diameter >=5"</td>
<td>250</td>
<td>349</td>
<td>25</td>
</tr>
<tr>
<td>5G Shape with first number symbol <= 12.5 and T Shape with first number symbol <= 8 and nominal overall length <12"</td>
<td>70</td>
<td>89</td>
<td>10</td>
</tr>
<tr>
<td>Decorative, Intermediate Screw Base (B, BA, C, CA, DC, and F, and ST)</td>
<td>150</td>
<td>299</td>
<td>25</td>
</tr>
<tr>
<td>Omnidirectional, Candelabra Screw Base Lamps (A, BT, P, PS, S or T) (†see exceptions below)</td>
<td>310</td>
<td>749</td>
<td>40</td>
</tr>
<tr>
<td>S Shape that have a first number symbol <= 12.5 and T Shape with first number symbol <= 8 and nominal overall length <12"</td>
<td>750</td>
<td>1049</td>
<td>60</td>
</tr>
<tr>
<td>Decorative, Candelabra Screw Base (G Shape) (‡see exceptions below)</td>
<td>250</td>
<td>349</td>
<td>25</td>
</tr>
<tr>
<td>4G Shape with first numeral less than 12.5 or with diameter >=5"</td>
<td>350</td>
<td>499</td>
<td>40</td>
</tr>
<tr>
<td>Decorative, Candelabra Screw</td>
<td>70</td>
<td>89</td>
<td>10</td>
</tr>
<tr>
<td>*</td>
<td>90</td>
<td>149</td>
<td>15</td>
</tr>
<tr>
<td>*</td>
<td>150</td>
<td>299</td>
<td>25</td>
</tr>
<tr>
<td>*</td>
<td>350</td>
<td>499</td>
<td>40</td>
</tr>
<tr>
<td>*</td>
<td>750</td>
<td>1049</td>
<td>60</td>
</tr>
<tr>
<td>*</td>
<td>500</td>
<td>574</td>
<td>60</td>
</tr>
<tr>
<td>*</td>
<td>500</td>
<td>574</td>
<td>60</td>
</tr>
<tr>
<td>*</td>
<td>70</td>
<td>89</td>
<td>10</td>
</tr>
<tr>
<td>*</td>
<td>90</td>
<td>149</td>
<td>15</td>
</tr>
<tr>
<td>*</td>
<td>150</td>
<td>299</td>
<td>25</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Base (B, BA, C, CA, DC, and F, and ST)</td>
<td>300</td>
<td>309</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>499</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>699</td>
<td>60</td>
</tr>
<tr>
<td>Directional, Medium Screw Base, w/diameter <=2.25"</td>
<td>400</td>
<td>449</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>499</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>649</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>1199</td>
<td>65</td>
</tr>
<tr>
<td>Directional, Medium Screw Base, R, PAR, ER, BR, BPAR or similar bulb shapes w/ diameter >2.5" (**see exceptions below)</td>
<td>640</td>
<td>739</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>740</td>
<td>849</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>850</td>
<td>1179</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1180</td>
<td>1419</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>1420</td>
<td>1789</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1790</td>
<td>2049</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>2050</td>
<td>2579</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2580</td>
<td>3300</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>3301</td>
<td>3429</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>3430</td>
<td>4270</td>
<td>150</td>
</tr>
<tr>
<td>Directional, Medium Screw Base, R, PAR, ER, BR, BPAR or similar bulb shapes with medium screw bases w/ diameter > 2.26" and ≤ 2.5" (**see exceptions below)</td>
<td>540</td>
<td>629</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>630</td>
<td>719</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>720</td>
<td>999</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>1199</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>1200</td>
<td>1519</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>1520</td>
<td>1729</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>1730</td>
<td>2189</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2190</td>
<td>2899</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>2900</td>
<td>3300</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>3301</td>
<td>3850</td>
<td>150</td>
</tr>
<tr>
<td>**ER30, BR30, BR40, or ER40</td>
<td>400</td>
<td>449</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>499</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>649-1179</td>
<td>50</td>
</tr>
<tr>
<td>**BR30, BR40, or ER40</td>
<td>650</td>
<td>1419</td>
<td>65</td>
</tr>
<tr>
<td>**R20</td>
<td>400</td>
<td>449</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>719</td>
<td>45</td>
</tr>
<tr>
<td>**All reflector lamps below lumen</td>
<td>200</td>
<td>299</td>
<td>20</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Lumen Range</th>
<th>2018-2019 WattsBase</th>
<th>2020+ WattsBase</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Lumen</td>
<td>Upper Lumen</td>
<td>2018-2019 WattsBase</td>
<td>2020+ WattsBase</td>
</tr>
<tr>
<td>300</td>
<td>399-639</td>
<td>30</td>
<td>*</td>
</tr>
<tr>
<td>250</td>
<td>309</td>
<td>25</td>
<td>*</td>
</tr>
<tr>
<td>310</td>
<td>749</td>
<td>40</td>
<td>*</td>
</tr>
<tr>
<td>750</td>
<td>1049</td>
<td>60</td>
<td>*</td>
</tr>
<tr>
<td>1050</td>
<td>1489</td>
<td>75</td>
<td>*</td>
</tr>
<tr>
<td>1490</td>
<td>2600</td>
<td>100</td>
<td>*</td>
</tr>
<tr>
<td>2601</td>
<td>3300</td>
<td>150</td>
<td>*</td>
</tr>
<tr>
<td>3301</td>
<td>3999</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>4000</td>
<td>6000</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

For lamps and fixtures < 3300 lumens, the baseline after 2020 should be calculated as WattsBase = (LumensEE / 45).

Notes

- **WattsEE** = Actual LED lamp watts.
- **HOURS** = Average hours of use per year.
- **ISR** = In Service Rate or percentage of units rebated that are installed and operational
 = 1.00.
- **WHF** = Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.
 = Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I

845 In 2020 the EISA backstop takes effect and the minimum efficacy for all lamps and fixtures becomes 45 lumens/W.

846 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.

Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

WattsExist = Rated wattage of existing in-situ lamp, if unknown set WattsExist equal to WattsBase.

LumensEE = Actual LED lumen output.

Summer Coincident Peak kW Savings Algorithm

Time of Sale:

\[
\Delta kW = \left(\frac{WattsBase - WattsEE}{1000}\right) \times ISR \times WHFd \times CF
\]

Early Replacement:

\[
\Delta kW \text{ for remaining life of existing unit:} = \left(\frac{WattsExist - WattsEE}{1000}\right) \times ISR \times WHFd \times CF
\]

\[
\Delta kW \text{ for remaining measure life (i.e., measure life less the remaining useful life of existing equipment):} = \left(\frac{WattsBase - WattsEE}{1000}\right) \times ISR \times WHFd \times CF
\]

Where:

\[
WHFd = \text{Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.}
\]

\[
= \text{Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.}
\]

\[
CF = \text{Summer Peak Coincidence Factor for measure}
\]

The two equations are provided to show how demand reduction is determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year demand reduction (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.
= See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.

Annual Fossil Fuel Savings Algorithm
Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[\Delta \text{MMBTU} = (-\Delta \text{kWh} / \text{WHFe}) \times 0.70 \times 0.003413 \times 0.23 / 0.75 \]
\[= (-\Delta \text{kWh} / \text{WHFe}) \times 0.00073 \]

Where:
- 0.7 = Aspect ratio. \(^{849}\)
- 0.003413 = Constant to convert kWh to MMBTU.
- 0.23 = Fraction of lighting heat that contributes to space heating. \(^{850}\)
- 0.75 = Assumed heating system efficiency. \(^{851}\)

Annual Water Savings Algorithm
n/a

Incremental Cost

If the implementation strategy allows the collection of actual costs, or an appropriate average, then that should be used. If not, the lifecycle NPV incremental costs for time of sale replacements are provided below. \(^{852}\)

<table>
<thead>
<tr>
<th>Category</th>
<th>Time of Sale Incremental Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>$2.52</td>
</tr>
<tr>
<td>Globe</td>
<td>$3.36</td>
</tr>
<tr>
<td>Reflector</td>
<td>$2.40</td>
</tr>
<tr>
<td>A Lamp</td>
<td>$2.03</td>
</tr>
<tr>
<td>Candelabra</td>
<td>$5.29</td>
</tr>
</tbody>
</table>

\(^{849}\) HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

\(^{850}\) Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

\(^{851}\) Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

\(^{852}\) Cost assumptions are adapted from analysis provided by Apex Analytics LLC in April 2018.
Measure Life

Measure life is the rated life in hours of the actual LED lamp divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 15,000\(^{853}\) hours. However, measure life is not to exceed 15 years\(^{854}\).

Remaining Useful Life

\[
RUL_{\text{hour}} = \text{Remaining Useful Life calculated in hours.} \\
= EUL_{\text{exist}} - (HOURS \times \text{Age})
\]

NOTE:
If \(RUL_{\text{hour}} < 1000\), set \(RUL_{\text{hour}} = 0\).
If \(RUL_{\text{hour}} > \text{HOURS}\), set \(RUL_{\text{hour}} = \text{HOURS}\).

\[
RUL = \text{Remaining Useful Life calculated in years, rounded.} \\
= \frac{RUL_{\text{hour}}}{\text{HOURS}} \text{ (with any fraction rounded)}
\]

Where:

\(EUL_{\text{exist}}\) = Actual expected useful life of in-situ lamp. If useful life is unknown, then reference the table below.

<table>
<thead>
<tr>
<th>Expected Useful Life (Hours)(^{855})</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Omnidirectional, medium screw Base incandescent lamps, including decorative lamps.</td>
<td>1500</td>
</tr>
<tr>
<td>Directional incandescent lamps, including BR, PAR, G, MR, and other lensed and mirrored designs.</td>
<td>1500</td>
</tr>
<tr>
<td>Omnidirectional, medium screw base halogen lamps, including decorative lamps.</td>
<td>3500</td>
</tr>
<tr>
<td>Directional halogen lamps, including BR, PAR, G, MR, and other lensed and mirrored designs.</td>
<td>4000</td>
</tr>
<tr>
<td>All CFL spiral lamps, including omnidirectional, PAR, BR, decorative, and other shapes.</td>
<td>6000</td>
</tr>
</tbody>
</table>

\(^{854}\) Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

\(^{855}\) California DEER’s Remote Ex-Ante Database Interface (READI) v.2.4.7
Expected Useful Life (Hours)855
\begin{tabular}{|l|c|}
\hline
All CFL double (DD), triple (Trpl), and quad style lamps. & 10000 \\
All CFL twin tube (TT) style lamps. & 15000 \\
All circular fluorescent lamps & 12000 \\
\hline
\end{tabular}

\textit{Age} \quad = \textit{Approximate age of existing lamp or time since lamp was last replaced in years. If unknown, assume 50% of EUL\textsubscript{base} remains.}

Example of Remaining Useful Life calculation:

Twenty omnidirectional, medium-screw halogen lamps were installed approximately 15 months ago in a health care conference room and are now being retrofitted with LED lamps.

\[
\text{RUL\textsubscript{hour}} = \text{EUL\textsubscript{exist}} - (\text{HOU} \times \text{Age}) \\
= 3500 - (1201 \times 1.25) \\
= 1,999 \\
\text{RUL\textsubscript{year}} = \frac{\text{RUL\textsubscript{hour}}}{\text{HOU}} \text{ (with any fraction rounded)} \\
= \frac{1999}{1201} \text{ (with any fraction rounded)} \\
= 1.66 \text{ (with any fraction rounded)} \\
= 2
\]

Operation and Maintenance Impacts
To account for the shift in baseline due to the Federal Legislation, the levelized baseline replacement cost over the lifetime of the LED is calculated. The key assumptions used in this calculation are documented below856:

<table>
<thead>
<tr>
<th>Price of Lamps that are EISA 2012-2014 Compliant</th>
<th>Price of Lamps that are EISA 2020 Compliant857</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement Cost Unknown</td>
<td>$1.70</td>
</tr>
<tr>
<td>Replacement Cost, Globe</td>
<td>$1.74</td>
</tr>
<tr>
<td>Replacement Cost, Reflector</td>
<td>$4.27</td>
</tr>
<tr>
<td>Replacement Cost, A Lamp</td>
<td>$1.62</td>
</tr>
</tbody>
</table>

856 Baseline incandescent lamp cost assumptions are adapted from analysis provided by Apex Analytics LLC in April 2018.

857 Different jurisdictions may have different implementation start dates for the 2020 baseline shift.
<table>
<thead>
<tr>
<th>Replacement Cost, Candelabra</th>
<th>Price of Lamps that are EISA 2012-2014 Compliant</th>
<th>Price of Lamps that are EISA 2020 Compliant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component Life (hours)</td>
<td>$1.14</td>
<td>$5.20</td>
</tr>
</tbody>
</table>

$1.14
$5.20

The calculated default net present values of lamp replacements over the measure life for time of sale and replacement applications in the years 2018-2019 and once EISA 2020 is in effect are presented below.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>$18.77</td>
<td>$12.58</td>
<td>$3.14</td>
<td>$4.27</td>
</tr>
<tr>
<td>Globe</td>
<td>$24.71</td>
<td>$18.43</td>
<td>$12.35</td>
<td>$13.05</td>
</tr>
<tr>
<td>Reflector</td>
<td>$36.31</td>
<td>$24.23</td>
<td>$5.74</td>
<td>$7.79</td>
</tr>
<tr>
<td>A Lamp</td>
<td>$23.37</td>
<td>$17.37</td>
<td>$11.44</td>
<td>$12.09</td>
</tr>
<tr>
<td>Candelabra</td>
<td>$19.62</td>
<td>$14.72</td>
<td>$10.13</td>
<td>$10.70</td>
</tr>
</tbody>
</table>

See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%. Analysis assumes that replacements in years 2018-2019 will experience one year of replacements with incandescent baseline components before shifting to a CFL baseline that is compliant with EISA 2020.
LED Four-pin based Lamp – Commercial
Unique Measure Code: CI_LT_TOS_LEDPL_0518, CI_LT_RF_LEDPL_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure describes savings from the purchase and installation of a 4-pin (LED) Lamp in place of a 4-pin CFL lamp.

Definition of Baseline Condition
For time of sale replacement, the baseline is assumed to be a 4-pin CFL lamp. If the in-situ lamp wattage is known, the baseline wattage should be assumed equal to the in-situ lamp wattage.

Definition of Efficient Condition
The high efficiency condition is a DesignLights Consortium\(^{859}\) (DLC) qualified 4-pin LED lamp\(^{860}\).

Annual Energy Savings Algorithm
\[\Delta \text{kWh} = \left(\frac{\text{WattsBase} - \text{WattsEE}}{1000} \right) \times \text{HOURS} \times \text{ISR} \times \text{WHFe} \]

Where:
- \(\text{WattsBase} \) = Actual wattage of in-situ lamp. If unknown find the equivalent baseline wattage based on the LED initial lumen output from the table below.

<table>
<thead>
<tr>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>WattsBase(^{861})</th>
</tr>
</thead>
<tbody>
<tr>
<td>760</td>
<td>934</td>
<td>13</td>
</tr>
<tr>
<td>935</td>
<td>1349</td>
<td>18</td>
</tr>
<tr>
<td>1350</td>
<td>1834</td>
<td>26</td>
</tr>
<tr>
<td>1835</td>
<td>2549</td>
<td>32</td>
</tr>
<tr>
<td>2550</td>
<td>3199</td>
<td>42</td>
</tr>
</tbody>
</table>

\(^{859}\) https://www.designlights.org/
\(^{860}\) DLC qualification is not required for LED lamps below 675 lumens.
\(^{861}\) DOE and NREL TRM template for LED pin-base CFL replacements with input from stakeholders, “Tech to Utilities Draft Template_LED4Pin_20170919.xlsx”
WattsEE = Actual LED lamp rated watts.

HOURS = Average hours of use per year.

= If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D. Otherwise, use site specific annual operating hours information.862

ISR = In Service Rate or percentage of units rebated that are installed and operational

= 1.00. 863

WHFe = Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = ((WattsBase - WattsEE) /1000) \times ISR \times WHFd \times CF \]

Where:

WHFd = Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.

= Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFe = WHFd = 1.0.

CF = Summer Peak Coincidence Factor for measure

862 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.

= See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[
\Delta \text{MMBTU} = (-\Delta \text{kWh} / \text{WHFe}) \times 0.70 \times 0.003413 \times 0.23 / 0.75
\]
\[
= (-\Delta \text{kWh} / \text{WHFe}) \times 0.00073
\]

Where:

- 0.7 = Aspect ratio
- 0.003413 = Constant to convert kWh to MMBTU
- 0.23 = Fraction of lighting heat that contributes to space heating
- 0.75 = Assumed heating system efficiency

Annual Water Savings Algorithm

n/a

Incremental Cost

If the implementation strategy allows the collection of actual costs, or an appropriate average, then that should be used. If not, the lifecycle NPV incremental costs for time of sale replacements are provided below. These values are dependent on the baseline wattage of the CFL lamp.

<table>
<thead>
<tr>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>Time of Sale Incremental Cost$67</th>
</tr>
</thead>
<tbody>
<tr>
<td>760</td>
<td>934</td>
<td>$15</td>
</tr>
<tr>
<td>935</td>
<td>1349</td>
<td>$13</td>
</tr>
</tbody>
</table>

864 HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

865 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

866 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

867 Time of sale incremental cost includes cost of LED lamp and 0.25 hours of labor at $19.91/hour minus the cost of the baseline CFL. Costs were determined by a Navigant review of pricing for available products from multiple online bulb vendors, conducted 3/26/2018.
Lower Lumen Range	Upper Lumen Range	Time of Sale Incremental Cost⁸⁶⁷
1350 | 1834 | $24
1835 | 2549 | $23
2550 | 3199 | $11

Measure Life

Measure life is the rated life in hours of the actual LED lamp divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 50,000⁸⁶⁸ hours. However, measure life is not to exceed 15 years⁸⁶⁹.

Operation and Maintenance Impacts⁸⁷⁰

A baseline condition lamp with a typical 10,000-hour lifetime would need to be replaced several times before an efficient condition lamp with a 50,000-hour lifetime. The default net present value of savings over the measure life from avoided lamp replacements is $7.17.

⁸⁶⁸ Minimum DesignLights Consortium requirement. [<https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/>](https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/)

⁸⁶⁹ Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

⁸⁷⁰ Due to differences in costs and lifetimes of baseline lamps, actual operation and maintenance costs should be estimated on a case-by-case basis. If actual O&M costs are unknown, the calculated default net present value of lamp replacements over the measure life. Cost information for baseline CFL lamps is based on a Navigant review of pricing for available products from multiple online bulb vendors, conducted 3/26/2018. NPV O&M Savings calculated assuming a 5% discount rate and zero labor costs (self-installed replacements); detailed calculation presented in the “Mid Atlantic C&I LED Lighting Analysis.xlsx” workbook.
LED Refrigerated Case Lighting
Unique Measure Code(s): CI_LT_TOS_LEDRCL_0518, CI_LT_RF_LEDRCL_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure relates to the installation of LED luminaries in vertical and horizontal refrigerated display cases replacing T8 or T12HO linear fluorescent lamp technology. Savings characterizations are provided for both coolers and freezers. Specified LED luminaires should meet v2.1 DesignLights Consortium Product Qualification Criteria for either the “Vertical Refrigerated Case Luminaire” or “Horizontal Refrigerated Case Luminaries” category. LED luminaires not only provide the same light output with lower connected wattages, but also produce less waste heat which decreases the cooling load on the refrigeration system and energy needed by the refrigeration compressor. Savings and assumptions are based on a pre linear foot of installed lighting basis.

Definition of Baseline Condition
The baseline equipment is assumed to be T8 or T12HO linear fluorescent lamps.

Definition of Efficient Condition
The efficient equipment is assumed to be DesignLights Consortium qualified LED vertical or horizontal refrigerated case luminaires.

Annual Energy Savings Algorithm
\[\Delta \text{kWh} = \frac{(\text{WattsPerLFBASE} - \text{WattsPerLFE}) \times 1000 \times \text{LF} \times \text{HOURS} \times \text{WHFe}}{1000} \]

Where:
- WattsPerLFBASE = Connected wattage per linear foot of the baseline fixtures; see table below for default values.
- WattsPerLFE = Connected wattage per linear foot of the LED fixtures.
 - Actual installed. If actual installed wattage is unknown, see table below for default values.

Efficient Lamp vs. Baseline Lamp

<table>
<thead>
<tr>
<th>Efficient Lamp</th>
<th>Baseline Lamp</th>
<th>Efficient Fixture Wattage (WattsPerLFEE)</th>
<th>Baseline Fixture Watts (WattsPerLFBASE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Case Lighting System</td>
<td>T8 Case Lighting System</td>
<td>7.6</td>
<td>15.2</td>
</tr>
<tr>
<td>LED Case Lighting System</td>
<td>T12HO Case Lighting System</td>
<td>7.7</td>
<td>18.7</td>
</tr>
</tbody>
</table>

Notes:
- LF = Linear feet of installed LED luminaires.
- HOURS = Actual installed annual operating hours; assume 6,205 operating hours per year if actual operating hours are unknown.\(^{873}\)
- WHFe = Waste heat factor for energy to account for refrigeration savings from efficient lighting. For prescriptive refrigerated lighting measures, the default value is 1.41 for refrigerated cases and 1.52 for freezer cases.\(^{874}\)

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \frac{(WattsPerLFBASE - WattsPerLFEES)}{1000} \times LF \times WHFd \times CF. \]

Where:
- WHFd = Waste heat factor for demand to account for refrigeration savings from efficient lighting. For prescriptive refrigerated lighting measures, the default value is 1.40 for refrigerated cases and 1.51 for freezer cases.\(^{875}\)
- CF = Summer Peak Coincidence Factor for measure

\(^{873}\) Theobald, M. A., Emerging Technologies Program: Application Assessment Report #0608, LED Supermarket Case Lighting Grocery Store, Northern California, Pacific Gas and Electric Company, January 2006. Assumes refrigerated case lighting typically operates 17 hours per day, 365 days per year.

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

<table>
<thead>
<tr>
<th>Per Linear Foot</th>
<th>Time of Sale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$23</td>
</tr>
</tbody>
</table>

Measure Life
Measure life is the rated life in hours of the actual LED lamp divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 50,000 hours. However, measure life is not to exceed 15 years.

Operation and Maintenance Impacts
Due to differences in costs and lifetimes of baseline lamps, actual operation and maintenance costs should be estimated on a case-by-case basis. If actual O&M costs are unknown, the calculated default net present value of lamp replacements (per linear foot) over the measure life is $2.17 for time of sale applications.

879 Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.
880 See “Mid-Atlantic TRM Lighting Adjustments and O&M.xlsx” for calculations. Analysis assumes a discount rate of 5%.
Exterior LED Flood and Spot Luminaires

Unique Measure Code(s): CI_LT_TOS_LEDFLS_0518 and CI_LT_RF_LEDFLS_0518

Effective Date: May 2018
End Date: TBD

Measure Description

This measure relates to the installation of an exterior LED flood or spot luminaire for landscape or architectural illumination applications in place of a halogen incandescent or high-intensity discharge light source. Eligible applications include time of sale and new construction as well as retrofit applications.

Definition of Baseline Condition

The baseline condition is defined as an exterior flood or spot fixture with a high intensity discharge or PAR light-source. Typical baseline technologies include halogen incandescent parabolic aluminized reflector (PAR) lamps and metal halide (MH) luminaires.

Definition of Efficient Condition

The efficient condition is defined as an LED flood or spot luminaire. Eligible luminaires must be listed on the DesignLights Consortium Qualified Products List.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \frac{(\text{WattsBASE} - \text{WattsEE})}{1000} \times \text{HOURS}. \]

Where:

- \(\text{WattsBASE} = \) Actual Connected load of baseline fixture
- \(\text{WattsEE} = \) If the actual baseline fixture wattage is unknown, use the actual LED lumens to find equivalent baseline wattage from the table below.

881 DesignLights Consortium Qualified Products List <https://www.designlights.org/qpl>
882 Efficiency Vermont TRM User Manual No. 2014-85b; baseline are based on analysis of actual Efficiency Vermont installations of LED lighting. Exterior LED flood and spot luminaires are an evolving technology that may replace any number of baseline lamp and fixture types. It is recommended that programs track existing and new lamps and/or luminaire types, wattages, and lumen output in such way that baseline assumptions can be refined for future use.
Bulb Type

<table>
<thead>
<tr>
<th>Bulb Type</th>
<th>Lower Lumen Range</th>
<th>Upper Lumen Range</th>
<th>WattsBase</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR38</td>
<td>500</td>
<td>1000</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>4000</td>
<td>108.7</td>
</tr>
<tr>
<td>Metal Halide</td>
<td>4000</td>
<td>15000</td>
<td>205.0</td>
</tr>
<tr>
<td>Metal Halide</td>
<td>15000</td>
<td>20000</td>
<td>288</td>
</tr>
<tr>
<td>Metal Halide</td>
<td>20000</td>
<td>30000</td>
<td>460</td>
</tr>
</tbody>
</table>

\[\text{WattsEE} = \text{Actual Connected load of the LED luminaire.} \]

\[\text{HOURS} = \text{Average hours of use per year.} \]

\[= \text{If annual operating hours are unknown, assume 3,338}^{884}. \]

\[Otherwise, \text{ use site specific annual operating hours information}.^{885} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \left((\text{WattsBASE} - \text{WattsEE}) / 1000 \right) \times \text{CF}. \]

Where:

\[\text{CF} = \text{Summer Peak Coincidence Factor for measure} \]
\[= 0.^{886} \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

883 Source does not specify an upper lumen range for LED luminaires. Based on a review of manufacturer product catalogs, 15,000 lumens is the approximate initial lumen output of a 175W MH lamp.

884 Efficiency Vermont TRM User Manual No. 2014-85b; based on 5 years of metering on 235 outdoor circuits in New Jersey.

885 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment.

886 It is assumed that efficient outdoor area lighting, when functioning properly, will never result in coincident peak demand savings.
Incremental costs should be determined on a site-specific basis depending on the actual baseline and efficient equipment. The table below shows average NPV lifecycle incremental cost for time of sale and early replacement. If additional detail is needed, a further disaggregation of the IMCs, based on wattage ranges, can be found in the cited workbook.

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Time of Sale / New</th>
<th>Early Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED PAR16</td>
<td>$5</td>
<td>$9</td>
</tr>
<tr>
<td>LED PAR20</td>
<td>$10</td>
<td>$15</td>
</tr>
<tr>
<td>LED PAR30</td>
<td>$26</td>
<td>$30</td>
</tr>
<tr>
<td>LED PAR38</td>
<td>$33</td>
<td>$38</td>
</tr>
</tbody>
</table>

Measure Life

Measure life is the rated life in hours of the actual LED lamp divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 50,000 hours. However, measure life is not to exceed 15 years. Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed. Exterior LED flood and spot luminaires are an evolving technology that may replace any number of baseline lamp and fixture types. It is recommended that programs track existing and new lamps and/or luminaire types, wattages, lumen output, and costs in such way that generalized prescriptive O&M values can be developed for future use.

887 Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using data from California IOU work papers cited in that document. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5548/download?token=pLmJjfvz.

889 Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

890 Exterior LED flood and spot luminaires are an evolving technology that may replace any number of baseline lamp and fixture types. It is recommended that programs track existing and new lamps and/or luminaire types, wattages, lumen output, and costs in such way that generalized prescriptive O&M values can be developed for future use.
Low Wattage Four-Foot Linear Fluorescent Replacement Lamps

Unique Measure Code(s): CI_LT_RF_FLTUBE_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure relates to the replacement of four-foot linear fluorescent lamps with low wattage four-foot linear fluorescent replacement lamps, as offered through the midstream programs.

Measure eligibility is limited to midstream programs.

Definition of Baseline Condition
The baseline condition is defined as an existing four-foot linear fluorescent fixture.

Definition of Efficient Condition
The efficient condition is defined as a four-foot linear fluorescent fixture retrofitted with low wattage four-foot linear fluorescent replacement lamp(s).

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \left(\frac{\text{WattsBASE} - \text{WattsEE}}{1000} \right) \times \text{HOURS} \times \text{ISR} \times \text{WHFe}. \]

Where:

- \(\text{WattsBASE} = 28.2 \) W
- \(\text{WattsEE} = \text{Wattage of actual lamp installed; see table below} \)

Default Lamp Wattage Assumptions

<table>
<thead>
<tr>
<th>Lamp/Ballast System</th>
<th>Per Lamp Wattage (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumed Baseline 32W T8 IS NLO</td>
<td>28.2</td>
</tr>
</tbody>
</table>

891 Lamps assumed to be paired with a “normal ballast factor” ballast; ballast factor = 0.88. Note that this measure, presented on a per lamp basis, assumes no savings for reduced or eliminated ballast energy consumption.

<table>
<thead>
<tr>
<th>28W T8 Premium PRS NLO</th>
<th>24.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>25W T8 Premium PRS NLO</td>
<td>22</td>
</tr>
</tbody>
</table>

HOURS
- Average hours of use per year.
- If annual operating hours are unknown, see table “C&I Interior Lighting Operating Hours by Building Type” in Appendix D.
- Otherwise, use site specific annual operating hours information. 892

ISR
- In Service Rate or percentage of units rebated that get installed.

WHFe
- Waste Heat Factor for Energy to account for cooling and heating impacts from efficient lighting.
- HVAC type is unknown for midstream measures. WHFe = 1.0. 893

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \frac{(WattsBASE - WattsEE)}{1000} * ISR * WHFd * CF. \]

Where:

WHFd
- Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.
- Varies by utility, building type, and HVAC equipment type. If lights are claimed to be interior, assume the space is cooled and see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If lights are placed in exterior spaces, assume WHFe = WHFd = 1.0.

CF
- Summer Peak Coincidence Factor for measure.
- See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.

892 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.

893 HVAC type is unknown for midstream measures. Territory includes both gas heat (WHFe > 1) and electric heat (WHFe < 1). Both heat types participate in the midstream program. An average WHFe of 1.0 is assumed.
Annual Fossil Fuel Savings Algorithm

Note: Negative value denotes increased fossil fuel consumption.

\[
\Delta \text{MMBTU} = (-\Delta \text{kWh} / \text{WHFe}) \times 0.70 \times 0.003413 \times 0.23 / 0.75 \times \text{HTM}.
\]

\[
\Delta \text{MMBTU} = (-\Delta \text{kWh} / \text{WHFe}) \times 0.00073.
\]

Where:

- 0.7 = Aspect ratio.
- 0.003413 = Constant to convert kWh to MMBTU.
- 0.23 = Fraction of lighting heat that contributes to space heating.
- 0.75 = Assumed heating system efficiency.
- HTM = Heat Type Multiplier. If the space is identified as exterior, HTM = 0. If the space is identified as interior, or unknown, HTM = 22.4% = 0.224.

Annual Water Savings Algorithm

n/a

Incremental Cost

Incremental costs associated with linear fluorescent lamp replacement are $2 per lamp.

Measure Life

Measure life is the rated life in hours of the actual LED fixture divided by the average hours of use per year (HOURS), and then rounded to the nearest whole number.

894 HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

895 Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

896 Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

897 Based on all aggregated prescriptive lighting savings tracking data in 2017 in Maryland, of heated interior spaces, with reported interior or exterior data, 22.4% of interior savings were heated by fossil fuels and 77.6% were heated using some type of electricity as the primary fuel.

898 This is the current midstream program buydown for Baltimore Gas and Electric: https://bgesmartenergy.com/business/instant-lighting-discounts (3/9/2018).
If rated life is unknown, then assume 24,000 hours. However, measure life is not to exceed 15 years.

Operation and Maintenance Impacts

Because this measure merely replaces linear fluorescent lamps with other linear fluorescent lamps, there are assumed to be no impacts to existing operation and maintenance.

899 The estimated lifetime for low wattage linear fluorescent lamps is 24,000 hours according to California DEERE’s Remote Ex-Ante Database Interface (READI) v.2.4.7.

900 Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.
LED Four-Foot Linear Replacement Lamps

Unique Measure Code(s): CI_LT_RF_LEDTUBE_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure relates to the replacement of four-foot linear fluorescent lamps with tubular, LED four-foot linear replacement lamps. Depending on the specific LED replacement lamp product, this measure may require changing the electrical wiring, replacing the ballast with an external driver, or altering the existing lamp holders (or “tombstones”) to accommodate the new lamp. Eligible applications are limited to retrofits. LED replacement lamp types are described in the table below:

<table>
<thead>
<tr>
<th>LED Replacement Lamp Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>The Type A lamp is designed with an internal driver that allows the lamp to operate directly from the existing linear fluorescent ballast. Most of these products are designed to work with T12, T8 and T5 ballasts.</td>
</tr>
<tr>
<td>Type B</td>
<td>The Type B lamp operates with an internal driver; however, the driver is powered directly from the main voltage supplied to the existing linear fluorescent fixture.</td>
</tr>
<tr>
<td>Type C</td>
<td>The Type C lamp operates with a remote driver that powers the LED linear lamp, rather than an integrated driver. The Type B lamp involves electrical modification to the existing fixture, but the low-voltage outputs of the driver are connected to the sockets instead of line voltage.</td>
</tr>
</tbody>
</table>

Measure eligibility is limited to “Type A” products that are powered by a new compatible T8 or T5 fluorescent electronic ballast installed at the same time as the LED replacement lamp or “Type C” products with an external LED driver.

All of the EmPOWER Maryland Utilities, no longer provide incentives for linear LED lamps with an internal driver connected directly to the line voltage (commonly referred to as “Type B.”) This is due to the wide variety of installation characteristics of these types of lamps and the inherent safety concerns with these being powered directly from 120 – 277 voltage.

901 Underwriters Laboratories (UL) Standard 1598
Definition of Baseline Condition

The baseline condition is defined as an existing four-foot linear fluorescent fixture.

Definition of Efficient Condition

The efficient condition is defined as an as a four-foot linear fluorescent fixture retrofit with LED four-foot linear replacement lamp(s) and, if required, external driver. Eligible LED replacement lamp fixture wattage must be less than the baseline fixture wattage and listed on the DesignLights Consortium Qualified Products List.\(^{902}\)

Annual Energy Savings Algorithm

\[\Delta kWh = \left(\frac{Watts_{BASE} - Watts_{EE}}{1000} \right) \times HOURS \times ISR \times WHFe. \]

Where:

- \(Watts_{BASE} \): Actual connected load of baseline fixture.
 - If actual baseline wattage is unknown, assume the “Delta Watts” from the table below based on existing lamp/ballast system.

- \(Watts_{EE} \): Actual connected load of the fixture with LED replacement lamps.
 - If actual baseline wattage is unknown, assume the “Delta Watts” from the table below based on existing lamp/ballast system.

Default Baseline and Efficient Lamp Wattage Assumptions\(^{903}\)

<table>
<thead>
<tr>
<th>Baseline Lamp/Ballast System</th>
<th>Baseline Lamp Wattage (WattsBASE)</th>
<th>Replacement Wattage (WattsEE)</th>
<th>Delta Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>32W T8 IS NLO</td>
<td>29.5</td>
<td>23</td>
<td>6.5</td>
</tr>
<tr>
<td>28W T8 Premium PRS NLO</td>
<td>25</td>
<td>19</td>
<td>6</td>
</tr>
<tr>
<td>25W T8 Premium PRS NLO</td>
<td>22</td>
<td>16</td>
<td>6</td>
</tr>
</tbody>
</table>

\(^{902}\) DesignLights Consortium Qualified Products List <http://www.designlights.org/QPL>

\(^{903}\) California Technical Forum. February 2015. T8 LED Tube Lamp Replacement Abstract Revision # 0; Note that the “Delta Watts” values, presented on a per lamp basis, implicitly, and conservatively, assume no savings for reduced or eliminated ballast energy consumption.
Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \left(\frac{(Watts_{BASE} - Watts_{EE})}{1000} \right) \times ISR \times WHFd \times CF. \]

Where:

- **WHFd** = Waste Heat Factor for Demand to account for cooling and heating impacts from efficient lighting.
- **Varies by utility, building type, and HVAC equipment type. If HVAC type is known, see table “Waste Heat Factors for C&I Lighting – Known HVAC Types” in Appendix E. If HVAC type is unknown or the space is unconditioned, assume WHFd = 1.0.

905 Site-specific annual operating hours should be collected following best-practice data collection techniques as appropriate. In most cases, it should not be assumed that the lighting hours of operation are identical to the reported operating hours for the business. Any use of site-specific annual operating hours information will be subject to regulatory approval and potential measurement and verification adjustment. Maintain a consistent approach with the intent of reporting accurate savings; do not use site-specific hours in some cases and Appendix D hours in others to boost savings.

906 Because of LED linear replacement lamps have not been specifically evaluated in the Mid-Atlantic region an initial ISR of 1.0 is assumed. However, costs of these products continue to drop rapidly increasing the probability that participants may purchase additional stock to be installed at a later date. This factor should be considered for future evaluation work.
unknown or the space is unconditioned, assume \(WHFe = WHFd = 1.0 \).

\[CF = \text{Summer Peak Coincidence Factor for measure.} \]
\[= \text{See table “C&I Interior Lighting Coincidence Factors by Building Type” in Appendix D.} \]

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[\Delta \text{MMBTU} = (\Delta \text{kWh} / WHFe) \times 0.70 \times 0.003413 \times 0.23 / 0.75. \]
\[= (\Delta \text{kWh} / WHFe) \times 0.00073. \]

Where:

- 0.7 = Aspect ratio. \(^{907}\)
- 0.003413 = Constant to convert kWh to MMBTU.
- 0.23 = Fraction of lighting heat that contributes to space heating. \(^{908}\)
- 0.75 = Assumed heating system efficiency. \(^{909}\)

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental costs (equipment and labor) LED linear replacement lamps are as follows: \(^{910}\)

Type A: $22.67 per LED replacement lamp.

\(^{907}\) HVAC-Lighting interaction impacts adapted from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions. Typical aspect ratio for perimeter zones. Heating factor applies to perimeter zone heat, therefore it must be adjusted to account for lighting in core zones.

\(^{908}\) Fraction of lighting heat that contributes to space heating. Based on 0.23 factor for Washington DC (from 1993 ASHRAE Journal: Calculating Lighting and HVAC Interactions).

\(^{909}\) Typical heating system efficiency of 75%, consistent with current federal standards for fossil fuel-fired systems.

\(^{910}\) Based on a review of incremental cost estimates from California Technical Forum. February 2015. T8 LED Tube Lamp Replacement Abstract Revision # 0, Efficiency Vermont TRM User Manual No. 2014-85b, and online wholesalers. As this measure is a retrofit-type, incremental costs assume the full cost of replacement of the lamps and (removal of) the ballast(s).
Type C: $22.67 per LED replacement lamp, $15.07 for the external driver.

Measure Life

Measure life is the rated life in hours of the actual LED fixture divided by the *average hours of use per year* (HOURS), and then rounded to the nearest whole number. If rated life is unknown, then assume 50,000\(^{911}\) hours. However, measure life is not to exceed 15 years\(^{912}\).

Operation and Maintenance Impacts

Due to differences in costs and lifetimes of fixture components between the efficient and baseline cases, there are significant operation and maintenance impacts associated with this measure. O&M impacts should be determined on a case-by-case basis.\(^{913}\)

\(^{911}\) The minimum rated lifetime for applicable products on the DesignLights Consortium Qualified Products List - Updated 4/14/2018 <https://www.designlights.org/solid-state-lighting/qualification-requirements/technical-requirements/> is 50,000 hours for linear LED lamps.

\(^{912}\) Even though the rated hours may last longer than 15 years, due to remodeling effects a maximum of 15 years is assumed.

\(^{913}\) Fluorescent LED replacement lamps luminaires are an evolving technology that may replace any number of baseline lamp types. It is recommended that programs track existing and new lamps types, wattages, lumen output, and costs in such way that generalized prescriptive O&M values can be developed for future use.
Heating Ventilation and Air Conditioning (HVAC) End Use

Unitary HVAC Systems

Unique Measure Code(s): CI_HV_TOS_HVACSYS_0518, CI_HV_EREP_HVACSYS_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure documents savings associated with the installation of new heating, ventilating, and air conditioning systems exceeding baseline efficiency criteria in place of an existing system or a new standard efficiency system of the same capacity. This measure covers air conditioners (including unitary air conditioners and packaged terminal AC) and heat pumps (air source and packaged terminal heat pumps). It does not cover ductless mini-split units. This measure applies to time of sale, new construction, and early replacement opportunities.

Definition of Baseline Condition

Time of Sale or New Construction: The baseline condition is a new system meeting minimum efficiency standards as presented in the 2012 International Energy Conservation Code (IECC 2012) and the 2015 International Energy Conservation Code (IECC 2015) (see table “Baseline Efficiencies by System Type and Unit Capacity” below) or federal standards where more stringent than local energy codes. Note that due to federal standards scheduled to take effect on January 1, 2018, baseline requirements for some equipment classes differ over time.

Early Replacement: The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the measure life.

Definition of Efficient Condition
The efficient condition is an HVAC system of the same type as the baseline system exceeding baseline efficiency levels.

Commercial energy code baseline requirements for Washington, D.C. and Delaware are currently consistent with IECC 2012 (Delaware currently uses ASHRAE 90.1-2010, but the HVAC system requirements are consistent with IECC 2012), whereas Maryland’s baseline requirements are consistent with IECC 2015.
Baseline Efficiencies by System Type and Unit Capacity

<table>
<thead>
<tr>
<th>Size Category (Cooling Capacity)</th>
<th>Subcategory</th>
<th>Baseline Condition (IECC 2012 or Federal Standard)</th>
<th>Baseline Condition (IECC 2015 or Federal Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioners, Air Cooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65,000 BTU/h</td>
<td>Split system</td>
<td>13.0 SEER</td>
<td>13.0 SEER</td>
</tr>
<tr>
<td></td>
<td>Single package</td>
<td>14.0 SEER</td>
<td>14.0 SEER</td>
</tr>
<tr>
<td>≥65,000 BTU/h and <135,000 BTU/h</td>
<td>Split system and single package</td>
<td>11.3 EER</td>
<td>11.3 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9 IEER</td>
<td>12.9 IEER</td>
</tr>
<tr>
<td>≥135,000 BTU/h and <240,000 BTU/h</td>
<td>Split system and single package</td>
<td>11.0 EER</td>
<td>11.0 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.4 IEER</td>
<td>12.4 IEER</td>
</tr>
<tr>
<td>≥240,000 BTU/h and <760,000 BTU/h</td>
<td>Split system and single package</td>
<td>10.0 EER</td>
<td>10.0 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.6 IEER</td>
<td>11.6 IEER</td>
</tr>
<tr>
<td>≥760,000 BTU/h</td>
<td>Split system and single package</td>
<td>9.7 EER</td>
<td>9.7 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.8 IEER</td>
<td>11.2 IEER</td>
</tr>
<tr>
<td>Air Conditioners, Water Cooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65,000 BTU/h</td>
<td>Split system and single package</td>
<td>12.1 EER</td>
<td>12.1 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.3 IEER</td>
<td>12.3 IEER</td>
</tr>
<tr>
<td>≥65,000 BTU/h and <135,000 BTU/h</td>
<td>Split system and single package</td>
<td>12.1 EER</td>
<td>12.1 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.3 IEER</td>
<td>13.9 IEER</td>
</tr>
<tr>
<td>≥135,000 BTU/h and <240,000 BTU/h</td>
<td>Split system and single package</td>
<td>12.5 EER</td>
<td>12.5 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.7 IEER</td>
<td>13.9 IEER</td>
</tr>
<tr>
<td>≥240,000 BTU/h and <760,000 BTU/h</td>
<td>Split system and single package</td>
<td>12.4 EER</td>
<td>12.4 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.6 IEER</td>
<td>13.6 IEER</td>
</tr>
<tr>
<td>≥760,000 BTU/h</td>
<td>Split system and single package</td>
<td>12.0 EER</td>
<td>12.2 EER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.4 IEER</td>
<td>13.5 IEER</td>
</tr>
</tbody>
</table>

915 Whichever requires a higher level of baseline efficiency IECC or Federal Standards.

The federal standards do present EER requirements. The baseline requirements in the table are estimated based on the ratio of the EER and IEER values from IECC 2015 for the corresponding equipment category.
<table>
<thead>
<tr>
<th>Size Category (Cooling Capacity)</th>
<th>Subcategory</th>
<th>Baseline Condition (IECC 2012 or Federal Standard)</th>
<th>Baseline Condition (IECC 2015 or Federal Standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Conditioners, Evaporatively Cooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65,000 BTU/h</td>
<td>Split system and single package</td>
<td>12.1 EER 12.3 IEER</td>
<td>12.1 EER 12.3 IEER</td>
</tr>
<tr>
<td>≥65,000 BTU/h and <135,000 BTU/h</td>
<td>Split system and single package</td>
<td>12.1 EER 12.3 IEER</td>
<td>12.1 EER 12.3 IEER</td>
</tr>
<tr>
<td>≥135,000 BTU/h and <240,000 BTU/h</td>
<td>Split system and single package</td>
<td>12.0 EER 12.2 IEER</td>
<td>12.0 EER 12.2 IEER</td>
</tr>
<tr>
<td>≥240,000 BTU/h and <760,000 BTU/h</td>
<td>Split system and single package</td>
<td>11.9 EER 12.1 IEER</td>
<td>11.9 EER 12.1 IEER</td>
</tr>
<tr>
<td>≥760,000 BTU/h</td>
<td>Split system and single package</td>
<td>11.7 EER 11.9 IEER</td>
<td>11.7 EER 11.9 IEER</td>
</tr>
<tr>
<td>Heat Pumps, Air Cooled</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65,000 BTU/h</td>
<td>Split System</td>
<td>14.0 SEER 8.2 HSPF</td>
<td>14.0 SEER 8.2 HSPF</td>
</tr>
<tr>
<td></td>
<td>Single Package</td>
<td>14.0 SEER 8.0 HSPF</td>
<td>14.0 SEER 8.0 HSPF</td>
</tr>
<tr>
<td>≥65,000 BTU/h and <135,000 BTU/h</td>
<td>Split system and single package</td>
<td>11.2 EER 12.2 IEER 3.3 COP</td>
<td>11.2 EER 12.2 IEER 3.3 COP</td>
</tr>
<tr>
<td>≥135,000 BTU/h and <240,000 BTU/h</td>
<td>Split system and single package</td>
<td>10.6 EER 11.6 IEER 3.2 COP</td>
<td>10.6 EER 11.6 IEER 3.2 COP</td>
</tr>
<tr>
<td>≥240,000 BTU/h and <760,000 BTU/h</td>
<td>Split system and single package</td>
<td>9.5 EER 10.6 IEER 3.2 COP</td>
<td>9.5 EER 10.6 IEER 3.2 COP</td>
</tr>
</tbody>
</table>

916 Heating mode efficiencies for heat pumps >=65,000 BTU/h are provided at the 47°F db/43°F wb outdoor air rating condition.
<table>
<thead>
<tr>
<th>Size Category (Cooling Capacity)</th>
<th>Subcategory</th>
<th>Baseline Condition (Federal Standards)(^{917})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packaged Terminal Air Conditioners(^{918,919})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Capacities</td>
<td>New Construction (Standard Size)(^{920})</td>
<td>14.0 – (0.300 * Cap/1000) EER</td>
</tr>
<tr>
<td>All Capacities</td>
<td>Replacement (Non-Standard Size)</td>
<td>10.9 – (0.213 * Cap/1000) EER</td>
</tr>
<tr>
<td>Packaged Terminal Heat Pumps(^{921,922})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Capacities</td>
<td>New Construction (Standard Size)</td>
<td>14.0 – (0.300 * Cap/1000) EER 3.7 – (0.052 * Cap/1000) COP</td>
</tr>
<tr>
<td>All Capacities</td>
<td>Replacement (Non-Standard Size)</td>
<td>10.8 – (0.213 * Cap/1000) EER 2.9 – (0.026 * Cap/1000) COP</td>
</tr>
</tbody>
</table>

Notes: 1) All cooling mode efficiency ratings in the table above assume electric resistance heating section type (or none). Subtract 0.2 from each baseline efficiency rating value if unit has heating section other than electric resistance.

Annual Energy Savings Algorithm

Air Conditioners (includes air-, water-, and evaporatively-cooled unitary ACs and PTACs)

\(^{918}\) Replacement unit shall be factory labeled as follows: “MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS.” Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width.

\(^{919}\) “Cap” = The rated cooling capacity of the project in BTU/h. If the unit’s capacity is less than 7,000 BTU/h, use 7,000 BTU/h in the calculation. If the unit’s capacity is greater than 15,000 BTU/h, use 15,000 BTU/h in the calculations.

\(^{920}\) Federal standard as presented for this equipment type is effective January 1, 2017. This standard is consistent with IECC 2015 and ASHRAE 90.1-2013 requirements and is recommended as a consistent regional baseline.

\(^{921}\) Replacement unit shall be factory labeled as follows: “MANUFACTURED FOR REPLACEMENT APPLICATIONS ONLY: NOT TO BE INSTALLED IN NEW CONSTRUCTION PROJECTS.” Replacement efficiencies apply only to units with existing sleeves less than 16 inches (406 mm) in height and less than 42 inches (1067 mm) in width.

\(^{922}\) “Cap” = The rated cooling capacity of the project in BTU/h. If the unit’s capacity is less than 7,000 BTU/h, use 7,000 BTU/h in the calculation. If the unit’s capacity is greater than 15,000 BTU/h, use 15,000 BTU/h in the calculations.
Time of Sale:

For units with capacities less than 65,000 BTU/h, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) as follows:

\[
\Delta \text{kWh} = (BTU/h_{COOL}/1000) \times ((1/\text{SEERBASE}) - (1/\text{SEERE})) \times HOURS_{COOL}.
\]

For units with capacities greater than or equal to 65,000 BTU/h, the energy savings are calculated using the Integrated Energy Efficiency Ratio (EER) as follows:

\[
\Delta \text{kWh} = (BTU/h_{COOL}/1000) \times ((1/\text{IEERBASE}) - (1/\text{IEERE})) \times HOURS_{COOL}.
\]

For all PTACs, the energy savings are calculated using the Energy Efficiency Ratio (EER) as follows:

\[
\Delta \text{kWh} = (BTU/h_{COOL}/1000) \times ((1/\text{EERBASE}) - (1/\text{EERE})) \times HOURS_{COOL}.
\]

Early Replacement\(^{923}\):

For units with capacities less than 65,000 BTU/h, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) as follows:

\[
\Delta \text{kWh for remaining life of existing unit:} \\
= (BTU/h_{COOL}/1000) \times ((1/\text{SEEREXIST}) - (1/\text{SEERE})) \times HOURS_{COOL}.
\]

\[
\Delta \text{kWh for remaining measure life (i.e., measure life less the remaining life of existing unit):} \\
= (BTU/h_{COOL}/1000) \times ((1/\text{SEERBASE}) - (1/\text{SEERE})) \times HOURS_{COOL}.
\]

\(^{923}\) The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.
For units with capacities greater than or equal to 65,000 BTU/h, the energy savings are calculated using the Integrated Energy Efficiency Ratio (IEER) as follows:

\[
\Delta k\text{Wh for remaining life of existing unit:} = (BTU/h_{COOL}/1000) \times ((1/IEER\text{EXIST}) - (1/IEER\text{EE})) \times \text{HOURS}_{\text{COOL}}.
\]

\[
\Delta k\text{Wh for remaining measure life (i.e., measure life less the remaining life of existing unit):} = (BTU/h_{COOL}/1000) \times ((1/IEER\text{BASE}) - (1/IEER\text{EE})) \times \text{HOURS}_{\text{COOL}}.
\]

For all PTACs, the energy savings are calculated using the Energy Efficiency Ratio (EER) as follows:

\[
\Delta k\text{Wh for remaining life of existing unit:} = (BTU/h_{COOL}/1000) \times ((1/EER\text{EXIST}) - (1/EER\text{EE})) \times \text{HOURS}_{\text{COOL}}.
\]

\[
\Delta k\text{Wh for remaining measure life (i.e., measure life less the remaining life of existing unit):} = (BTU/h_{COOL}/1000) \times ((1/EER\text{BASE}) - (1/EER\text{EE})) \times \text{HOURS}_{\text{COOL}}.
\]

Heat Pumps (includes air-source HPs and PTHPs)

Time of Sale:

For units with capacities less than 65,000 BTU/h (except PTHPs), the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) and Heating Season Performance (HSPF) as follows:

\[
\Delta k\text{Wh} = \Delta k\text{Wh}_{\text{COOL}} + \Delta k\text{Wh}_{\text{HEAT}}.
\]

\[
\Delta k\text{Wh}_{\text{COOL}} = (BTU/h_{COOL}/1000) \times ((1/SEER\text{BASE}) - (1/SEER\text{EE})) \times \text{HOURS}_{\text{COOL}}.
\]

\[
\Delta k\text{Wh}_{\text{HEAT}} = (BTU/h_{\text{HEAT}}/1000) \times ((1/HSPF\text{BASE}) - (1/HSPF\text{EE})) \times \text{HOURS}_{\text{HEAT}}.
\]

For units with capacities greater than or equal to 65,000 BTU/h (except PTHPs), the energy savings are calculated using the Integrated Energy Efficiency Ratio (IEER) and Coefficient of Performance (COP) as follows:

\[
\Delta k\text{Wh} = \Delta k\text{Wh}_{\text{COOL}} + \Delta k\text{Wh}_{\text{HEAT}}.
\]

\[
\Delta k\text{Wh}_{\text{COOL}} = (BTU/h_{COOL}/1000) \times ((1/IEER\text{BASE}) - (1/IEER\text{EE})) \times \text{HOURS}_{\text{COOL}}.
\]

\[
\Delta k\text{Wh}_{\text{HEAT}} = (BTU/h_{\text{HEAT}}/3412) \times ((1/COP\text{BASE}) - (1/COP\text{EE})) \times \text{HOURS}_{\text{HEAT}}.
\]
For all PTHPs, the energy savings are calculated using the Energy Efficiency Ratio (EER) and Coefficient of Performance (COP) as follows:

\[\Delta \text{kWh} = \Delta \text{kWh}_{\text{COOL}} + \Delta \text{kWh}_{\text{HEAT}}. \]
\[\Delta \text{kWh}_{\text{COOL}} = (\text{BTU}/h_{\text{COOL}}/1000) \times ((1/\text{EER}_{\text{BASE}}) - (1/\text{EER}_{\text{EE}})) \times \text{HOURS}_{\text{COOL}}. \]
\[\Delta \text{kWh}_{\text{HEAT}} = (\text{BTU}/h_{\text{HEAT}}/3412) \times ((1/\text{COP}_{\text{BASE}}) - (1/\text{COP}_{\text{EE}})) \times \text{HOURS}_{\text{HEAT}}. \]

Early Replacement\(^924\):

For units with capacities less than 65,000 BTU/h, the energy savings are calculated using the Seasonal Energy Efficiency Ratio (SEER) and Heating Season Performance (HSPF) as follows:

\[\Delta \text{kWh for remaining life of existing unit:} \]
\[\Delta \text{kWh} = \Delta \text{kWh}_{\text{COOL}} + \Delta \text{kWh}_{\text{HEAT}}. \]
\[\Delta \text{kWh}_{\text{COOL}} = (\text{BTU}/h_{\text{COOL}}/1000) \times ((1/\text{SEER}_{\text{EXIST}}) - (1/\text{SEER}_{\text{EE}})) \times \text{HOURS}_{\text{COOL}}. \]
\[\Delta \text{kWh}_{\text{HEAT}} = (\text{BTU}/h_{\text{HEAT}}/1000) \times ((1/\text{HSPF}_{\text{EXIST}}) - (1/\text{HSPF}_{\text{EE}})) \times \text{HOURS}_{\text{HEAT}}. \]

\[\Delta \text{kWh for remaining measure life (i.e., measure life less the remaining life of existing unit):} \]
\[\Delta \text{kWh} = \Delta \text{kWh}_{\text{COOL}} + \Delta \text{kWh}_{\text{HEAT}}. \]
\[\Delta \text{kWh}_{\text{COOL}} = (\text{BTU}/h_{\text{COOL}}/1000) \times ((1/\text{SEER}_{\text{BASE}}) - (1/\text{SEER}_{\text{EE}})) \times \text{HOURS}_{\text{COOL}}. \]
\[\Delta \text{kWh}_{\text{HEAT}} = (\text{BTU}/h_{\text{HEAT}}/1000) \times ((1/\text{HSPF}_{\text{BASE}}) - (1/\text{HSPF}_{\text{EE}})) \times \text{HOURS}_{\text{HEAT}}. \]

For units with capacities greater than or equal to 65,000 BTU/h, the energy savings are calculated using the Integrated Energy Efficiency Ratio (EER) and Coefficient of Performance (COP) as follows:

\(^924\) The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.
ΔkWh for remaining life of existing unit:

\[\Delta kWh = \Delta kW_{\text{COOL}} + \Delta kW_{\text{HEAT}}. \]
\[\Delta kW_{\text{COOL}} = \left(\frac{\text{BTU/h}_{\text{COOL}}}{1000} \right) \times \left(\frac{1}{\text{IEER}_{\text{EXIST}}} - \frac{1}{\text{IEER}_{\text{EE}}} \right) \times \text{HOURS}_{\text{COOL}}. \]
\[\Delta kW_{\text{HEAT}} = \left(\frac{\text{BTU/h}_{\text{HEAT}}}{3412} \right) \times \left(\frac{1}{\text{COP}_{\text{EXIST}}} - \frac{1}{\text{COP}_{\text{EE}}} \right) \times \text{HOURS}_{\text{HEAT}}. \]

ΔkWh for remaining measure life (i.e., measure life less the remaining life of existing unit):

\[\Delta kWh = \Delta kW_{\text{COOL}} + \Delta kW_{\text{HEAT}}. \]
\[\Delta kW_{\text{COOL}} = \left(\frac{\text{BTU/h}_{\text{COOL}}}{1000} \right) \times \left(\frac{1}{\text{IEER}_{\text{BASE}}} - \frac{1}{\text{IEER}_{\text{EE}}} \right) \times \text{HOURS}_{\text{COOL}}. \]
\[\Delta kW_{\text{HEAT}} = \left(\frac{\text{BTU/h}_{\text{HEAT}}}{3412} \right) \times \left(\frac{1}{\text{COP}_{\text{BASE}}} - \frac{1}{\text{COP}_{\text{EE}}} \right) \times \text{HOURS}_{\text{HEAT}}. \]

For all PTHPs, the energy savings are calculated using the Energy Efficiency Ratio (EER) and Coefficient of Performance (COP) as follows:

\[\Delta kWh = \Delta kW_{\text{COOL}} + \Delta kW_{\text{HEAT}}. \]
\[\Delta kW_{\text{COOL}} = \left(\frac{\text{BTU/h}_{\text{COOL}}}{1000} \right) \times \left(\frac{1}{\text{EER}_{\text{EXIST}}} - \frac{1}{\text{EER}_{\text{EE}}} \right) \times \text{HOURS}_{\text{COOL}}. \]
\[\Delta kW_{\text{HEAT}} = \left(\frac{\text{BTU/h}_{\text{HEAT}}}{3412} \right) \times \left(\frac{1}{\text{COP}_{\text{EXIST}}} - \frac{1}{\text{COP}_{\text{EE}}} \right) \times \text{HOURS}_{\text{HEAT}}. \]

Where:
\[\Delta kW_{\text{COOL}} = \text{Annual cooling season electricity savings (kWh).} \]
\[\Delta kW_{\text{HEAT}} = \text{Annual heating season electricity savings (kWh).} \]
\[\text{BTU/h}_{\text{COOL}} = \text{Cooling capacity of equipment in BTU/hour.} \]
\[\text{Actual Installed.} \]
\(\text{BTU/h}_{\text{HEAT}} \) = Heating capacity of equipment in BTU/hour.

\(\text{SEER}_{\text{EE}} \) = SEER of efficient unit.

\(\text{SEER}_{\text{BASE}} \) = SEER of baseline unit.

\(\text{SEER}_{\text{EXIST}} \) = SEER of the existing unit.

\(\text{HSPF}_{\text{EE}} \) = HSPF of efficient unit.

\(\text{HSPF}_{\text{BASE}} \) = HSPF of baseline unit.

\(\text{HSPF}_{\text{EXIST}} \) = HSPF of the existing unit.

\(\text{IEER}_{\text{EE}} \) = IEER of efficient unit.

\(\text{IEER}_{\text{BASE}} \) = IEER of baseline unit.

\(\text{IEER}_{\text{EXIST}} \) = IEER of the existing unit.

\(\text{COP}_{\text{EE}} \) = COP of efficient unit.

\(\text{COP}_{\text{BASE}} \) = COP of baseline unit.

\(\text{COP}_{\text{EXIST}} \) = COP of the existing unit.

\(\text{EER}_{\text{BASE}} \) = EER of baseline unit.

\(\text{EER}_{\text{EE}} \) = EER of efficient unit.

\(\text{EER}_{\text{EXIST}} \) = EER of existing unit.

3412 = Conversion factor (BTU/kWh).
$HOURS_{COOL} = \text{Full load cooling hours.}$

$= \text{If actual full load cooling hours are unknown, see table “Full Load Cooling Hours by Location and Building Type” in Appendix F. Otherwise, use site specific full load cooling hours information.}$

$HOURS_{HEAT} = \text{Full load heating hours.}$

$= \text{If actual full load heating hours are unknown, see table “Full Load Heating Hours by Location and Building Type” in Appendix F. Otherwise, use site specific full load heating hours information.}$

Summer Coincident Peak kW Savings Algorithm

Time of Sale:

$$\Delta kW = \left(\frac{\text{BTU/h}_{COOL}}{1000}\right) \times \left(\frac{1}{\text{EERBASE}} - \frac{1}{\text{EEREE}}\right) \times \text{CF}.$$

Early Replacement:

$$\Delta kW \text{ for remaining life of existing unit:}$$

$$= \left(\frac{\text{BTU/h}_{COOL}}{1000}\right) \times \left(\frac{1}{\text{EEREXIST}} - \frac{1}{\text{EEREE}}\right) \times \text{CF}.$$

$$\Delta kW \text{ for remaining measure life (i.e., measure life less the remaining life of existing unit):}$$

$$= \left(\frac{\text{BTU/h}_{COOL}}{1000}\right) \times \left(\frac{1}{\text{EERBASE}} - \frac{1}{\text{EEREE}}\right) \times \text{CF}.$$

Where:

$CF_{\text{PJM}} = \text{PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm) valued at peak weather}$

$= 0.360 \text{ for units } < 135 \text{ kBTU/h and } 0.567 \text{ for units } \geq 135 \text{ kBTU/h.}$

$CF_{\text{UPeak}} = \text{Utility Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).}$

925 From U.S. DOE. 2013. *The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures:* “Although the EFLH is calculated with reference to a peak kW derived from EER, it is acceptable to use these EFLH with SEER or IEER. Some inconsistency occurs in using full-load hours with efficiency ratings measured at part loading, but errors in calculation are thought to be small relative to the expense and complexity of developing hours-of-use estimates precisely consistent with SEER and IEER.”

= 0.588 for units <135 kBTU/h and 0.874 for units ≥135 kBTU/h.927

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
The lifecycle NPV incremental costs for time of sale and early replacement units are provided in the tables below.928 Prescribed values vary depending on the current building code, the date of installation, and whether the baseline condition is time of sale or early replacement.929

928 Default incremental costs assumptions for water- and evaporatively-cooled ACs, PTACs, and PTHPs will be addressed in subsequent versions of the TRM, when available. In the interim, incremental costs for these equipment types should be determined on a site-specific basis.

929 Costs are from Itron, \textit{Mid-Atlantic TRM Version 7.0 Incremental Costs Update}, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, \textit{2010 - 2012 WO017 Ex Ante Measure Cost Study}, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA
Time of Sale Air-Cooled Unitary Air Conditioners Incremental Costs ($/ton)\(^{930}\)

<table>
<thead>
<tr>
<th>Size Category (Cooling Capacity)</th>
<th>Subcategory</th>
<th>Incremental Cost ($/ton)</th>
<th>Installation Before January 1, 2018</th>
<th>Installations on or After January 1, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline Condition (IECC 2012)</td>
<td>Baseline Condition (IECC 2015)</td>
</tr>
<tr>
<td><65,000 BTU/h</td>
<td>Split system</td>
<td>$179</td>
<td>$179</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single package</td>
<td>$243</td>
<td>$156</td>
<td></td>
</tr>
<tr>
<td>≥65,000 BTU/h and <135,000 BTU/h</td>
<td>Split system and single package</td>
<td>$287</td>
<td>$287</td>
<td>$395</td>
</tr>
<tr>
<td>≥135,000 BTU/h and <240,000 BTU/h</td>
<td>Split system and single package</td>
<td>$191</td>
<td>$191</td>
<td>$151</td>
</tr>
<tr>
<td>≥240,000 BTU/h and <760,000 BTU/h</td>
<td>Split system and single package</td>
<td>$43</td>
<td>$43</td>
<td>$50</td>
</tr>
<tr>
<td>≥760,000 BTU/h</td>
<td>Split system and single package</td>
<td>$40</td>
<td>$40</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

Time of Sale Air-Source Unitary Heat Pumps Incremental Costs ($/ton)\(^{931}\)

<table>
<thead>
<tr>
<th>Size Category (Cooling Capacity)</th>
<th>Subcategory</th>
<th>Incremental Cost ($/ton)</th>
<th>Before January 1, 2018</th>
<th>On or After January 1, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Baseline Condition (IECC 2012)</td>
<td>Baseline Condition (IECC 2015)</td>
<td>Baseline Condition (Federal Standards)</td>
</tr>
<tr>
<td><65,000 BTU/h</td>
<td>Split System</td>
<td>$236</td>
<td>$118</td>
<td>Unchanged</td>
</tr>
<tr>
<td></td>
<td>Single Package</td>
<td>$184</td>
<td>$92</td>
<td>Unchanged</td>
</tr>
<tr>
<td>≥65,000 BTU/h and <135,000 BTU/h</td>
<td>Split system and single package</td>
<td>$25</td>
<td>$25</td>
<td>$0</td>
</tr>
<tr>
<td>≥135,000 BTU/h and <240,000 BTU/h</td>
<td>Split system and single package</td>
<td>$13</td>
<td>$13</td>
<td>$0</td>
</tr>
<tr>
<td>≥240,000 BTU/h and <760,000 BTU/h</td>
<td>Split system and single package</td>
<td>$30</td>
<td>$30</td>
<td>$0</td>
</tr>
</tbody>
</table>

\(^{931}\) Incremental costs in this table assume CEE Tier 2 efficiency as presented in Consortium for Energy Efficiency. 2016. CEE Commercial Unitary Air-Conditioning and Heat Pumps Specification, Effective January 12, 2016, except for equipment >=135,000 BTU/h. For equipment >=135,000 BTU/h, CEE Tier 1 efficiencies are assumed because Tier 2 requirements are not defined for these categories. Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 WO017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA
Early Replacement Air-Cooled Unitary Air Conditioners Costs and Deferred Replacement Credits ($/ton)\(^{932}\)

<table>
<thead>
<tr>
<th>Size Category (Cooling Capacity)</th>
<th>Subcategory</th>
<th>Full Cost of Efficient Equipment ($/ton)</th>
<th>Early Replacement ($/ton) (On or After Jan, 1 2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td><65,000 BTU/h</td>
<td>Split system</td>
<td>$1,840</td>
<td>$872</td>
</tr>
<tr>
<td></td>
<td>Single package</td>
<td>$1,057</td>
<td>$740</td>
</tr>
<tr>
<td>(\geq65,000) BTU/h and (<135,000) BTU/h</td>
<td>Split system and single package</td>
<td>$1,914</td>
<td>$1,175</td>
</tr>
<tr>
<td>(\geq135,000) BTU/h and (<240,000) BTU/h</td>
<td>Split system and single package</td>
<td>$1,443</td>
<td>$1,586</td>
</tr>
<tr>
<td>(\geq240,000) BTU/h and (<760,000) BTU/h</td>
<td>Split system and single package</td>
<td>$1,253</td>
<td>$1,596</td>
</tr>
<tr>
<td>(\geq760,000) BTU/h</td>
<td>Split system and single package</td>
<td>$1,271</td>
<td>$5,54</td>
</tr>
</tbody>
</table>

Air-Source Unitary Heat Pumps Early Retirement Costs and Deferred Replacement Credits ($/ton)933

<table>
<thead>
<tr>
<th>Size Category (Cooling Capacity)</th>
<th>Subcategory</th>
<th>Full Cost of Efficient Equipment ($/ton)</th>
<th>Early Replacement ($/ton) (On or After Jan,1 2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td><65,000 BTU/h</td>
<td>Split System</td>
<td>$1,523</td>
<td>$704</td>
</tr>
<tr>
<td></td>
<td>Single Package</td>
<td>$1,208</td>
<td>$557</td>
</tr>
<tr>
<td>≥65,000 BTU/h and <135,000 BTU/h</td>
<td>Split system and single package</td>
<td>$1,628</td>
<td>$584</td>
</tr>
<tr>
<td>≥135,000 BTU/h and <240,000 BTU/h</td>
<td>Split system and single package</td>
<td>$1,431</td>
<td>$588</td>
</tr>
<tr>
<td>≥240,000 BTU/h and <760,000 BTU/h</td>
<td>Split system and single package</td>
<td>$1,339</td>
<td>$556</td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 15 years.934

Operation and Maintenance Impacts

n/a

933 Full costs of efficient equipment in this table assume CEE Tier 2 efficiency as presented in Consortium for Energy Efficiency. 2016. CEE Commercial Unitary Air-Conditioning and Heat Pumps Specification, Effective January 12, 2016, except for equipment >=135,000 BTU/h. For equipment >=135,000 BTU/h, CEE Tier 1 efficiencies are assumed because Tier 2 requirements are not defined for these categories. Full costs for new baseline equipment assume efficiencies for “On or After January 1, 2018” presented in table “Baseline Efficiencies by System Type and Unit Capacity” above. Costs are from Itron, \textit{Mid-Atlantic TRM Version 7.0 Incremental Costs Update}, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, \textit{2010 - 2012 WO017 Ex Ante Measure Cost Study}, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA

Ductless Mini-Split Heat Pump (DMSHP)

Unique Measure Code(s): CI_HV_TOS_DMSHP_0615, CI_HV_EREP_DMSHP_0615

Effective Date: June 2015

End Date: TBD

Measure Description

This measure relates to the installation of new ENERGY STAR rated ductless “mini-split” heat pump(s) (DMSHP). A ductless mini-split heat pump is a type of heat pump with an outdoor condensing unit connected via refrigerant line to one or more indoor evaporator coils. Ductless mini-split heat pumps deliver cooling at the same or higher efficiency as standard central AC units, but can also deliver heat. Further, since the units do not require ductwork, they avoid duct losses.

Definition of Baseline Condition

This measure assumes installation in a small commercial space.

Time of Sale or New Construction: Since the efficient unit is unducted, it is assumed that the baseline equipment will also be unducted. In such cases, or if the baseline condition for an early replacement is unknown, it is assumed that the baseline equipment is a window AC unit with a gas hot water boiler feeding hot water baseboards. The assumed baseline efficiency is that of equipment minimally compliant federal efficiency standards.

Early Replacement: The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the measure life. If the space is currently uncooled, it is assumed that the building owner would have installed cooling by other means and should therefore be treated as a lost opportunity measure with a window AC baseline.

Definition of Efficient Condition

The efficient equipment is assumed to be an ENERGY STAR qualified ductless mini-split heat pump, with a minimum 15 SEER, 12.0 EER, and 8.5 HSPF. If the rated efficiency of the actual unit is higher than the ENERGY STAR minimum requirements, the actual efficiency ratings should be used in the calculation.

935 To enable improvements to this measure characterization in the future, the existing equipment types should be tracked by the program to ensure that this measure characterizes the appropriate baseline conditions.
Baseline and Efficient Levels by Unit Capacity

If the measure is a retrofit, the actual efficiencies of the baseline heating and cooling equipment should be used. If it is a market opportunity, the baseline efficiency should be selected from the tables below.

Baseline Window AC Efficiency936

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Capacity (BTU/h)</th>
<th>Federal Standard with louvered sides (CEER)</th>
<th>Federal Standard without louvered sides (CEER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Reverse Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 8,000</td>
<td>11.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>8,000 to 10,999</td>
<td>10.9</td>
<td>9.6</td>
<td></td>
</tr>
<tr>
<td>11,000 to 13,999</td>
<td>10.9</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>14,000 to 19,999</td>
<td>10.7</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>20,000 to 24,999</td>
<td>9.4</td>
<td>9.4</td>
<td></td>
</tr>
<tr>
<td>With Reverse Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><14,000</td>
<td>9.8</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>14,000 to 19,999</td>
<td>9.8</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>>=20,000</td>
<td>9.3</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>Casement-Only</td>
<td>All</td>
<td></td>
<td>9.5</td>
</tr>
<tr>
<td>Casement-Slider</td>
<td>All</td>
<td></td>
<td>10.4</td>
</tr>
</tbody>
</table>

Baseline Central AC Efficiency

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Capacity (BTU/h)</th>
<th>SEER</th>
<th>EER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split System Air Conditioners937</td>
<td>All</td>
<td>13</td>
<td>11.2</td>
</tr>
<tr>
<td>Packaged Air Conditioners938</td>
<td>All</td>
<td>14</td>
<td>11.8</td>
</tr>
<tr>
<td>Packaged Air Source Heat Pumps939</td>
<td>All</td>
<td>14</td>
<td>11.8</td>
</tr>
</tbody>
</table>

Baseline Heating System Efficiency

936 Federal standards.
937 Federal Standard as of January 1, 2015.
http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/75
938 Ibid.
939 Ibid.
Equipment Type

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Efficiency Metric</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Boiler</td>
<td>AFUE</td>
<td>82%</td>
</tr>
<tr>
<td>Air Source Heat Pump – Split System</td>
<td>HSPF</td>
<td>8.2</td>
</tr>
<tr>
<td>Air Source Heat Pump - Packaged</td>
<td>HSPF</td>
<td>8.0</td>
</tr>
<tr>
<td>Electric Resistance</td>
<td>HSPF</td>
<td>3.41</td>
</tr>
</tbody>
</table>

Annual Energy Savings Algorithm

\[
\Delta \text{kWh}_{\text{total}} = \Delta \text{kWh}_{\text{cool}} + \Delta \text{kWh}_{\text{heat}}.
\]

\[
\Delta \text{kWh}_{\text{cool}} = \text{CCAP} \times \left(\frac{1}{\text{SEER}_{\text{base}}} - \frac{1}{\text{SEER}_{\text{ee}}} \right) \times \text{EFLH}_{\text{cool}}.
\]

\[
\Delta \text{kWh}_{\text{heat}} = \text{HCAP} \times \left(\text{ELECHEAT}/\text{HSPF}_{\text{base}} - \frac{1}{\text{HSPF}_{\text{ee}}} \right) \times \text{EFLH}_{\text{heat}}.
\]

Where:

- \(\text{CCAP} \) = Cooling capacity of DMSHP unit, in kBTU/hr.
- \(\text{SEER}_{\text{base}} \) = SEER of baseline unit. If unknown, use 9.8\(^{944}\).
- \(\text{SEER}_{\text{ee}} \) = SEER of actual DMSHP. If unknown, use ENERGYSTAR minimum of 15.
- \(\text{EFLH}_{\text{cool}} \) = Full load hours for cooling equipment. See table below for default values.
- \(\text{HCAP} \) = Heating capacity of DMSHP unit, in kBTU/hr.
- \(\text{ELECHEAT} \) = 1 if the baseline is electric heat, 0 otherwise. If unknown, assume the baseline is a gas boiler, so \(\text{ELECHEAT} = 0 \).
- \(\text{HSPF}_{\text{base}} \) = HSPF of baseline equipment. See table above\(^{945}\).
- \(\text{HSPF}_{\text{ee}} \) = HSPF of actual DMSHP. If unknown, 8.5.
- \(\text{EFLH}_{\text{heat}} \) = Full load hours for heating equipment. See table below for default values.

\(^{940}\) Federal Standards for gas boilers

\(^{941}\) Federal standards for air source heat pumps

\(^{942}\) Electric heat has a COP of 1.0. Converted into HSPF units this is approximately 3.41.

\(^{943}\) This will be negative if the baseline has non-electric heat. This is because some electricity from the DMSHP is now assumed to be used for space heating. There is a corresponding savings in fossil fuel heat.

\(^{944}\) Federal standard for typical window AC sizes with louvered sides.

\(^{945}\) If unknown, assume the baseline is a gas furnace, with no electrical savings
<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>937</td>
<td>922</td>
<td>945</td>
<td>861</td>
<td>1,103</td>
<td>909</td>
<td>1,143</td>
</tr>
<tr>
<td>Education - Community College</td>
<td>713</td>
<td>701</td>
<td>718</td>
<td>655</td>
<td>839</td>
<td>691</td>
<td>869</td>
</tr>
<tr>
<td>Education - Primary School</td>
<td>293</td>
<td>288</td>
<td>295</td>
<td>269</td>
<td>344</td>
<td>284</td>
<td>357</td>
</tr>
<tr>
<td>Education - Relocatable Classroom</td>
<td>348</td>
<td>342</td>
<td>351</td>
<td>319</td>
<td>409</td>
<td>337</td>
<td>424</td>
</tr>
<tr>
<td>Education - Secondary School</td>
<td>337</td>
<td>331</td>
<td>340</td>
<td>309</td>
<td>396</td>
<td>327</td>
<td>411</td>
</tr>
<tr>
<td>Education - University</td>
<td>787</td>
<td>774</td>
<td>793</td>
<td>723</td>
<td>926</td>
<td>763</td>
<td>960</td>
</tr>
<tr>
<td>Grocery</td>
<td>672</td>
<td>662</td>
<td>678</td>
<td>618</td>
<td>791</td>
<td>652</td>
<td>820</td>
</tr>
<tr>
<td>Health/Medical - Hospital</td>
<td>1,213</td>
<td>1,194</td>
<td>1,223</td>
<td>1,114</td>
<td>1,427</td>
<td>1,176</td>
<td>1,480</td>
</tr>
<tr>
<td>Health/Medical - Nursing Home</td>
<td>645</td>
<td>634</td>
<td>650</td>
<td>592</td>
<td>758</td>
<td>625</td>
<td>786</td>
</tr>
<tr>
<td>Lodging - Hotel</td>
<td>1,816</td>
<td>1,787</td>
<td>1,831</td>
<td>1,668</td>
<td>2,137</td>
<td>1,760</td>
<td>2,215</td>
</tr>
<tr>
<td>Manufacturing – Bio Tech/High Tech</td>
<td>867</td>
<td>853</td>
<td>874</td>
<td>796</td>
<td>1,020</td>
<td>840</td>
<td>1,057</td>
</tr>
<tr>
<td>Manufacturing – 1 Shift/Light Industrial</td>
<td>456</td>
<td>449</td>
<td>460</td>
<td>419</td>
<td>537</td>
<td>442</td>
<td>557</td>
</tr>
<tr>
<td>Multi-Family (Common Areas)</td>
<td>1,509</td>
<td>1,485</td>
<td>1,521</td>
<td>1,386</td>
<td>1,776</td>
<td>1,463</td>
<td>1,841</td>
</tr>
<tr>
<td>Office - Large</td>
<td>727</td>
<td>716</td>
<td>733</td>
<td>668</td>
<td>856</td>
<td>705</td>
<td>887</td>
</tr>
<tr>
<td>Office - Small</td>
<td>629</td>
<td>619</td>
<td>634</td>
<td>577</td>
<td>740</td>
<td>609</td>
<td>767</td>
</tr>
<tr>
<td>Restaurant - Fast-Food</td>
<td>724</td>
<td>712</td>
<td>730</td>
<td>665</td>
<td>851</td>
<td>701</td>
<td>883</td>
</tr>
<tr>
<td>Restaurant - Sit-Down</td>
<td>762</td>
<td>750</td>
<td>768</td>
<td>700</td>
<td>897</td>
<td>739</td>
<td>930</td>
</tr>
<tr>
<td>Retail - Multistory Large</td>
<td>880</td>
<td>866</td>
<td>887</td>
<td>808</td>
<td>1,035</td>
<td>853</td>
<td>1,074</td>
</tr>
<tr>
<td>Retail - Single-Story Large</td>
<td>904</td>
<td>890</td>
<td>911</td>
<td>830</td>
<td>1,064</td>
<td>876</td>
<td>1,103</td>
</tr>
<tr>
<td>Retail - Small</td>
<td>915</td>
<td>901</td>
<td>923</td>
<td>840</td>
<td>1,077</td>
<td>887</td>
<td>1,116</td>
</tr>
<tr>
<td>Storage - Conditioned</td>
<td>243</td>
<td>239</td>
<td>245</td>
<td>223</td>
<td>286</td>
<td>235</td>
<td>296</td>
</tr>
<tr>
<td>Warehouse - Refrigerated</td>
<td>3,886</td>
<td>3,824</td>
<td>3,917</td>
<td>3,569</td>
<td>4,572</td>
<td>3,767</td>
<td>4,740</td>
</tr>
</tbody>
</table>

Full Load Heating Hours by Location and Building Type (HOURS\textsubscript{HEAT})947

<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>1,114</td>
<td>1,150</td>
<td>1,114</td>
<td>1,168</td>
<td>1,064</td>
<td>1,079</td>
<td>1,040</td>
</tr>
<tr>
<td>Education - Community College</td>
<td>713</td>
<td>736</td>
<td>713</td>
<td>747</td>
<td>681</td>
<td>691</td>
<td>666</td>
</tr>
<tr>
<td>Education - Primary School</td>
<td>668</td>
<td>689</td>
<td>668</td>
<td>700</td>
<td>638</td>
<td>647</td>
<td>623</td>
</tr>
<tr>
<td>Education - Relocatable Classroom</td>
<td>647</td>
<td>668</td>
<td>647</td>
<td>679</td>
<td>618</td>
<td>627</td>
<td>604</td>
</tr>
<tr>
<td>Education - Secondary School</td>
<td>719</td>
<td>742</td>
<td>719</td>
<td>754</td>
<td>687</td>
<td>697</td>
<td>671</td>
</tr>
<tr>
<td>Education - University</td>
<td>530</td>
<td>546</td>
<td>530</td>
<td>555</td>
<td>506</td>
<td>513</td>
<td>494</td>
</tr>
<tr>
<td>Grocery</td>
<td>984</td>
<td>1,015</td>
<td>984</td>
<td>1,031</td>
<td>939</td>
<td>953</td>
<td>918</td>
</tr>
<tr>
<td>Health/Medical - Hospital</td>
<td>214</td>
<td>221</td>
<td>214</td>
<td>224</td>
<td>204</td>
<td>207</td>
<td>200</td>
</tr>
<tr>
<td>Health/Medical - Nursing Home</td>
<td>932</td>
<td>962</td>
<td>932</td>
<td>977</td>
<td>890</td>
<td>903</td>
<td>870</td>
</tr>
<tr>
<td>Lodging - Hotel</td>
<td>2,242</td>
<td>2,313</td>
<td>2,242</td>
<td>2,350</td>
<td>2,140</td>
<td>2,172</td>
<td>2,092</td>
</tr>
<tr>
<td>Manufacturing – Bio Tech/High Tech</td>
<td>146</td>
<td>151</td>
<td>146</td>
<td>153</td>
<td>139</td>
<td>141</td>
<td>136</td>
</tr>
<tr>
<td>Manufacturing – 1 Shift/Light Industrial</td>
<td>585</td>
<td>603</td>
<td>585</td>
<td>613</td>
<td>558</td>
<td>567</td>
<td>546</td>
</tr>
<tr>
<td>Multi-Family (Common Areas)</td>
<td>256</td>
<td>264</td>
<td>256</td>
<td>268</td>
<td>244</td>
<td>248</td>
<td>239</td>
</tr>
<tr>
<td>Office - Large</td>
<td>221</td>
<td>228</td>
<td>221</td>
<td>231</td>
<td>211</td>
<td>214</td>
<td>206</td>
</tr>
<tr>
<td>Office - Small</td>
<td>440</td>
<td>454</td>
<td>440</td>
<td>461</td>
<td>420</td>
<td>426</td>
<td>411</td>
</tr>
<tr>
<td>Restaurant - Fast-Food</td>
<td>1,226</td>
<td>1,265</td>
<td>1,226</td>
<td>1,285</td>
<td>1,170</td>
<td>1,188</td>
<td>1,144</td>
</tr>
<tr>
<td>Restaurant - Sit-Down</td>
<td>1,131</td>
<td>1,167</td>
<td>1,131</td>
<td>1,185</td>
<td>1,079</td>
<td>1,096</td>
<td>1,055</td>
</tr>
<tr>
<td>Retail - Multistory Large</td>
<td>591</td>
<td>609</td>
<td>591</td>
<td>619</td>
<td>564</td>
<td>572</td>
<td>551</td>
</tr>
<tr>
<td>Retail - Single-Story Large</td>
<td>739</td>
<td>762</td>
<td>739</td>
<td>774</td>
<td>705</td>
<td>716</td>
<td>689</td>
</tr>
<tr>
<td>Retail - Small</td>
<td>622</td>
<td>642</td>
<td>623</td>
<td>652</td>
<td>594</td>
<td>603</td>
<td>581</td>
</tr>
<tr>
<td>Storage - Conditioned</td>
<td>854</td>
<td>881</td>
<td>854</td>
<td>895</td>
<td>815</td>
<td>828</td>
<td>797</td>
</tr>
<tr>
<td>Warehouse - Refrigerated</td>
<td>342</td>
<td>353</td>
<td>343</td>
<td>359</td>
<td>327</td>
<td>332</td>
<td>320</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = CCAP \times (1/EER_{\text{base}} - 1/EER_{\text{ee}}) \times CF. \]

Where:

\[EER_{\text{base}} = \text{EER of baseline unit. If unknown, use } 9.8^{948}. \]
\[EER_{\text{ee}} = \text{EER of actual DMSHP. If unknown, use ENERGY STAR minimum of 12.0.} \]
\[CF_{\text{PJM}} = \text{PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm) valued at peak weather.} \]

\[= 0.360 \text{ for units } < 135 \text{ kBTU/h and } 0.567 \text{ for units } \geq 135 \text{ kBTU/h.} \]

\[CF_{\text{SSP}} = \text{Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).} \]

\[= 0.588 \text{ for units } < 135 \text{ kBTU/h and } 0.874 \text{ for units } \geq 135 \text{ kBTU/h.} \]

Annual Fossil Fuel Savings Algorithm

Note: Only applies if retrofit space is heated with fossil fuels. Negative value denotes increased fossil fuel consumption.

\[\Delta \text{MMBTU} = \text{HCAP x EFLH}_{\text{heat}} / \text{AFUE} / 1,000 \]

Where:

\[EFLH_{\text{heat}} = \text{Full load hours for heating equipment. See table above.} \]
\[\text{AFUE} = \text{AFUE of baseline equipment. If unknown use } 82\%. \]

Incremental Cost

The full installed cost of the ductless mini-split system is shown below.\(^{952}\)

<table>
<thead>
<tr>
<th>Capacity (kBTU/h)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13 SEER</td>
</tr>
<tr>
<td>9</td>
<td>$2,733</td>
</tr>
<tr>
<td>12</td>
<td>$2,803</td>
</tr>
<tr>
<td>18</td>
<td>$3,016</td>
</tr>
</tbody>
</table>

\(^{948}\) Federal standard for typical window AC sizes with louvered sides.

\(^{949}\) C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, “Report Revision Memo,” KEMA, August 2011

\(^{952}\) Federal standard for gas boilers.

\(^{951}\) Navigant, Inc. Incremental Cost Study Phase 2. January 16, 2013. Table 16.
The full installed cost of the baseline equipment is shown below.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window AC</td>
<td>$170/unit</td>
</tr>
<tr>
<td>Gas furnace</td>
<td>$1,606/unit</td>
</tr>
<tr>
<td>Electric Baseboard</td>
<td>$0</td>
</tr>
</tbody>
</table>

If the measure is a time of sale or new construction project, subtract the costs of the baseline heating and cooling equipment from the appropriate cost of the DSMHP, as shown in the first table above. If the measure is an early replacement, use the full installed cost of the DMSHP as the incremental cost. For the purposes of cost-effectiveness screening, there can also be a deferred cost credit given at the end of the existing equipment’s remaining life to account for when the customer would have had to purchase new equipment if they had not performed the early replacement.

Measure Life

The measure life for a DSMHP is 18 years.957

Operation and Maintenance Impacts

n/a

955 If existing case is electric resistance heat, assume project replaces existing functional baseboard.

956 A cost of $0 for electric baseboard heat is assumed as it is likely that existing equipment would still be operable through the life of the early replacement measure.

Variable Frequency Drive (VFD) for HVAC

Unique Measure Code(s): CI_MO_RF_VFDRIVE_0518
Effective Date: May 2018
End Date: TBD

Measure Description
This measure defines savings associated with installing a variable frequency drive on a motor of 200 hp or less for the following HVAC applications: supply fans, return fans, exhaust fans, chilled water pumps, and heating hot water pumps. The fan or pump speed will be controlled to maintain the desired system pressure. The application must have a load that varies and proper controls (i.e., Two-way valves, VAV boxes) must be installed. Pump VFDs should be analyzed using a custom approach wherever possible given the variability of the energy and demand saving factors. Non-HVAC VFDs should be evaluated using a custom approach, and this VFD for HVAC measure is not applicable to non-HVAC applications.

Definition of Baseline Condition
The baseline condition is a motor, 200 hp or less, without a VFD control.

Definition of Efficient Condition
The efficient condition is a motor, 200 hp or less, with a VFD control.

Annual Energy Savings Algorithm958

HVAC Fan Applications

\[\Delta kW h = \Delta kW h_{\text{FAN}} * (1 + I E_{\text{ENERGY}}) \]

\[\Delta kW h_{\text{FAN}} = kW h_{\text{BASE}} - kW h_{\text{RETO}} \]

\[kW h_{\text{BASE}} = \left(0.746 * HP * \frac{LF}{\eta_{\text{MOTOR}}} \right) * RHRS_{\text{BASE}} * \sum_{0\%}^{100\%} (\%FF * PLR_{\text{BASE}}) \]

\[kWh_{RET} = \left(0.746 \times HP \times \frac{LF}{\eta_{MOTOR}} \right) \times RHRS_{BASE} \times \sum_{0\%}^{100\%} \left(\%FF \times PLR_{RET} \right) \]

Where:

\(\Delta kWh_{FAN} \) = Fan-only annual energy savings.

\(IE_{ENERGY} \) = HVAC interactive effects factor for energy

\(\Delta kWh_{FAN} \) = Baseline annual energy consumption (kWh/yr).

\(\Delta kWh_{RETRO} \) = Retrofit annual energy consumption (kWh/yr).

0.746 = Conversion factor for hp to kWh.

\(HP \) = Nominal horsepower of controlled motor.

\(LF \) = Load Factor; Motor Load at Fan Design CFM.

\(\eta_{MOTOR} \) = Installed nominal/nameplate motor efficiency.

\(RHRS_{BASE} \) = Annual operating hours for fan motor based on building type.

\(\%FF \) = Percentage of run-time spent within a given flow fraction range.

Default Fan Duty Cycle

<table>
<thead>
<tr>
<th>Flow Fraction (% of design cfm)</th>
<th>Percent of Time at Flow Fraction (%FF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% to 10%</td>
<td>0.0%</td>
</tr>
<tr>
<td>10% to 20%</td>
<td>1.0%</td>
</tr>
<tr>
<td>20% to 30%</td>
<td>5.5%</td>
</tr>
<tr>
<td>30% to 40%</td>
<td>15.5%</td>
</tr>
<tr>
<td>40% to 50%</td>
<td>22.0%</td>
</tr>
<tr>
<td>50% to 60%</td>
<td>25.0%</td>
</tr>
</tbody>
</table>

959 Del Balso, R., and K. Monsef, 2013 notes that the default HVAC interactive effects factor presented in the paper, 15.7%, “should not be used for actual program implementation, but such a factor should be developed and used based on a more complete set of energy modeling results for a given jurisdiction.” A value of zero should be assumed, essentially omitting interactive effects, until a jurisdiction-specific analysis can be performed.
Part Load Ratios by Control and Fan Type and Flow Fraction (PLR)

<table>
<thead>
<tr>
<th>Control Type</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>60%</th>
<th>70%</th>
<th>80%</th>
<th>90%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Control or Bypass Damper</td>
<td>1.00</td>
</tr>
<tr>
<td>Discharge Dampers</td>
<td>0.46</td>
<td>0.55</td>
<td>0.63</td>
<td>0.70</td>
<td>0.77</td>
<td>0.83</td>
<td>0.88</td>
<td>0.93</td>
<td>0.97</td>
<td>1.00</td>
</tr>
<tr>
<td>Outlet Damper, BI & Airfoil Fans</td>
<td>0.53</td>
<td>0.53</td>
<td>0.57</td>
<td>0.64</td>
<td>0.72</td>
<td>0.80</td>
<td>0.89</td>
<td>0.96</td>
<td>1.02</td>
<td>1.05</td>
</tr>
<tr>
<td>Inlet Damper Box</td>
<td>0.56</td>
<td>0.60</td>
<td>0.62</td>
<td>0.64</td>
<td>0.66</td>
<td>0.69</td>
<td>0.74</td>
<td>0.81</td>
<td>0.92</td>
<td>1.07</td>
</tr>
<tr>
<td>Inlet Guide Vane, BI & Airfoil Fans</td>
<td>0.53</td>
<td>0.56</td>
<td>0.57</td>
<td>0.59</td>
<td>0.60</td>
<td>0.62</td>
<td>0.67</td>
<td>0.74</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>Inlet Vane Dampers</td>
<td>0.38</td>
<td>0.40</td>
<td>0.42</td>
<td>0.44</td>
<td>0.48</td>
<td>0.53</td>
<td>0.60</td>
<td>0.70</td>
<td>0.83</td>
<td>0.99</td>
</tr>
<tr>
<td>Outlet Damper, FC Fans</td>
<td>0.22</td>
<td>0.26</td>
<td>0.30</td>
<td>0.37</td>
<td>0.45</td>
<td>0.54</td>
<td>0.65</td>
<td>0.77</td>
<td>0.91</td>
<td>1.06</td>
</tr>
<tr>
<td>Eddy Current Drives</td>
<td>0.17</td>
<td>0.20</td>
<td>0.25</td>
<td>0.32</td>
<td>0.41</td>
<td>0.51</td>
<td>0.63</td>
<td>0.76</td>
<td>0.90</td>
<td>1.04</td>
</tr>
<tr>
<td>Inlet Guide Vane, FC Fans</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.26</td>
<td>0.31</td>
<td>0.39</td>
<td>0.49</td>
<td>0.63</td>
<td>0.81</td>
<td>1.04</td>
</tr>
<tr>
<td>VFD with duct static pressure controls</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
<td>0.15</td>
<td>0.20</td>
<td>0.29</td>
<td>0.41</td>
<td>0.57</td>
<td>0.76</td>
<td>1.01</td>
</tr>
<tr>
<td>VFD with low/no duct static pressure (<1" w.g.)</td>
<td>0.05</td>
<td>0.06</td>
<td>0.09</td>
<td>0.12</td>
<td>0.18</td>
<td>0.27</td>
<td>0.39</td>
<td>0.55</td>
<td>0.75</td>
<td>1.00</td>
</tr>
</tbody>
</table>

PLR\textsubscript{BASE} = Part load ratio for a given flow fraction range based on the baseline flow control type.

PLR\textsubscript{RETRO} = Part load ratio for a given flow fraction range based on the retrofit flow control type.
HVAC Pump Applications

\[\Delta \text{kWh} = \left(\frac{(HP \times 0.746 \times LF)}{\eta_{\text{MOTOR}}} \right) \times \text{RHRS}_{\text{BASE}} \times \text{ESF} \]

Where:
- \(HP \) = Nominal horsepower of controlled motor. = Actual.
- 0.746 = Conversion factor for hp to kWh.
- \(LF \) = Load Factor; Motor Load at Pump Design flow rate. = If actual load factor is unknown, assume 65%.
- \(\eta_{\text{MOTOR}} \) = Installed nominal/nameplate motor efficiency. = Actual efficiency.
- \(\text{RHRS}_{\text{BASE}} \) = Annual operating hours for pump motor based on building type. = If actual hours are unknown, assume defaults in VFD Operating Hours by Application and Building Type table below.
- \(\text{ESF} \) = Energy Savings Factor (see table “Energy and Demand Savings Factors” below).

Summer Coincident Peak kW Savings Algorithm

HVAC Fan Applications

\[\Delta \text{kW} = \Delta \text{kW}_{\text{FAN}} \times (1 + IE_{\text{DEMAND}}). \]
\[\Delta \text{kW}_{\text{FAN}} = \Delta \text{kW}_{\text{BASE}} - \Delta \text{kW}_{\text{RETRO}}. \]
\[\Delta \text{kW}_{\text{BASE}} = (0.746 \times HP \times LF / \eta_{\text{MOTOR}}) \times \text{PLR}_{\text{BASE, PEAK}}. \]
\[\Delta \text{kW}_{\text{RETRO}} = (0.746 \times HP \times LF / \eta_{\text{MOTOR}}) \times \text{PLR}_{\text{RETRO, PEAK}}. \]

Where:
- \(\Delta \text{kW}_{\text{FAN}} \) = Fan-only annual demand savings (kW).
- \(IE_{\text{DEMAND}} \) = HVAC interactive effects factor for demand. = If unknown, assume 0%.\(^\text{960}\)
- \(\Delta \text{kW}_{\text{FAN}} \) = Baseline summer coincident peak demand (kW).
- \(\Delta \text{kW}_{\text{RETRO}} \) = Retrofit summer coincident peak demand (kW).

\(^{960}\) Del Balso, R., and K. Monsef, 2013 notes that the default HVAC interactive effects factor presented in the paper, 15.7%, “should not be used for actual program implementation, but such a factor should be developed and used based on a more complete set of energy modeling results for a given jurisdiction.” A value of zero should be assumed, essentially omitting interactive effects, until a jurisdiction-specific analysis can be performed.
PLR_{BASE, PEAK} = PLR for the average flow fraction during summer peak period for baseline flow control type (default average flow fraction during peak period = 100%).

PLR_{RETRO, PEAK} = PLR for the average flow fraction during summer peak period for retrofit flow control type (default average flow fraction during peak period = 100%).

HVAC Pump Applications

\[
\Delta kW = \left(\frac{(HP \times 0.746 \times LF)}{\eta_{MOTOR}} \right) \times DSF \times CF.
\]

where:

- **DSF** = Demand Savings Factor (see table “Energy and Demand Savings Factors” below).
- **CF** = Summer Peak Coincidence Factor for measure = 0.55.

VFD Operating Hours by Application and Building Type (RHRS_{BASE})

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Fan Motor Hours</th>
<th>Chilled Water Pumps</th>
<th>Heating Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Related</td>
<td>4,056</td>
<td>1,878</td>
<td>5,376</td>
</tr>
<tr>
<td>Bakery</td>
<td>2,854</td>
<td>1,445</td>
<td>5,376</td>
</tr>
<tr>
<td>Banks, Financial Centers</td>
<td>3,748</td>
<td>1,767</td>
<td>5,376</td>
</tr>
<tr>
<td>Church</td>
<td>1,955</td>
<td>1,121</td>
<td>5,376</td>
</tr>
<tr>
<td>College – Cafeteria</td>
<td>6,376</td>
<td>2,713</td>
<td>5,376</td>
</tr>
<tr>
<td>College - Classes/Administrative</td>
<td>2,586</td>
<td>1,348</td>
<td>5,376</td>
</tr>
<tr>
<td>College - Dormitory</td>
<td>3,066</td>
<td>1,521</td>
<td>5,376</td>
</tr>
<tr>
<td>Commercial Condos</td>
<td>4,055</td>
<td>1,877</td>
<td>5,376</td>
</tr>
<tr>
<td>Convenience Stores</td>
<td>6,376</td>
<td>2,713</td>
<td>5,376</td>
</tr>
<tr>
<td>Convention Center</td>
<td>1,954</td>
<td>1,121</td>
<td>5,376</td>
</tr>
<tr>
<td>Court House</td>
<td>3,748</td>
<td>1,767</td>
<td>5,376</td>
</tr>
<tr>
<td>Dining: Bar Lounge/Leisure</td>
<td>4,182</td>
<td>1,923</td>
<td>5,376</td>
</tr>
<tr>
<td>Dining: Cafeteria / Fast Food</td>
<td>6,456</td>
<td>2,742</td>
<td>5,376</td>
</tr>
<tr>
<td>Dining: Family</td>
<td>4,182</td>
<td>1,923</td>
<td>5,376</td>
</tr>
<tr>
<td>Entertainment</td>
<td>1,952</td>
<td>1,120</td>
<td>5,376</td>
</tr>
</tbody>
</table>

961 UI and CL&P Program Saving Documentation for 2009 Program Year, Table 1.1.1; HVAC - Variable Frequency Drives - Pumps.

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Fan Motor Hours</th>
<th>Chilled Water Pumps</th>
<th>Heating Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise Center</td>
<td>5,836</td>
<td>2,518</td>
<td>5,376</td>
</tr>
<tr>
<td>Fast Food Restaurants</td>
<td>6,376</td>
<td>2,713</td>
<td>5,376</td>
</tr>
<tr>
<td>Fire Station (Unmanned)</td>
<td>1,953</td>
<td>1,121</td>
<td>5,376</td>
</tr>
<tr>
<td>Food Stores</td>
<td>4,055</td>
<td>1,877</td>
<td>5,376</td>
</tr>
<tr>
<td>Gymnasium</td>
<td>2,586</td>
<td>1,348</td>
<td>5,376</td>
</tr>
<tr>
<td>Hospitals</td>
<td>7,674</td>
<td>3,180</td>
<td>8,760*</td>
</tr>
<tr>
<td>Hospitals / Health Care</td>
<td>7,666</td>
<td>3,177</td>
<td>8,760*</td>
</tr>
<tr>
<td>Industrial - 1 Shift</td>
<td>2,857</td>
<td>1,446</td>
<td>5,376</td>
</tr>
<tr>
<td>Industrial - 2 Shift</td>
<td>4,730</td>
<td>2,120</td>
<td>5,376</td>
</tr>
<tr>
<td>Industrial - 3 Shift</td>
<td>6,631</td>
<td>2,805</td>
<td>5,376</td>
</tr>
<tr>
<td>Laundromats</td>
<td>4,056</td>
<td>1,878</td>
<td>5,376</td>
</tr>
<tr>
<td>Library</td>
<td>3,748</td>
<td>1,767</td>
<td>5,376</td>
</tr>
<tr>
<td>Light Manufacturers</td>
<td>2,857</td>
<td>1,446</td>
<td>5,376</td>
</tr>
<tr>
<td>Lodging (Hotels/Motels)</td>
<td>3,064</td>
<td>1,521</td>
<td>5,942*</td>
</tr>
<tr>
<td>Mall Concourse</td>
<td>4,833</td>
<td>2,157</td>
<td>5,376</td>
</tr>
<tr>
<td>Manufacturing Facility</td>
<td>2,857</td>
<td>1,446</td>
<td>5,376</td>
</tr>
<tr>
<td>Medical Offices</td>
<td>3,748</td>
<td>1,767</td>
<td>5,376</td>
</tr>
<tr>
<td>Motion Picture Theatre</td>
<td>1,954</td>
<td>1,121</td>
<td>5,376</td>
</tr>
<tr>
<td>Multi-Family (Common Areas)</td>
<td>7,665</td>
<td>3,177</td>
<td>5,376</td>
</tr>
<tr>
<td>Museum</td>
<td>3,748</td>
<td>1,767</td>
<td>5,376</td>
</tr>
<tr>
<td>Nursing Homes</td>
<td>5,840</td>
<td>2,520</td>
<td>5,428*</td>
</tr>
<tr>
<td>Office (General Office Types)</td>
<td>3,748</td>
<td>1,767</td>
<td>3,038*</td>
</tr>
<tr>
<td>Office/Retail</td>
<td>3,748</td>
<td>1,767</td>
<td>3,038*</td>
</tr>
<tr>
<td>Parking Garages & Lots</td>
<td>4,368</td>
<td>1,990</td>
<td>5,376</td>
</tr>
<tr>
<td>Penitentiary</td>
<td>5,477</td>
<td>2,389</td>
<td>5,376</td>
</tr>
<tr>
<td>Performing Arts Theatre</td>
<td>2,586</td>
<td>1,348</td>
<td>5,376</td>
</tr>
<tr>
<td>Police / Fire Stations (24 Hr)</td>
<td>7,665</td>
<td>3,177</td>
<td>5,376</td>
</tr>
<tr>
<td>Post Office</td>
<td>3,748</td>
<td>1,767</td>
<td>5,376</td>
</tr>
<tr>
<td>Pump Stations</td>
<td>1,949</td>
<td>1,119</td>
<td>5,376</td>
</tr>
<tr>
<td>Refrigerated Warehouse</td>
<td>2,602</td>
<td>1,354</td>
<td>0</td>
</tr>
<tr>
<td>Religious Building</td>
<td>1,955</td>
<td>1,121</td>
<td>5,376</td>
</tr>
<tr>
<td>Residential (Except Nursing Homes)</td>
<td>3,066</td>
<td>1,521</td>
<td>5,376</td>
</tr>
<tr>
<td>Restaurants</td>
<td>4,182</td>
<td>1,923</td>
<td>5,376</td>
</tr>
<tr>
<td>Retail</td>
<td>4,057</td>
<td>1,878</td>
<td>2,344*</td>
</tr>
<tr>
<td>School / University</td>
<td>2,187</td>
<td>1,205</td>
<td>4,038*</td>
</tr>
<tr>
<td>Schools (Jr./Sr. High)</td>
<td>2,187</td>
<td>1,205</td>
<td>3,229*</td>
</tr>
<tr>
<td>Schools (Preschool/Elementary)</td>
<td>2,187</td>
<td>1,205</td>
<td>3,229*</td>
</tr>
<tr>
<td>Schools (Technical/Vocational)</td>
<td>2,187</td>
<td>1,205</td>
<td>3,229*</td>
</tr>
<tr>
<td>Small Services</td>
<td>3,750</td>
<td>1,768</td>
<td>5,376</td>
</tr>
<tr>
<td>Sports Arena</td>
<td>1,954</td>
<td>1,121</td>
<td>5,376</td>
</tr>
</tbody>
</table>
Facility Type

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Fan Motor Hours</th>
<th>Chilled Water Pumps</th>
<th>Heating Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town Hall</td>
<td>3,748</td>
<td>1,767</td>
<td>5,376</td>
</tr>
<tr>
<td>Transportation</td>
<td>6,456</td>
<td>2,742</td>
<td>5,376</td>
</tr>
<tr>
<td>Warehouse (Not Refrigerated)</td>
<td>2,602</td>
<td>1,354</td>
<td>5,376</td>
</tr>
<tr>
<td>Waste Water Treatment Plant</td>
<td>6,631</td>
<td>2,805</td>
<td>5,376</td>
</tr>
<tr>
<td>Workshop</td>
<td>3,750</td>
<td>1,768</td>
<td>5,376</td>
</tr>
</tbody>
</table>

Energy and Demand Savings Factors

<table>
<thead>
<tr>
<th>HVAC Pump VFD Savings Factors</th>
<th>ESF</th>
<th>DSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilled Water Pump</td>
<td>0.633</td>
<td>0.460</td>
</tr>
<tr>
<td>Hot Water Pump</td>
<td>0.652</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

963 United Illuminating Company and Connecticut Light & Power Company. 2012. Connecticut Program Savings Document - 8th Edition for 2013 Program Year. Orange, CT; energy and demand savings constants were derived using a temperature bin spreadsheet and typical heating, cooling, and fan load profiles. Note, these values have been adjusted from the source data for remove the embedded load factor.
Incremental Cost

The incremental cost for this retrofit measure varies by controlled motor horsepower and whether it has bypass capability. The lifecycle NPV incremental costs for air cooled units are provided in the tables below.\(^{964}\)

<table>
<thead>
<tr>
<th>Rated Motor Horsepower (HP)</th>
<th>Total Installed Costs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With Bypass</td>
<td>No Bypass</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$2,178</td>
<td>$1,811</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>$2,261</td>
<td>$1,894</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$2,344</td>
<td>$1,977</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$2,426</td>
<td>$2,059</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>$2,581</td>
<td>$2,215</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>$2,737</td>
<td>$2,370</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$4,030</td>
<td>$3,008</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>$4,432</td>
<td>$3,410</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>$4,833</td>
<td>$3,811</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>$5,235</td>
<td>$4,213</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>$6,038</td>
<td>$5,016</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>$6,842</td>
<td>$5,820</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>$8,071</td>
<td>$7,049</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>$9,043</td>
<td>$8,021</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>$10,663</td>
<td>$9,641</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>$17,143</td>
<td>$16,121</td>
<td></td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 15 years for HVAC applications.\(^{965}\)

Operation and Maintenance Impacts

n/a

\(^{964}\) Costs are from Itron, *Mid-Atlantic TRM Version 7.0 Incremental Costs Update*, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, *2010 - 2012 WO017 Ex Ante Measure Cost Study*, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA.

Electric Chillers

Unique Measure Code: CI_HV_TOS_ELCHIL_0615, CI_HV_EREP_ELCHIL_0615
Effective Date: June 2015
End Date: TBD

Measure Description
This measure relates to the installation of a new high-efficiency electric water chilling package in place of an existing chiller or a new standard efficiency chiller of the same capacity. This measure applies to time of sale, new construction, and early replacement opportunities.

Definition of Baseline Condition

Time of Sale or New Construction: For Washington, D.C. and Delaware, the baseline condition is a standard efficiency water chilling package equal to the requirements presented in the International Energy Conservation Code 2012 (IECC 2012), Table C403.2.3(7). For Maryland, the baseline condition is a standard efficiency water chilling package equal to the requirements presented in the International Energy Conservation Code 2015 (IECC 2015), Table C403.2.3(7).

Early Replacement: The baseline condition for the Early Replacement measure is the efficiency of the existing equipment for the assumed remaining useful life of the unit, and the new baseline as defined above for the remainder of the measure life.

Definition of Efficient Condition

For Washington, D.C. and Delaware, the efficient condition is a high-efficiency electric water chilling package exceeding the requirements presented in the International Energy Conservation Code 2012 (IECC 2012), Table C403.2.3(7). For Maryland, the efficient condition is a high-efficiency electric water chilling package exceeding the requirements presented in the International Energy Conservation Code 2015 (IECC 2015), Table C403.2.3(7).

Annual Energy Savings Algorithm

Time of Sale and New Construction:

\[\Delta \text{kWh} = \text{TONS} \times (\text{IPLV}_{\text{base}} - \text{IPLV}_{\text{ee}}) \times \text{HOURS}. \]
Early Replacement:\(^{966}\)

\[\Delta \text{kWh} \text{ for remaining life of existing unit (i.e., measure life less the age of the existing equipment)} = \text{TONS} \times (\text{IPLV}_{\text{exist}} - \text{IPLV}_{\text{ee}}) \times \text{HOURS}.\]

\[\Delta \text{kWh} \text{ for remaining measure life (i.e., measure life less the remaining life of existing unit)} = \text{TONS} \times (\text{IPLV}_{\text{base}} - \text{IPLV}_{\text{ee}}) \times \text{HOURS}.\]

Where:

- **TONS** = Total installed capacity of the water chilling package [tons].
 - = Actual Installed.
- **IPLV\text{exist}** = Integrated Part Load Value (IPLV)\(^{967}\) of the existing equipment [kW/ton].
- **IPLV\text{base}** = Integrated Part Load Value (IPLV) of the new baseline equipment [kW/ton].
 - = Varies by equipment type and capacity. See “Time of Sale Baseline Equipment Efficiency” table in the “Reference Tables” section below.\(^{968}\)
- **IPLV\text{ee}** = Integrated Part Load Value (IPLV) of the efficient equipment [kW/ton].
 - = Actual Installed.
- **HOURS** = Full load cooling hours.
 - = If actual full load cooling hours are unknown, assume values presented in table “Full Load Hours by Location and Building Type” in the “Reference Tables” section below. Otherwise, use site specific full load cooling hours information.

\(^{966}\) The two equations are provided to show how savings are determined during the initial phase of the measure (i.e., efficient unit relative to existing equipment) and the remaining phase (i.e., efficient unit relative to new baseline unit). In practice, the screening tools used may either require a First Year savings (using the first equation) and then a “number of years to adjustment” and “savings adjustment” input which would be the (new baseline to efficient savings)/(existing to efficient savings). The remaining measure life should be determined on a site-specific basis.

\(^{967}\) Integrated Part Load Value (IPLV) is an HVAC industry standard single-number metric for reporting part-load performance.

Summer Coincident Peak kW Savings Algorithm

Time of Sale and New Construction:

\[\Delta kW = \text{TONS} \times (\text{Full Loadbase} - \text{Full Loadee}) \times \text{CF}. \]

Early replacement:

\[\Delta kW \text{ for remaining life of existing unit (i.e., measure life less the age of the existing equipment):} = \text{TONS} \times (\text{Full Loadexist} - \text{Full Loadee}) \times \text{CF}. \]

\[\Delta kW \text{ for remaining measure life (i.e., measure life less the remaining life of existing unit):} = \text{TONS} \times (\text{Full Loadbase} - \text{Full Loadee}) \times \text{CF}. \]

Where:

- \(\text{Full Loadexist} \) = Full load efficiency of the existing equipment \([\text{kW/ton}]\).
- \(\text{Full Loadbase} \) = Full load efficiency of the baseline equipment \([\text{kW/ton}]\).

 \(\text{= Varies by equipment type and capacity. See “Time of Sale Baseline Equipment Efficiency” table in the “Reference Tables” section below.} \)

- \(\text{Full Loadee} \) = Full load efficiency of the efficient equipment \([\text{kW/ton}]\).

 \(\text{= Actual Installed} \)

- \(\text{CF}_{\text{PJM}} \) = PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm) valued at peak weather

 \(\text{= 0.808} \)

- \(\text{CF}_{\text{SSP}} \) = Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday).

 \(\text{= 0.923} \)

969 Baseline efficiencies based on International Energy Conservation Code 2012, Table C403.2.3(7) Minimum Efficiency Requirements: Water Chilling Packages and International Energy Conservation Code 2015, Table C403.2.3(7) Water Chilling Packages - Efficiency Requirements

970 Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. Combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

971 Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.
Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
The incremental costs for time of sale chillers are shown in the tables below for time of sale and new construction scenarios. Because of differences in baselines due to differing code requirements by jurisdiction, the incremental costs vary by jurisdiction. If the measure is an early replacement, the full installed cost of the efficient unit should be used as the incremental cost and determined on a site-specific basis. For the purposes of cost-effectiveness screening, there is also a deferred cost credit given at the end of the existing equipment’s remaining life to account for when the customer would have had to purchase new equipment if they had not performed the early replacement.

Air-Cooled Chiller Incremental Costs ($/Ton) for Washington, D.C. and Delaware

<table>
<thead>
<tr>
<th>Capacity (Tons)</th>
<th>Baseline EER</th>
<th>Efficient EER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9.9</td>
</tr>
<tr>
<td>50</td>
<td>9.562</td>
<td>$137</td>
</tr>
<tr>
<td>100</td>
<td>9.562</td>
<td>$69</td>
</tr>
<tr>
<td>150</td>
<td>9.562</td>
<td>$46</td>
</tr>
<tr>
<td>200</td>
<td>9.562</td>
<td>$34</td>
</tr>
<tr>
<td>400</td>
<td>9.562</td>
<td>$17</td>
</tr>
</tbody>
</table>

Air-Cooled Chiller Incremental Costs ($/Ton) for Maryland

<table>
<thead>
<tr>
<th>Capacity (Tons)</th>
<th>Baseline EER</th>
<th>Efficient EER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9.9</td>
</tr>
<tr>
<td>50</td>
<td>10.1</td>
<td>N/A</td>
</tr>
<tr>
<td>100</td>
<td>10.1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Costs are from Itron, Mid-Atlantic TRM Version 7.0 Incremental Costs Update, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, 2010 - 2012 WO017 Ex Ante Measure Cost Study, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA.
<table>
<thead>
<tr>
<th>Capacity (Tons)</th>
<th>Baseline EER</th>
<th>Efficient EER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>9.9</td>
</tr>
<tr>
<td>150</td>
<td>10.1</td>
<td>N/A</td>
</tr>
<tr>
<td>200</td>
<td>10.1</td>
<td>N/A</td>
</tr>
<tr>
<td>400</td>
<td>10.1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Water-Cooled Scroll/Screw Chiller Incremental Costs ($/Ton) for Washington, D.C. and Delaware

<table>
<thead>
<tr>
<th>Capacity (Tons)</th>
<th>Baseline kW/ton</th>
<th>Efficient kW/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>50</td>
<td>0.78</td>
<td>$311</td>
</tr>
<tr>
<td>100</td>
<td>0.775</td>
<td>$143</td>
</tr>
<tr>
<td>150</td>
<td>0.68</td>
<td>N/A</td>
</tr>
<tr>
<td>200</td>
<td>0.68</td>
<td>N/A</td>
</tr>
<tr>
<td>400</td>
<td>0.62</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Water-Cooled Scroll/Screw Chiller Incremental Costs ($/Ton) for Maryland

<table>
<thead>
<tr>
<th>Capacity (Tons)</th>
<th>Baseline kW/ton</th>
<th>Efficient kW/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>50</td>
<td>0.75</td>
<td>$156</td>
</tr>
<tr>
<td>100</td>
<td>0.72</td>
<td>$0</td>
</tr>
<tr>
<td>150</td>
<td>0.66</td>
<td>N/A</td>
</tr>
<tr>
<td>200</td>
<td>0.66</td>
<td>N/A</td>
</tr>
<tr>
<td>400</td>
<td>0.61</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Water-Cooled Centrifugal Chiller Incremental Costs ($/Ton) for Washington, D.C. and Delaware

<table>
<thead>
<tr>
<th>Capacity (Tons)</th>
<th>Baseline kW/ton</th>
<th>Efficient kW/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.6</td>
</tr>
<tr>
<td>100</td>
<td>0.634</td>
<td>$88</td>
</tr>
<tr>
<td>150</td>
<td>0.634</td>
<td>$59</td>
</tr>
<tr>
<td>200</td>
<td>0.634</td>
<td>$44</td>
</tr>
<tr>
<td>300</td>
<td>0.576</td>
<td>N/A</td>
</tr>
<tr>
<td>600</td>
<td>0.57</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Water-Cooled Centrifugal Chiller Incremental Costs ($/Ton) for Maryland

<table>
<thead>
<tr>
<th>Capacity (Tons)</th>
<th>Baseline kW/ton</th>
<th>Efficient kW/ton</th>
<th>0.6</th>
<th>0.58</th>
<th>0.54</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.61</td>
<td>$26</td>
<td>$78</td>
<td>$181</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.61</td>
<td>$17</td>
<td>$52</td>
<td>$121</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.61</td>
<td>$13</td>
<td>$39</td>
<td>$91</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.56</td>
<td>N/A</td>
<td>N/A</td>
<td>$17</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0.56</td>
<td>N/A</td>
<td>N/A</td>
<td>$9</td>
<td></td>
</tr>
</tbody>
</table>

Measure Life

The measure life is assumed to be 23 years\(^{973}\).

Operation and Maintenance Impacts

n/a

Reference Tables

Time of Sale Baseline Equipment Efficiency for Washington, D.C. and Delaware\(^{974}\)

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Size Category</th>
<th>Units</th>
<th>Path A(^a)</th>
<th>Path B(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Load</td>
<td>IPLV</td>
</tr>
<tr>
<td>Air-Cooled Chillers</td>
<td><150 tons</td>
<td>EER</td>
<td>≥9.562</td>
<td>≥12.500</td>
</tr>
<tr>
<td></td>
<td>≥150 tons</td>
<td>EER</td>
<td>≥9.562</td>
<td>≥12.750</td>
</tr>
<tr>
<td>Water Cooled, Electrically Operated, Positive Displacement</td>
<td><75 tons</td>
<td>kW/ton</td>
<td>≤0.780</td>
<td>≤0.630</td>
</tr>
<tr>
<td></td>
<td>≥75 tons and <150 tons</td>
<td>kW/ton</td>
<td>≤0.775</td>
<td>≤0.615</td>
</tr>
<tr>
<td></td>
<td>≥150 tons and <300 tons</td>
<td>kW/ton</td>
<td>≤0.680</td>
<td>≤0.580</td>
</tr>
<tr>
<td></td>
<td>≥300 tons</td>
<td>kW/ton</td>
<td>≤0.620</td>
<td>≤0.540</td>
</tr>
<tr>
<td>Water Cooled, Electrically Operated, Centrifugal</td>
<td><150 tons</td>
<td>kW/ton</td>
<td>≤0.634</td>
<td>≤0.596</td>
</tr>
<tr>
<td></td>
<td>≥150 tons and <300 tons</td>
<td>kW/ton</td>
<td>≤0.634</td>
<td>≤0.596</td>
</tr>
<tr>
<td></td>
<td>≥300 tons and <600 tons</td>
<td>kW/ton</td>
<td>≤0.576</td>
<td>≤0.549</td>
</tr>
<tr>
<td></td>
<td>≥600 tons</td>
<td>kW/ton</td>
<td>≤0.570</td>
<td>≤0.539</td>
</tr>
</tbody>
</table>

\(a\). Compliance with IECC 2012 can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill the requirements of Path A or B.

\(^{974}\) Baseline efficiencies based on International Energy Conservation Code 2012, Table C403.2.3(7) Minimum Efficiency Requirements: Water Chilling Packages.
Time of Sale Baseline Equipment Efficiency for Maryland\(^{975}\)

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Size Category</th>
<th>Units</th>
<th>Path A(^a)</th>
<th>Path B(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Load</td>
<td>IPLV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Full Load</td>
<td>IPLV</td>
</tr>
<tr>
<td>Air-Cooled Chillers</td>
<td><150 tons</td>
<td>EER</td>
<td>≥10.100</td>
<td>≥9.700</td>
</tr>
<tr>
<td></td>
<td>≥150 tons</td>
<td>EER</td>
<td>≥10.100</td>
<td>≥9.700</td>
</tr>
<tr>
<td></td>
<td>≥150 tons</td>
<td>EER</td>
<td>≥14.000</td>
<td>≥16.100</td>
</tr>
<tr>
<td></td>
<td>≥150 tons</td>
<td>EER</td>
<td>≥14.000</td>
<td>≥16.100</td>
</tr>
<tr>
<td>Water Cooled, Electrically Operated, Positive Displacement</td>
<td><75 tons</td>
<td>kW/ton</td>
<td>≤0.750</td>
<td>≤0.600</td>
</tr>
<tr>
<td></td>
<td>≥75 tons and <150 tons</td>
<td>kW/ton</td>
<td>≤0.720</td>
<td>≤0.560</td>
</tr>
<tr>
<td></td>
<td>≥150 tons and <300 tons</td>
<td>kW/ton</td>
<td>≤0.660</td>
<td>≤0.540</td>
</tr>
<tr>
<td></td>
<td>≥300 tons and <600 tons</td>
<td>kW/ton</td>
<td>≤0.610</td>
<td>≤0.520</td>
</tr>
<tr>
<td></td>
<td>≥600 tons</td>
<td>kW/ton</td>
<td>≤0.560</td>
<td>≤0.500</td>
</tr>
<tr>
<td>Water Cooled, Electrically Operated, Centrifugal</td>
<td><150 tons</td>
<td>kW/ton</td>
<td>≤0.610</td>
<td>≤0.550</td>
</tr>
<tr>
<td></td>
<td>≥150 tons and <300 tons</td>
<td>kW/ton</td>
<td>≤0.610</td>
<td>≤0.550</td>
</tr>
<tr>
<td></td>
<td>≥300 tons and <400 tons</td>
<td>kW/ton</td>
<td>≤0.560</td>
<td>≤0.520</td>
</tr>
<tr>
<td></td>
<td>≥400 tons and <600 tons</td>
<td>kW/ton</td>
<td>≤0.560</td>
<td>≤0.500</td>
</tr>
<tr>
<td></td>
<td>≥600 tons</td>
<td>kW/ton</td>
<td>≤0.560</td>
<td>≤0.500</td>
</tr>
</tbody>
</table>

\(^a\) Compliance with IECC 2015 can be obtained by meeting the minimum requirements of Path A or B. However, both the full load and IPLV must be met to fulfill the requirements of Path A or B.

\(^{975}\) Baseline efficiencies based on International Energy Conservation Code 2015, Table C403.2.3(7) Water Chilling Package - Efficiency Requirements.
Full Load Cooling Hours by Location and Building Type (HOURS)

<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education - Community College</td>
<td>737</td>
<td>725</td>
<td>743</td>
<td>677</td>
<td>867</td>
<td>714</td>
<td>899</td>
</tr>
<tr>
<td>Education - Secondary School</td>
<td>366</td>
<td>360</td>
<td>369</td>
<td>336</td>
<td>431</td>
<td>355</td>
<td>446</td>
</tr>
<tr>
<td>Education - University</td>
<td>809</td>
<td>796</td>
<td>816</td>
<td>743</td>
<td>952</td>
<td>784</td>
<td>987</td>
</tr>
<tr>
<td>Health/Medical - Hospital</td>
<td>1,557</td>
<td>1,533</td>
<td>1,570</td>
<td>1,430</td>
<td>1,832</td>
<td>1,510</td>
<td>1,900</td>
</tr>
<tr>
<td>Health/Medical - Nursing Home</td>
<td>596</td>
<td>586</td>
<td>601</td>
<td>547</td>
<td>701</td>
<td>578</td>
<td>727</td>
</tr>
<tr>
<td>Lodging - Hotel</td>
<td>1,787</td>
<td>1,758</td>
<td>1,801</td>
<td>1,641</td>
<td>2,102</td>
<td>1,732</td>
<td>2,180</td>
</tr>
<tr>
<td>Manufacturing – Bio Tech/High Tech</td>
<td>804</td>
<td>791</td>
<td>810</td>
<td>738</td>
<td>946</td>
<td>779</td>
<td>981</td>
</tr>
<tr>
<td>Office - Large</td>
<td>598</td>
<td>589</td>
<td>603</td>
<td>549</td>
<td>704</td>
<td>580</td>
<td>730</td>
</tr>
<tr>
<td>Office - Small</td>
<td>554</td>
<td>545</td>
<td>559</td>
<td>509</td>
<td>652</td>
<td>537</td>
<td>676</td>
</tr>
<tr>
<td>Retail - Multistory Large</td>
<td>920</td>
<td>906</td>
<td>928</td>
<td>845</td>
<td>1,083</td>
<td>892</td>
<td>1,123</td>
</tr>
</tbody>
</table>

Gas Boiler
Unique Measure Code: CI_HV_TOS_GASBLR_0614
Effective Date: June 2014
End Date: TBD

Measure Description
This measure relates to the installation of a high efficiency gas boiler in the place of a standard efficiency gas boiler. This measure applies to time of sale and new construction opportunities.

Definition of Baseline Condition
Time of Sale: The baseline condition is a gas boiler with efficiency equal to the current federal standards. See the “Time of Sale Baseline Equipment Efficiency” table in the “Reference Tables” section.

Definition of Efficient Condition
The efficient condition is a high-efficiency gas boiler of at least 90% AFUE for units <300 kBTU/h and 94% E_t for units >300 kBTU/h. See the “Time of Sale Baseline Equipment Efficiency” table in the “Reference Tables” section.

Annual Energy Savings Algorithm
n/a

Summer Coincident Peak kW Savings Algorithm
n/a

Annual Fossil Fuel Savings Algorithm

\[\Delta \text{MMBTU} = \text{CAP} \times \text{HOURS} \times \left(\frac{1}{\text{EFF}_{\text{base}}} - \frac{1}{\text{EFF}_{\text{ee}}} \right) / 1,000,000. \]

Where:

- \(\text{CAP} \) = Equipment capacity [BTU/h].
- \(\text{EFF}_{\text{base}} \) = Actual Installed.
- \(\text{EFF}_{\text{ee}} \) = Full Load Heating Hours.
= See “Full Load Heating Hours by Location and Building Type” table in the “Reference Tables” section below.977

\(\textit{EFF}_{\text{base}} \) = The efficiency of the baseline equipment; Can be expressed as thermal efficiency \((E_t) \), combustion efficiency \((E_c) \), or Annual Fuel Utilization Efficiency (AFUE), depending on equipment type and capacity.

= For time of sale: See “Time of Sale Baseline Equipment Efficiency” table in the “Reference Tables” section below978.

\(\textit{EFF}_{\text{ee}} \) = The efficiency of the efficient equipment; Can be expressed as thermal efficiency \((E_t) \), combustion efficiency \((E_c) \), or Annual Fuel Utilization Efficiency (AFUE), depending on equipment type and capacity.

= Actual Installed.

1,000,000 = BTU/MMBTU unit conversion factor.

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure varies by size category and efficiency level. See the “Time of Sale Incremental Costs” table in the “Reference Tables” section below.

Measure Life

The measure life is assumed to be 20 years979.

Operation and Maintenance Impacts

n/a

Reference Tables

977 HOURS estimates developed from data presented in “New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs”, TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

Time of Sale Baseline Equipment Efficiency

<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Size Category</th>
<th>Subcategory or Rating Condition</th>
<th>Minimum Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boilers, Gas-fired</td>
<td><300,000 BTU/h</td>
<td>Hot water</td>
<td>82% AFUE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam</td>
<td>80% AFUE</td>
</tr>
<tr>
<td></td>
<td>>=300,000 BTU/h and <=2,500,000 BTU/h</td>
<td>Hot water</td>
<td>80% E_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam – all, except natural draft</td>
<td>79.0% E_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam – natural draft</td>
<td>77.0% E_t</td>
</tr>
<tr>
<td></td>
<td>>2,500,000 BTU/h</td>
<td>Hot water</td>
<td>82.0% E_c</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam – all, except natural draft</td>
<td>79.0% E_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Steam – natural draft</td>
<td>77.0% E_t</td>
</tr>
</tbody>
</table>

Time of Sale Incremental Costs

<table>
<thead>
<tr>
<th>Size Category (kBTU/h)</th>
<th>Efficiency</th>
<th>Incremental Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td><300 (kBTU/h) Gas Hot Water and Steam Boilers</td>
<td>90% AFUE</td>
<td>$469</td>
</tr>
<tr>
<td></td>
<td>92% AFUE</td>
<td>$513</td>
</tr>
<tr>
<td></td>
<td>95% AFUE</td>
<td>$643</td>
</tr>
<tr>
<td></td>
<td>98%AFUE</td>
<td>$789</td>
</tr>
<tr>
<td>Gas-Fired Hot Water Commercial Packaged Boiler ≥300 kBTU/h and ≤2,500 kBTU/h</td>
<td>95% E_t</td>
<td>$17,288</td>
</tr>
<tr>
<td></td>
<td>99% E_t</td>
<td>$20,349</td>
</tr>
<tr>
<td>Gas-Fired Hot Water Commercial Packaged Boiler ≥2,500,000 kBTU/h and 10,000,000skBTU/h</td>
<td>95% E_t</td>
<td>$70,860</td>
</tr>
<tr>
<td></td>
<td>99% E_t</td>
<td>$78,777</td>
</tr>
</tbody>
</table>

981 For units <300 kBTU/h, Costs were derived the Residential Furnace Technical support document, 2016 and adjusted for inflation to represent 2017 dollars.
For Units, Greater than 300 BTU/h sources Incremental Cost values are derived from the Commercial Packaged TSD.
Full Load Heating Hours by Location and Building Type (HOURS\textsubscript{HEAT})982

<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>1,114</td>
<td>1,150</td>
<td>1,114</td>
<td>1,168</td>
<td>1,064</td>
<td>1,079</td>
<td>1,040</td>
</tr>
<tr>
<td>Education - Community College</td>
<td>713</td>
<td>736</td>
<td>713</td>
<td>747</td>
<td>681</td>
<td>691</td>
<td>666</td>
</tr>
<tr>
<td>Education - Primary School</td>
<td>668</td>
<td>689</td>
<td>668</td>
<td>700</td>
<td>638</td>
<td>647</td>
<td>623</td>
</tr>
<tr>
<td>Education - Relocatable Classroom</td>
<td>647</td>
<td>668</td>
<td>647</td>
<td>679</td>
<td>618</td>
<td>627</td>
<td>604</td>
</tr>
<tr>
<td>Education - Secondary School</td>
<td>719</td>
<td>742</td>
<td>719</td>
<td>754</td>
<td>687</td>
<td>697</td>
<td>671</td>
</tr>
<tr>
<td>Education - University</td>
<td>530</td>
<td>546</td>
<td>530</td>
<td>555</td>
<td>506</td>
<td>513</td>
<td>494</td>
</tr>
<tr>
<td>Grocery</td>
<td>984</td>
<td>1,015</td>
<td>984</td>
<td>1,031</td>
<td>939</td>
<td>953</td>
<td>918</td>
</tr>
<tr>
<td>Health/Medical - Hospital</td>
<td>214</td>
<td>221</td>
<td>214</td>
<td>224</td>
<td>204</td>
<td>207</td>
<td>200</td>
</tr>
<tr>
<td>Health/Medical - Nursing Home</td>
<td>932</td>
<td>962</td>
<td>932</td>
<td>977</td>
<td>890</td>
<td>903</td>
<td>870</td>
</tr>
<tr>
<td>Lodging - Hotel</td>
<td>2,242</td>
<td>2,313</td>
<td>2,242</td>
<td>2,350</td>
<td>2,140</td>
<td>2,172</td>
<td>2,092</td>
</tr>
<tr>
<td>Manufacturing – Bio Tech/High Tech</td>
<td>146</td>
<td>151</td>
<td>146</td>
<td>153</td>
<td>139</td>
<td>141</td>
<td>136</td>
</tr>
<tr>
<td>Manufacturing – 1 Shift/Light Industrial</td>
<td>585</td>
<td>603</td>
<td>585</td>
<td>613</td>
<td>558</td>
<td>567</td>
<td>546</td>
</tr>
<tr>
<td>Multi-Family (Common Areas)</td>
<td>256</td>
<td>264</td>
<td>256</td>
<td>268</td>
<td>244</td>
<td>248</td>
<td>239</td>
</tr>
<tr>
<td>Office - Large</td>
<td>221</td>
<td>228</td>
<td>221</td>
<td>231</td>
<td>211</td>
<td>214</td>
<td>206</td>
</tr>
<tr>
<td>Office - Small</td>
<td>440</td>
<td>454</td>
<td>440</td>
<td>461</td>
<td>420</td>
<td>426</td>
<td>411</td>
</tr>
<tr>
<td>Restaurant - Fast-Food</td>
<td>1,226</td>
<td>1,265</td>
<td>1,226</td>
<td>1,285</td>
<td>1,170</td>
<td>1,188</td>
<td>1,144</td>
</tr>
<tr>
<td>Restaurant - Sit-Down</td>
<td>1,131</td>
<td>1,167</td>
<td>1,131</td>
<td>1,185</td>
<td>1,079</td>
<td>1,096</td>
<td>1,055</td>
</tr>
<tr>
<td>Retail - Multistory Large</td>
<td>591</td>
<td>609</td>
<td>591</td>
<td>619</td>
<td>564</td>
<td>572</td>
<td>551</td>
</tr>
<tr>
<td>Retail - Single-Story Large</td>
<td>739</td>
<td>762</td>
<td>739</td>
<td>774</td>
<td>705</td>
<td>716</td>
<td>689</td>
</tr>
<tr>
<td>Retail - Small</td>
<td>622</td>
<td>642</td>
<td>623</td>
<td>652</td>
<td>594</td>
<td>603</td>
<td>581</td>
</tr>
<tr>
<td>Storage - Conditioned</td>
<td>854</td>
<td>881</td>
<td>854</td>
<td>895</td>
<td>815</td>
<td>828</td>
<td>797</td>
</tr>
<tr>
<td>Warehouse - Refrigerated</td>
<td>342</td>
<td>353</td>
<td>343</td>
<td>359</td>
<td>327</td>
<td>332</td>
<td>320</td>
</tr>
</tbody>
</table>

Gas Furnace

Unique Measure Code: CI_HV_TOS_GASFUR_0615
Effective Date: June 2015
End Date: TBD

Measure Description
This measure relates to the installation of a high efficiency gas furnace with capacity less than 225,000 BTU/h with an electronically commutated fan motor (ECM) in the place of a standard efficiency gas furnace. This measure applies to time of sale and new construction opportunities.

Definition of Baseline Condition

Time of Sale: The baseline condition is a gas furnace with an Annual Fuel Utilization Efficiency (AFUE) of 80% with a standard efficiency furnace fan.

Definition of Efficient Condition
The efficient condition is a high-efficiency gas furnace with an AFUE of 90% or higher. This characterization only applies to furnaces with capacities less than 225,000 BTU/h with an electronically commutated fan motor (ECM).

Annual Energy Savings Algorithm

\[\Delta kWh = 733 \text{ kWh.} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = 0.19 \text{ kW.} \]

Annual Fossil Fuel Savings Algorithm

\[\Delta \text{MMBTU} = \text{CAP} \times \text{HOURS} \times \left(\frac{1}{\text{AFUE}_{\text{base}}} - \frac{1}{\text{AFUE}_{\text{ee}}}\right) / 1,000,000. \]

983 Energy and Demand Savings come from the ECM furnace fan motor. These motors are also available as a separate retrofit on an existing furnace.
Where:

\[\text{CAP} = \text{Capacity of the high-efficiency equipment} \ [\text{BTU/h}]. \]
\[\text{HOURS} = \text{Actual Installed}. \]
\[\text{AFUE}_{\text{base}} = \text{Full Load Heating Hours} \]
\[= \text{See “Full Load Heating Hours by Location and Building Type” table in the “Reference Tables” section below.}^{986} \]
\[\text{AFUE}_{\text{ee}} = \text{Annual Fuel Utilization Efficiency of the efficient equipment}. \]
\[= \text{For time of sale: 0.80}.^{987} \]
\[1,000,000 = \text{BTU/MMBTU unit conversion factor}. \]

Annual Water Savings Algorithm

n/a

Incremental Cost

The time of sale incremental cost for this time of sale measure is provided below.^{988}

<table>
<thead>
<tr>
<th>Efficiency of Furnace (AFUE)</th>
<th>Incremental Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>$392</td>
</tr>
<tr>
<td>92%</td>
<td>$429</td>
</tr>
</tbody>
</table>

^{986} HOURS estimates developed from data presented in "New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs", TecMarket Works, October 15, 2010, adjusted to Mid-Atlantic region using heating degree day estimates from Typical Meteorological Year 3 (TMY3) data published by the National Renewable Energy Laboratory.

^{987} Baseline efficiencies based on International Energy Conservation Code 2012, Table C403.2.3(4) Warm Air Furnaces and Combination Warm Air Furnaces/Air-Conditioning Units, Warm Air Duct Furnaces and Unit Heaters, Minimum Efficiency Requirements and International Energy Conservation Code 2015, Table C403.2.3(4) Warm Air Furnaces and Combination Warm Air Furnaces/Air-Conditioning Units, Warm Air Duct Furnaces and Unit Heaters, Minimum Efficiency Requirements. Review of GAMA shipment data indicates a more suitable market baseline is 80% AFUE. Further, pending federal standards, 10 CFR 430.32(e) (i)(1) (ii), scheduled to take effect in November 2015 will raise the baseline for non-weatherized gas furnaces to 80% AFUE. The baseline unit is non-condensing.

Measure Life
The measure life is assumed to be 18 years\(^{989}\).

Operation and Maintenance Impacts
n/a

Reference Tables

Full Load Heating Hours by Location and Building Type (\(\text{HOURS}_{\text{HEAT}}\))\(^{990}\)

<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>1,114</td>
<td>1,150</td>
<td>1,114</td>
<td>1,168</td>
<td>1,064</td>
<td>1,079</td>
<td>1,040</td>
</tr>
<tr>
<td>Education - Community College</td>
<td>713</td>
<td>736</td>
<td>713</td>
<td>747</td>
<td>681</td>
<td>691</td>
<td>666</td>
</tr>
<tr>
<td>Education - Primary School</td>
<td>668</td>
<td>689</td>
<td>668</td>
<td>700</td>
<td>638</td>
<td>647</td>
<td>623</td>
</tr>
<tr>
<td>Education - Relocatable Classroom</td>
<td>647</td>
<td>668</td>
<td>647</td>
<td>679</td>
<td>618</td>
<td>627</td>
<td>604</td>
</tr>
<tr>
<td>Education - Secondary School</td>
<td>719</td>
<td>742</td>
<td>719</td>
<td>754</td>
<td>687</td>
<td>697</td>
<td>671</td>
</tr>
<tr>
<td>Education - University</td>
<td>530</td>
<td>546</td>
<td>530</td>
<td>555</td>
<td>506</td>
<td>513</td>
<td>494</td>
</tr>
<tr>
<td>Grocery</td>
<td>984</td>
<td>1,015</td>
<td>984</td>
<td>1,031</td>
<td>939</td>
<td>953</td>
<td>918</td>
</tr>
<tr>
<td>Health/Medical - Hospital</td>
<td>214</td>
<td>221</td>
<td>214</td>
<td>224</td>
<td>204</td>
<td>207</td>
<td>200</td>
</tr>
<tr>
<td>Health/Medical - Nursing Home</td>
<td>932</td>
<td>962</td>
<td>932</td>
<td>977</td>
<td>890</td>
<td>903</td>
<td>870</td>
</tr>
<tr>
<td>Lodging - Hotel</td>
<td>2,242</td>
<td>2,313</td>
<td>2,242</td>
<td>2,350</td>
<td>2,140</td>
<td>2,172</td>
<td>2,092</td>
</tr>
<tr>
<td>Manufacturing – Bio Tech/High Tech</td>
<td>146</td>
<td>151</td>
<td>146</td>
<td>153</td>
<td>139</td>
<td>141</td>
<td>136</td>
</tr>
<tr>
<td>Manufacturing – 1 Shift/Light Industrial</td>
<td>585</td>
<td>603</td>
<td>585</td>
<td>613</td>
<td>558</td>
<td>567</td>
<td>546</td>
</tr>
<tr>
<td>Multi-Family (Common Areas)</td>
<td>256</td>
<td>264</td>
<td>256</td>
<td>268</td>
<td>244</td>
<td>248</td>
<td>239</td>
</tr>
<tr>
<td>Office - Large</td>
<td>221</td>
<td>228</td>
<td>221</td>
<td>231</td>
<td>211</td>
<td>214</td>
<td>206</td>
</tr>
<tr>
<td>Office - Small</td>
<td>440</td>
<td>454</td>
<td>440</td>
<td>461</td>
<td>420</td>
<td>426</td>
<td>411</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurant - Fast-Food</td>
<td>1,226</td>
<td>1,265</td>
<td>1,226</td>
<td>1,285</td>
<td>1,170</td>
<td>1,188</td>
<td>1,144</td>
</tr>
<tr>
<td>Restaurant - Sit-Down</td>
<td>1,131</td>
<td>1,167</td>
<td>1,131</td>
<td>1,185</td>
<td>1,079</td>
<td>1,096</td>
<td>1,055</td>
</tr>
<tr>
<td>Retail - Multistory Large</td>
<td>591</td>
<td>609</td>
<td>591</td>
<td>619</td>
<td>564</td>
<td>572</td>
<td>551</td>
</tr>
<tr>
<td>Retail - Single-Story Large</td>
<td>739</td>
<td>762</td>
<td>739</td>
<td>774</td>
<td>705</td>
<td>716</td>
<td>689</td>
</tr>
<tr>
<td>Retail - Small</td>
<td>622</td>
<td>642</td>
<td>623</td>
<td>652</td>
<td>594</td>
<td>603</td>
<td>581</td>
</tr>
<tr>
<td>Storage - Conditioned</td>
<td>854</td>
<td>881</td>
<td>854</td>
<td>895</td>
<td>815</td>
<td>828</td>
<td>797</td>
</tr>
<tr>
<td>Warehouse - Refrigerated</td>
<td>342</td>
<td>353</td>
<td>343</td>
<td>359</td>
<td>327</td>
<td>332</td>
<td>320</td>
</tr>
</tbody>
</table>
Dual Enthalpy Economizer

Unique Measure Code: CI_HV_RF_DEECON_0614
Effective Date: June 2014
End Date: TBD

Measure Description
This measure involves the installation of a dual enthalpy economizer to provide free cooling during the appropriate ambient conditions. Enthalpy refers to the total heat content of the air. A dual enthalpy economizer uses two sensors — one measuring return air enthalpy and one measuring outdoor air enthalpy. Dampers are modulated for optimum and lowest enthalpy to be used for cooling. This measure applies only to retrofits.

Definition of Baseline Condition
The baseline condition is the existing HVAC system with no economizer.

Definition of Efficient Condition
The efficient condition is the HVAC system with dual enthalpy controlled economizer.

Annual Energy Savings Algorithm
ΔkWh = TONS * SF

Where:
TONS = Actual Installed.
SF = Savings factor for the installation of dual enthalpy economizer control [kWh/ton].
= See “Savings Factors” table in “Reference Tables” section below.991

Summer Coincident Peak kW Savings Algorithm
ΔkW = 0 kW.992

992 Demand savings are assumed to be zero because economizer will typically not be operating during the peak period.
Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
The incremental costs for this retrofit measure are presented in the “Dual Enthalpy Economizer Incremental Costs” table below.

<table>
<thead>
<tr>
<th>HVAC System Capacity (Tons)</th>
<th>Incremental Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$943</td>
</tr>
<tr>
<td>15</td>
<td>$1,510</td>
</tr>
<tr>
<td>25</td>
<td>$2,077</td>
</tr>
<tr>
<td>40</td>
<td>$2,927</td>
</tr>
<tr>
<td>70</td>
<td>$4,628</td>
</tr>
</tbody>
</table>

Measure Life
The measure life is assumed to be 10 years\(^{994}\).

Operation and Maintenance Impacts
n/a

Reference Tables

Savings Factors\(^{995}\)

<table>
<thead>
<tr>
<th>Savings Factors (kWh/ton)</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>26</td>
<td>22</td>
<td>25</td>
<td>29</td>
<td>25</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>Big Box Retail</td>
<td>58</td>
<td>50</td>
<td>57</td>
<td>66</td>
<td>57</td>
<td>62</td>
<td>56</td>
</tr>
<tr>
<td>Fast Food</td>
<td>37</td>
<td>32</td>
<td>37</td>
<td>42</td>
<td>36</td>
<td>40</td>
<td>36</td>
</tr>
<tr>
<td>Full Service Restaurant</td>
<td>29</td>
<td>25</td>
<td>29</td>
<td>34</td>
<td>29</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>Light Industrial</td>
<td>24</td>
<td>21</td>
<td>23</td>
<td>27</td>
<td>23</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Primary School</td>
<td>40</td>
<td>34</td>
<td>39</td>
<td>45</td>
<td>39</td>
<td>43</td>
<td>39</td>
</tr>
<tr>
<td>Small Office</td>
<td>58</td>
<td>50</td>
<td>57</td>
<td>66</td>
<td>57</td>
<td>62</td>
<td>56</td>
</tr>
<tr>
<td>Small Retail</td>
<td>58</td>
<td>50</td>
<td>57</td>
<td>66</td>
<td>57</td>
<td>62</td>
<td>56</td>
</tr>
<tr>
<td>Religious</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Warehouse</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>58</td>
<td>50</td>
<td>57</td>
<td>66</td>
<td>57</td>
<td>62</td>
<td>56</td>
</tr>
</tbody>
</table>

\(^{995}\) kWh/ton savings from NY Standard Approach Model, with scaling factors based on enthalpy data from NYC and Mid-Atlantic cities. Note: Values for Big Box Retail, Small Office, and Small Retail are anomalously high and have been set equal to the “Other” building type for conservatism based on discussion with the Mid-Atlantic TRM Stakeholder Group.
AC Tune-Up

Unique Measure Code(s): CI_HV_RF_ACTUNE_0615

Effective Date: June 2015

End Date: TBD

Measure Description

This measure is for a “tune-up” for a commercial central AC. This measure only applies to residential-style central AC systems of 5.4 tons (65,000 BTU/h) or less. Tune-ups for larger units, including units with variable air volume and air handling units, should be treated as custom measures. A recent California evaluation suggests that tune-ups on these larger systems may be better handled by breaking up the overall tune-up into a series of specific activities performed – for example, refrigerant charge correction, economizer repair, leak sealing, etc. For smaller units, tuning measures may include:

- Refrigerant charge correction
- Air flow adjustments
- Cleaning the condensate drain line
- Clean and straighten coils and fans
- Replace air filter
- Repair damaged insulation

Definition of Baseline Condition

The baseline condition is a pre-tune-up air conditioner. Where possible, spot measurements should be used to estimate the baseline EER. An HVAC system is eligible for a tune-up once every five years.

Definition of Efficient Condition

The efficient condition is a post-tune-up air conditioner. Where possible, spot measurements should be used to estimate the EER post-tune-up.

Annual Energy Savings Algorithm

$$\Delta k\text{W} = CCAP \times EFLH \times \frac{1}{SEER_{pre}} \times \%_{impr}.$$

Where:

- $CCAP = \text{Cooling capacity of existing AC unit, in kBTU/hr.}$

SEER_{pre} = SEER of actual unit, before the tune-up. If testing is not done on the baseline condition, use the nameplate SEER.

EFLH = Full load hours for cooling equipment. See table below

%_{impr} = Percent improvement based on measured EERs {pre- and post-tune-up. Calculated as (EER_{post} – EER_{pre})/EER_{post}, where subscripts “pre” and “post” refer to the EER before and after the tune-up, respectively. If onsite testing data is not available, assume %_{impr} = 0.05.**

Full Load Cooling Hours by Location and Building Type (EFLH)

<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>937</td>
<td>922</td>
<td>945</td>
<td>861</td>
<td>1,103</td>
<td>909</td>
<td>1,143</td>
</tr>
<tr>
<td>Education - Community College</td>
<td>713</td>
<td>701</td>
<td>718</td>
<td>655</td>
<td>839</td>
<td>691</td>
<td>869</td>
</tr>
<tr>
<td>Education - Primary School</td>
<td>293</td>
<td>288</td>
<td>295</td>
<td>269</td>
<td>344</td>
<td>284</td>
<td>357</td>
</tr>
<tr>
<td>Education - Relocatable Classroom</td>
<td>348</td>
<td>342</td>
<td>351</td>
<td>319</td>
<td>409</td>
<td>337</td>
<td>424</td>
</tr>
<tr>
<td>Education - Secondary School</td>
<td>337</td>
<td>331</td>
<td>340</td>
<td>309</td>
<td>396</td>
<td>327</td>
<td>411</td>
</tr>
<tr>
<td>Education - University</td>
<td>787</td>
<td>774</td>
<td>793</td>
<td>723</td>
<td>926</td>
<td>763</td>
<td>960</td>
</tr>
<tr>
<td>Grocery</td>
<td>672</td>
<td>662</td>
<td>678</td>
<td>618</td>
<td>791</td>
<td>652</td>
<td>820</td>
</tr>
<tr>
<td>Health/Medical - Hospital</td>
<td>1,213</td>
<td>1,194</td>
<td>1,223</td>
<td>1,114</td>
<td>1,427</td>
<td>1,176</td>
<td>1,480</td>
</tr>
<tr>
<td>Health/Medical - Nursing Home</td>
<td>645</td>
<td>634</td>
<td>650</td>
<td>592</td>
<td>758</td>
<td>625</td>
<td>786</td>
</tr>
<tr>
<td>Lodging - Hotel</td>
<td>1,816</td>
<td>1,787</td>
<td>1,831</td>
<td>1,668</td>
<td>2,137</td>
<td>1,760</td>
<td>2,215</td>
</tr>
<tr>
<td>Manufacturing – Bio Tech/High Tech</td>
<td>867</td>
<td>853</td>
<td>874</td>
<td>796</td>
<td>1,020</td>
<td>840</td>
<td>1,057</td>
</tr>
<tr>
<td>Manufacturing – 1 Shift/Light Industrial</td>
<td>456</td>
<td>449</td>
<td>460</td>
<td>419</td>
<td>537</td>
<td>442</td>
<td>557</td>
</tr>
<tr>
<td>Multi-Family (Common Areas)</td>
<td>1,509</td>
<td>1,485</td>
<td>1,521</td>
<td>1,386</td>
<td>1,776</td>
<td>1,463</td>
<td>1,841</td>
</tr>
<tr>
<td>Office - Large</td>
<td>727</td>
<td>716</td>
<td>733</td>
<td>668</td>
<td>856</td>
<td>705</td>
<td>887</td>
</tr>
<tr>
<td>Office - Small</td>
<td>629</td>
<td>619</td>
<td>634</td>
<td>577</td>
<td>740</td>
<td>609</td>
<td>767</td>
</tr>
<tr>
<td>Restaurant - Fast-Food</td>
<td>724</td>
<td>712</td>
<td>730</td>
<td>665</td>
<td>851</td>
<td>701</td>
<td>883</td>
</tr>
<tr>
<td>Restaurant - Sit-Down</td>
<td>762</td>
<td>750</td>
<td>768</td>
<td>700</td>
<td>897</td>
<td>739</td>
<td>930</td>
</tr>
<tr>
<td>Retail - Multistory Large</td>
<td>880</td>
<td>866</td>
<td>887</td>
<td>808</td>
<td>1,035</td>
<td>853</td>
<td>1,074</td>
</tr>
</tbody>
</table>

997 Energy Center of Wisconsin, May 2008; “Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research.”

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = CCAP \times 1/EER_{pre} \times \%_{impr} \times CF \]

Where:

- \(CCAP \) = Cooling capacity of DMSHP unit, in kBTU/hr.
- \(EER_{pre} \) = EER of actual unit, before the tune-up. If testing is not done on the baseline condition, use the nameplate EER.
- \(\%_{impr} \) = Percent improvement based on measured EERs pre and post tune-up. Calculated as \(\frac{EER_{post} - EER_{pre}}{EER_{post}} \). If onsite testing data is not available, assumed \(\%_{impr} = 0.05 \).
- \(CF_{PJM} \) = PJM Summer Peak Coincidence Factor (June to August weekdays between 2 pm and 6 pm) valued at peak weather.\(^{999} \frac{0.360}{0} \text{ for units } <135 \text{ kBTU/h and } 0.567 \text{ for units } \geq 135 \text{ kBTU/h}.\(^{1000} \)
- \(CF_{SSP} \) = Summer System Peak Coincidence Factor (hour ending 5pm on hottest summer weekday)\(^{1000} \frac{0.588}{0} \text{ for units } <135 \text{ kBTU/h and } 0.874 \text{ for units } \geq 135 \text{ kBTU/h}.\(^{1001} \)

Annual Fossil Fuel Savings Algorithm

n/a

\(^{999}\) Energy Center of Wisconsin, May 2008; “Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research.”

\(^{1000}\) C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, “Report Revision Memo,” KEMA, August 2011

\(^{1001}\) C&I Unitary HVAC Load Shape Project Final Report, KEMA, 2011. Final values are presented in Metoyer, Jarred, “Report Revision Memo,” KEMA, August 2011
Incremental Cost

Use the actual cost of the tune-up. If this is unknown, use a default of $35/ton1002.

Measure Life

The measure life for an AC tune-up is 5 years.1003

Operation and Maintenance Impacts

n/a

Smart Thermostat

Unique Measure Code(s): CI_HV_TOS_SMTHRM_0518, CI_HV_RF_SMTHRM_0518
Effective Date: May 2018
End Date: TBD

Measure Description

The Smart Thermostat measure involves the replacement of a manually operated or conventional programmable thermostat with a “smart” thermostat (defined below). This measure only applies to thermostats that control central A/C, heat pump, furnace, or rooftop units (RTUs) with capacity up to 5.42 tons (65,000 BTU/h). Thermostats for larger systems should be treated as custom measures. This measure may be a time of sale, retrofit, or new construction measure.

Definition of Baseline Condition

Retrofit: As a retrofit measure, the baseline equipment is the in-situ manually operated or properly programmed thermostat that was replaced, or an assumed (defaulted) mix of these two.

Definition of Efficient Condition

The efficient condition is a smart thermostat that has earned ENERGY STAR certification or has the following product requirements:

1. Automatic scheduling
2. Occupancy sensing (set “on” as a default)
3. For homes with a heat pump, smart thermostats must be capable of controlling heat pumps to optimize energy use and minimize the use of backup electric resistance heat.
4. Ability to adjust settings remotely via a smart phone or online the absence of connectivity to the connected thermostat (CT) service provider, retain the ability for residents to locally:
 a. view the room temperature,
 b. view and adjust the set temperature, and
 c. switch between off, heating and cooling.
5. Have a static temperature accuracy ≤ ± 2.0 °F
6. Have network standby average power consumption of ≤ 3.0 W average (Includes all equipment necessary to establish connectivity to the CT service provider’s cloud, except those that can reasonably be expected to be present in the home, such as Wi-Fi routers and smart phones.)
7. Enter network standby after ≤ 5.0 minutes from user interaction (on device, remote or occupancy detection)
8. The following capabilities may be enabled through the CT device, CT service or any combination of the two. The CT product shall maintain these capabilities through subsequent firmware and software changes.
 a. Ability for consumers to set and modify a schedule.
 b. Provision of feedback to occupants about the energy impact of their choice of settings.
 c. Ability for consumers to access information relevant to their HVAC energy consumption, e.g. HVAC run time.

Annual Energy Savings Algorithm

1004 ENERGY STAR’s qualified products list for smart thermostats: https://data.energystar.gov/dataset/ENERGY-STAR-Certified-Connected-Thermostats/7p2p-wkbf

1005 ENERGY STAR Smart Thermostat Specification, from which most requirements based: https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Program%20Requirements%20for%20Connected%20Thermostats%20Version%201.0_0.pdf
As smart thermostats are control technologies, when possible, heating and cooling savings should be calculated based on data from installed thermostats. Otherwise, cooling savings should only be claimed for buildings with central air conditioning. Heating savings may be claimed for buildings with electric resistance, heat pump, or non-electric heating.

\[\Delta \text{kWh} = \Delta \text{kWh}_{\text{cooling}} + \Delta \text{kWh}_{\text{heating}} \]

\[\Delta \text{kWh}_{\text{cooling}} = \text{CCAP} \times \text{HOURS}_{\text{cool}} \times \frac{1}{\text{SEER}} \times \text{ElecCool_Saving\%} \]

\[\Delta \text{kWh}_{\text{heating}} = \text{HCAP}_{\text{elec}} \times \text{HOURS}_{\text{heat}} \times \frac{1}{\text{HSPF}} \times \text{ElecHeat_Saving\%} \]

\[\Delta \text{MMBTU} = \text{HCAP}_{\text{fuel}} \times \text{HOURS}_{\text{heat}} \times \frac{1}{\text{AFUE}} \times \text{FuelHeat_Saving\%} \]

Where:

- **CCAP** = Cooling capacity of existing AC unit, in kBTU/hr.
- **HOURS\text{cool}** = Full load hours for cooling equipment. See table “Full Load Cooling Hours by Location and Building Type” in Appendix F.
- **SEER** = SEER of controlled unit. If unknown use current energy code requirements for mechanical cooling efficiency.
- **ElecCool_Saving\%** = Electrical cooling percent savings from thermostat relative to baseline control. If baseline thermostat type is known, see table “Savings Factors for Smart Thermostats by Baseline Technology” below. If baseline thermostat type is unknown, ElecCool_Savings\% = 4%.
- **HCAP\text{elec}** = Heating capacity of existing heat pump or electric resistance unit, in kBTU/hr.
- **HOURS\text{heat}** = Full load hours for heating equipment. See table “Full Load Heating Hours by Location and Building Type” in Appendix F.
- **HSPF** = HSPF of controlled unit. If unknown use current energy code requirements for mechanical heating efficiency.
- **ElecHeat_Saving\%** = Electrical heating percent savings from thermostat relative to baseline control. If baseline thermostat type is known, see table “Savings Factors for Smart Thermostats by Baseline Technology” below. If baseline thermostat type is unknown, ElecHeat_Savings\% = 3%.

NEEP has developed a Guidance Document detailing methodology to claim savings from smart thermostats, available here: http://www.neep.org/claiming-savings-smart-thermostats-guidance-document. This guidance uses the metric developed for the ENERGY STAR certification to develop geographically and temporally specific savings averages for program claims. These calculated savings numbers are expected to be more accurate and potentially yield higher level of savings than the estimates provided in the TRM.
$HCAP_{\text{fuel}}$ = Heating capacity of existing furnace unit, in MMBTU/hr.

$AFUE$ = AFUE of controlled unit. If unknown use current energy code requirements for mechanical heating efficiency.

$FuelHeat_\text{Saving}_\%$ = Heating fuel percent savings from thermostat relative to baseline control. If baseline thermostat type is known, see table “Savings Factors for Smart Thermostats by Baseline Technology” below. If baseline thermostat type is unknown, $FuelHeat_\text{Saving}_\% = 3.5\%$.

Savings Factors for Smart Thermostats by Baseline Technology

<table>
<thead>
<tr>
<th>Fuel and Function</th>
<th>Baseline Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Manual Thermostat1007</td>
</tr>
<tr>
<td>Savings factor for electric cooling,</td>
<td>5%</td>
</tr>
<tr>
<td>$Elec\text{Cool_Saving}_%$</td>
<td></td>
</tr>
<tr>
<td>Savings factor for electric heating,</td>
<td>4%</td>
</tr>
<tr>
<td>$Elec\text{Heat_Saving}_%$</td>
<td></td>
</tr>
<tr>
<td>Savings factor for fuel heating,</td>
<td>5%</td>
</tr>
<tr>
<td>$Fuel\text{Heat_Saving}_%$</td>
<td></td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

The smart thermostat measure as defined here (i.e., without a corresponding demand reduction program) is assumed to have no demand savings. Smart thermostats with a

1007 The savings percentages claimed for manual thermostats include the savings associated with upgrading from manual thermostats to programmable thermostats, which a 2015 MEMD study reported as about 3% savings for gas customers and 2% savings for electric customers. http://www.michigan.gov/documents/mpsc/CI_Programmable_TStats_MEMD_6_15_15_491808_7.pdf

1008 Relative to a programmable thermostat, smart thermostats have savings opportunities available from a “smart recovery” function, which enables users to set the time they would like the building to reach a temperature as opposed to setting a time that the unit should start operating. Savings are also available from improved error detection and from locking out building occupants’ ability to override programmed schedules. Individual case studies have demonstrated savings in a variety of small commercial applications, but large-scale evaluations of smart thermostat savings have so far been limited to thermostats installed in residential applications. CLEAResult’s “Guide to Smart Thermostats” reports the ranges of savings measured in recent *residential* evaluations, relative to a baseline that blended programmable and manual thermostats: 10-13% for gas savings; 14-18% for electric cooling savings; and 6-13% for electric heating savings. https://www.clearesult.com/insights/whitepapers/guide-to-smart-thermostats/
demand response program added on top may generate significant demand savings, but those are not quantified as part of this measure.

Annual Water Savings Algorithm

n/a

Incremental Cost

If the costs are not known, then the incremental cost for a time of sale replacement is assumed to be $1541009 and the incremental cost for a retrofit replacement is assumed to be $208.1010 Installation labor cost of $50 for labor should be added to the assumed incremental cost.

Measure Life

The measure life is assumed to be 7.5 years.1011

Operation and Maintenance Impacts

n/a

Refrigeration End Use

1009 From NEEP's 2016 Incremental Cost Study: [http://www.neep.org/incremental-cost-emerging-technology-01009](http://www.neep.org/incremental-cost-emerging-technology-0), table 3-13 found range of incremental costs to be $80-195 (with baseline as $54 and using Nest/Ecobee at $249). NEEP’s more recent list of home energy management systems products (http://neep.org/initiatives/high-efficiency-products/home-energy-management-systems) shows a straight average of 68 products at $210 for the cost of the smart thermostat, bringing the incremental cost assuming $54 for baseline down to $154.

1010 From NEEP’s 2016 Incremental Cost Study: [http://www.neep.org/incremental-cost-emerging-technology-01010](http://www.neep.org/incremental-cost-emerging-technology-0), table 3-13 found range of incremental costs to be $80-195 (with baseline as $54 and using Nest/Ecobee at $249). NEEP’s more recent list of home energy management systems products (http://neep.org/initiatives/high-efficiency-products/home-energy-management-systems) shows a straight average of 68 products at $210 for the cost of the smart thermostat, bringing the incremental cost assuming $54 for baseline down to $154.

Most of the models cited in the

1011 Based on professional judgment of TRM technical team. EULs observed for residential applications include: 11 years in AR TRM and 10 years in IL TRM, both of which are based on programmable thermostat EULs. CA workpapers conclude 3-year EUL using persistence modeling. RTF concludes a 5-year EUL based on CA workpapers and concerns that there is little basis for assuming long-time persistence of savings, considering past challenges with manual overrides and “know-how” needed to use wifi-connected devices, including communicating hardware and software downloading. For discussion, see Northwest Regional Technical Forum April 2017. https://nwcouncil.box.com/v/ResConnectedTstatsv1-2
ENERGY STAR Commercial Freezers

Unique Measure Code(s): CI_RF_TOS_FREEZER_0614
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes the installation of an ENERGY STAR qualified, high-efficiency packaged commercial freezer intended for food product storage.

Definition of Baseline Condition
The baseline condition is a standard-efficiency packaged commercial freezer meeting, but not exceeding, federal energy efficiency standards.

Definition of Efficient Condition
The efficient condition is a high-efficiency packaged commercial freezer meeting ENERGY STAR Version 4.0 requirements1012.

Annual Energy Savings Algorithm

\[\Delta k\text{Wh} = (kWh_{\text{BASEdaily}} - kWh_{\text{EEdaily}}) \times 365. \]

Where:

\[kWh_{\text{BASEdaily}} \text{1013} = \text{See table below.} \]

<table>
<thead>
<tr>
<th>Product Volume (in cubic feet)</th>
<th>Freezer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Closed</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td>VCS.SC.L</td>
</tr>
<tr>
<td>All volumes</td>
<td>0.22V+1.38</td>
</tr>
<tr>
<td>Transparent</td>
<td>VCT.SC.L</td>
</tr>
<tr>
<td>All volumes</td>
<td>0.29V+2.95</td>
</tr>
<tr>
<td>Horizontal Closed</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td>HCS.SC.L</td>
</tr>
<tr>
<td>All volumes</td>
<td>0.06V+1.12</td>
</tr>
</tbody>
</table>

1012 ENERGY STAR Program Requirements Product Specification for Commercial Refrigerators and Freezers Eligibility Criteria Version 4.0, ENERGY STAR, September 2016.

Where \(V = \text{Association of Home Appliances Manufacturers (AHAM) volume} \)

* DOE Equipment Class designations relevant to ENERGY STAR eligible product scope.
(1) Equipment family code (\(HCS= \text{horizontal closed solid}, \ HCT= \text{horizontal closed transparent}, \ VCS= \text{vertical closed solid}, \ VCT= \text{vertical closed transparent} \)).
(2) Operating mode (\(SC= \text{self-contained} \)).
(3) Rating Temperature (\(M= \text{medium temperature} \ (38 \ ^\circ F), \ L= \text{low temperature} \ (0 \ ^\circ F) \)).

\[
\text{kWhEEdailymax}^{1014} = \text{See table below.}
\]

<table>
<thead>
<tr>
<th>Product Volume (in cubic feet)</th>
<th>Freezer (kWhEEdailymax)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Closed</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td></td>
</tr>
<tr>
<td>0 < (V < 15)</td>
<td>0.21V+0.9</td>
</tr>
<tr>
<td>15 (\leq V < 30)</td>
<td>0.12V+2.248</td>
</tr>
<tr>
<td>30 (\leq V < 50)</td>
<td>0.285V-2.703</td>
</tr>
<tr>
<td>50 (\leq V)</td>
<td>0.142V+4.445</td>
</tr>
<tr>
<td>Transparent</td>
<td></td>
</tr>
<tr>
<td>0 < (V < 15)</td>
<td>0.232V+2.36</td>
</tr>
<tr>
<td>15 (\leq V < 30)</td>
<td></td>
</tr>
<tr>
<td>30 (\leq V < 50)</td>
<td></td>
</tr>
<tr>
<td>50 (\leq V)</td>
<td></td>
</tr>
<tr>
<td>Horizontal Closed</td>
<td></td>
</tr>
<tr>
<td>Solid or Transparent</td>
<td>HCT.SC.L, HCS.SC.L</td>
</tr>
<tr>
<td>All volumes</td>
<td>0.057V+0.55</td>
</tr>
</tbody>
</table>

Where \(V = \text{Association of Home Appliances Manufacturers (AHAM) volume} \).

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = (\Delta kWh/\text{HOURS}) \times \text{CF}.
\]

Where:

- \(\text{HOURS} = \text{Full load hours} \).

\[^{1014}\text{ENERGY STAR Program Requirements Product Specification for Commercial Refrigerators and Freezers Eligibility Criteria Version 4.0, ENERGY STAR, September 2016.} \]
\[CF = \text{Summer Peak Coincidence Factor for measure.} \]

\[= 0.772. \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is assumed to be $0.$

Measure Life

The measure life is assumed to be 12 years.

Operation and Maintenance Impacts

n/a

1016 Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. Combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

1017 Unit Energy Savings (UES) Measures and Supporting Documentation, ComFreezer_v3_0.xlsm, October 2012, Northwest Power & Conservation Council, Regional Technical Forum

ENERGY STAR Commercial Refrigerator

Unique Measure Code(s): CI_RF_TOS_REFRIG_0614
Effective Date: June 2014
End Date: TBD

Measure Description
This measure describes the installation of an ENERGY STAR qualified, high-efficiency packaged commercial refrigerator intended for food product storage.

Definition of Baseline Condition
The baseline condition is a standard-efficiency packaged commercial refrigerator meeting, but not exceeding, federal energy efficiency standards.

Definition of Efficient Condition
The efficient condition is a high-efficiency packaged commercial refrigerator meeting ENERGY STAR Version 4.0 requirements.\(^{1020}\)

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = (\text{kWh}_{\text{BASE, daily max}} - \text{kWh}_{\text{EE, daily max}}) \times 365.
\]

Where:
\(\text{kWh}_{\text{BASE, daily max}}\)\(^{1021}\) = See table below.

<table>
<thead>
<tr>
<th>Product Volume (in cubic feet)</th>
<th>Refrigerator (kWh\text{BASE, daily max})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Closed</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td>VCS.SC.M*</td>
</tr>
<tr>
<td>All volumes</td>
<td>0.05V+1.36</td>
</tr>
<tr>
<td>Transparent</td>
<td>VCT.SC.M</td>
</tr>
<tr>
<td>All volumes</td>
<td>0.1V+0.86</td>
</tr>
<tr>
<td>Horizontal Closed</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td>HCS.SC.M</td>
</tr>
<tr>
<td>All volumes</td>
<td>0.05V+0.91</td>
</tr>
</tbody>
</table>

Where V = Association of Home Appliances Manufacturers (AHAM) volume

* DOE Equipment Class designations relevant to ENERGY STAR eligible product scope
 (1) Equipment family code (HCS= horizontal closed solid, HCT=horizontal closed transparent, VCS= vertical closed solid, VCT=vertical closed transparent).
 (2) Operating mode (SC=self-contained).
 (3) Rating Temperature (M=medium temperature (38 °F), L=low temperature (0 °F)).)

See table below.

kWhEdailymax \(^{1022}\)

<table>
<thead>
<tr>
<th>Product Volume (in cubic feet)</th>
<th>Refrigerator (kWhBASEdailymax)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical Closed</td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td>VCS.SC.M*</td>
</tr>
<tr>
<td>0 < V < 15</td>
<td>0.022V+0.97</td>
</tr>
<tr>
<td>15 ≤ V < 30</td>
<td>0.066V+0.31</td>
</tr>
<tr>
<td>30 ≤ V < 50</td>
<td>0.04V+1.09</td>
</tr>
<tr>
<td>50 ≤ V</td>
<td>0.024V+1.89</td>
</tr>
<tr>
<td>Transparent</td>
<td>VCT.SC.M</td>
</tr>
<tr>
<td>0 < V < 15</td>
<td>0.095V+0.445</td>
</tr>
<tr>
<td>15 ≤ V < 30</td>
<td>0.05V+1.12</td>
</tr>
<tr>
<td>30 ≤ V < 50</td>
<td>0.076V+0.34</td>
</tr>
<tr>
<td>50 ≤ V</td>
<td>0.105V-1.111</td>
</tr>
<tr>
<td>Horizontal Closed</td>
<td></td>
</tr>
<tr>
<td>Solid or Transparent</td>
<td>HCT.SC.M, HCS.SC.M</td>
</tr>
<tr>
<td>All volumes</td>
<td>0.05V+0.28</td>
</tr>
</tbody>
</table>

Where V = Association of Home Appliances Manufacturers (AHAM) volume

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = (\Delta kWh/HOURS) \times CF. \]

Where:

\[HOURS = \text{Full load hours}. \]

\[CF = \text{Summer Peak Coincidence Factor for measure}. \]

\[CF = 0.772. \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is assumed to be $0.\(^{1026}\)

Measure Life

The measure life is assumed to be 12 years.\(^{1027}\)

Operation and Maintenance Impacts

n/a

\(^{1024}\) Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York. Combined with full load hour assumptions used for efficiency measures to account for diversity of equipment usage within the peak period hours.

Night Covers for Refrigerated Cases

Unique Measure Code(s): CI_RF_RF_NTCOV_0615
Effective Date: June 2015
End Date: TBD

Measure Description
By covering refrigerated cases, the heat gain due to the spilling of refrigerated air and convective mixing with room air is reduced at the case opening. Continuous curtains can be pulled down overnight while the store is closed, yielding significant energy savings.

Definition of Baseline Condition
In order for this characterization to apply, the baseline equipment is assumed to be a refrigerated case without a night cover.

Definition of Efficient Condition
In order for this characterization to apply, the efficient equipment is assumed to be a refrigerated case with a continuous cover deployed during overnight periods. Characterization assumes covers are deployed for six hours daily.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \frac{\text{LOAD}}{12,000} \times \text{FEET} \times \frac{3.516}{\text{COP}} \times \text{ESF} \times 8,760 \]

\[\Delta \text{kWh} = 346.5 \times \frac{\text{FEET}}{\text{COP}}. \]

Where:
- LOAD = average refrigeration load per linear foot of refrigerated case without night covers deployed.
 = 1,500 BTU/h1028 per linear foot.
- FEET = linear (horizontal) feet of covered refrigerated case.
- 12,000 = conversion factor - BTU per ton cooling.
- 3.516 = conversion factor – Coefficient of Performance (COP) to kW per ton.

\[\text{COP} = \text{Coefficient of Performance of the refrigerated case.} \]
\[\text{COP} = \text{assumed 2.2}^{1029}, \text{if actual value is unknown.} \]
\[\text{ESF} = \text{Energy Savings Factor; reflects the percent reduction in refrigeration load due to the deployment of night covers} \]
\[\text{ESF} = 9\%^{1030} \]
\[8,760 = \text{assumed annual operating hours of the refrigerated case.} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = 0^{1031} \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental capital cost for this retrofit measure is $42 per linear foot of cover installed including material and labor.\(^{1032}\)

Measure Life

The expected measure life is assumed to be 5 years.\(^{1033}\)

Operation and Maintenance Impacts

n/a

\(^{1031}\) Assumed that the continuous covers are deployed at night; therefore no demand savings occur during the peak period.

Anti-Sweat Heater Controls
Unique Measure Code(s): CI_RF_TOS_ASHC_0516
Effective Date: May 2016
End Date: TBD

Measure Description
Anti-sweat door heaters (ASDH) prevent condensation from forming on cooler and freezer doors. By installing a control device to turn off door heaters when there is little or no risk of condensation, significant energy savings can be realized. There are two commercially available control strategies – (1) ON/OFF controls and (2) micro pulse controls – that respond to a call for heating, which is typically determined using either a door moisture sensor or an indoor air temperature and humidity sensor to calculate the dew point. In the first strategy, the ON/OFF controls turn the heaters on and off for minutes at a time, resulting in a reduction in run time. In the second strategy, the micro pulse controls pulse the door heaters for fractions of a second, in response to the call for heating.

Both of these strategies result in energy and demand savings. Additional savings come from refrigeration interactive effects. When the heaters run less, they introduce less heat into the refrigerated spaces and reduce the cooling load.

Definition of Baseline Condition
In order for this characterization to apply, the baseline condition is assumed to be a commercial glass door cooler or refrigerator with a standard heated door running 24 hours a day, seven days per week (24/7) with no controls installed.

Definition of Efficient Condition
In order for this characterization to apply, the efficient equipment is assumed to be a door heater control on a commercial glass door cooler or refrigerator utilizing either ON/OFF or micro pulse controls.

Annual Energy Savings Algorithm

$$\Delta kWh = kW_d \times (\%ON_{NONE} - \%ON_{CONTROL}) \times NUMdoors \times HOURS \times WHFe.$$

Where:

$$kW_d = connected\ load\ kW\ per\ connected\ door.$$
= If actual \(kW_d \) is unknown, assume 0.13 kW.\(^{1034}\)

\%ON_NONE = Effective run time of uncontrolled ASDH.
= assume 90.7%\(^{1035}\).

\%ON_CONTROL = Effective run time of ASDH with controls.
= assume 58.9% for ON/OFF controls and 42.8% for micropulse controls.\(^{1036}\)

NUMdoors = number of reach-in refrigerator or freezer doors controlled by sensor.
= Actual number of doors controlled by sensor.

HOURS = Hours of operation.
= 8,760.

WHFe = Waste Heat Factor for Energy; represents the increased savings due to reduced waste heat from heaters that must be rejected by the refrigeration equipment.
= assume 1.25 for cooler and 1.50 for freezer applications.\(^{1037}\)

Summer Coincident Peak \(kW \) Savings Algorithm

\[\Delta kW = kW_d \times WHFd \times CF. \]

Where:

WHFd = Waste Heat Factor for Demand; represents the increased savings due to reduced waste heat from heatersthat must be rejected by the refrigeration equipment.
= assume 1.25 for cooler and 1.50 for freezer.

CF = Summer Peak Coincidence Factor.
= If site specific CFs are unkown, use deemed estimates in the table below.\(^{1038}\)

<table>
<thead>
<tr>
<th>Control Type</th>
<th>(CF_{\text{refrigerator}})</th>
<th>(CF_{\text{freezer}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off Controls</td>
<td>0.25</td>
<td>0.21</td>
</tr>
</tbody>
</table>

\(^{1035}\) Ibid.
\(^{1036}\) Ibid.
\(^{1037}\) Ibid. Coincidence factors developed by dividing the PJM Summer Peak \(kW \) Savings for ASDH Controls from Table 52 of the referenced report (0.041 \(kW/\)door for on/off controls and 0.58 \(kW/\)door for micropulse controls) by the product of the average wattage of ASDH per connected door (0.13 \(kW \)) and the Waste Heat Factor for Demand for either a refrigerator or a freezer.
\(^{1038}\) Ibid.
Micropulse Controls

<table>
<thead>
<tr>
<th></th>
<th>0.36</th>
<th>0.30</th>
</tr>
</thead>
</table>

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost
The incremental capital cost is $994 for a door heater controller, $123 for a cooler door, and $219 for a freezer door\(^{1039}\). Values include labor costs.

Measure Life
The expected measure life is assumed to be 12 years\(^{1040}\).

Operation and Maintenance Impacts
n/a

Evaporator Fan Electronically-Commutated Motor (ECM) Retrofit

Unique Measure Code(s): CI_RF_RF_ECMFAN_0516
Effective Date: May 2016
End Date: TBD

Measure Description
Evaporator fans circulate air in refrigerated spaces by drawing air across the evaporator coil and into the space. Fans are found in both reach-in and walk-in coolers and freezers. Energy and demand savings for this measure are achieved by reducing motor operating power. Additional savings come from refrigeration interactive effects. Because electronically-commutated motors (ECMs) are more efficient and use less power, they introduce less heat into the refrigerated space compared to the baseline motors and result in a reduction in cooling load on the refrigeration system.

Definition of Baseline Condition
In order for this characterization to apply, the baseline condition is assumed to be an evaporator fan powered by a shaded pole (SP) motor that runs 24 hours a day, seven days per week (24/7) with no controls.

Definition of Efficient Condition
In order for this characterization to apply, the efficient equipment is assumed to be an evaporator fan powered by an ECM that runs 24/7 with no controls.

Annual Energy Savings Algorithm

\[\Delta k\text{Wh} = kW_{hp} \times HP \times \%\Delta_p \times \%\text{ON}_{UC} \times \text{HOURS} \times \text{WHFe}. \]

Where:
\[kW_{hp} \quad = \quad \text{ECM connected load kW per horsepower.} \]
\[HP \quad = \quad \text{if actual kW}_{hp} \text{ is unknown, assume 0.758 kW/hp.}^{1041} \]
\[\%\Delta_p \quad = \quad \text{Horsepower of ECM.} \]
\[\%\text{ON}_{UC} \quad = \quad \text{Actual horsepower of ECM.} \]

\[\%\Delta P = \text{Percent change in power relative to ECM kW, calculated as the kW of the SP motor minus the kW of the ECM, divided by the kW of the ECM.}\]

\[\%\text{ON}_{UC} = \text{Effective run time of uncontrolled motors.}\]

\[HOURS = \text{Hours of operation.}\]

\[\text{WHFe} = \text{Waste Heat Factor for Energy; represents the increased savings due to reduced waste heat from motors that must be rejected by the refrigeration equipment.}\]

\[\text{WHFe} = \text{assume 1.38 for cooler and 1.76 for freezer applications.}\]

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = kW_{hp} \times HP \times WHFd \times CF.\]

Where:

\[WHFd = \text{Waste Heat Factor for Demand; represents the increased savings due to reduced waste heat from motors that must be rejected by the refrigeration equipment.}\]

\[CF = \text{Summer Peak Coincidence Factor.}\]

\[CF = \text{If site specific CFs are unknown, use 1.53.}\]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

1042 Ibid.
1043 Ibid.
1044 Ibid.
1045 Ibid.
1046 Ibid. Coincidence factors developed by dividing the PJM Peak Savings for EF Motors and Controls from Table 47 of the referenced report (1.607 for a refrigerator and 2.048 for a freezer by the product of the average ECM wattage per rated horsepower (0.758 kW/hp) and the Waste Heat Factor for Demand for either a refrigerator or a freezer. Note: the CF is greater than one because it is calculated relative to the wattage of the post-retrofit ECM motor as opposed to the existing SP motor.
Incremental Cost
The incremental capital cost is $61. Values include labor costs.1047

Measure Life
The expected measure life is assumed to be 15 years.1048

Operation and Maintenance Impacts
n/a

1047 Based on a review of the Maine, Vermont, Illinois, and Wisconsin technical reference manuals, published incremental cost estimates for this measure range from $25 to $245. Assume the median cost of $60 adjusted for inflation.

Evaporator Fan Motor Controls

Unique Measure Code(s): CI_RF_RF_EFCTRL_0516
Effective Date: May 2016
End Date: TBD

Measure Description
Evaporator fans circulate cool air in refrigerated spaces by drawing air across the evaporator coil and into the space. Uncontrolled, evaporator fans run 24 hours a day, seven days per week (24/7). Evaporator fan controls reduce fan run time or speed depending on the call for cooling, and therefore provide an opportunity for energy and demand savings. There are two commercially available strategies – (1) ON/OFF controls and (2) multispeed controls – that respond to a call for cooling. In the first strategy, the ON/OFF controls turn the motors on and off in response to the call for cooling, generating energy and demand savings as a result of a reduction in run time. In the second strategy, the multispeed controls change the speed of the motors in response to the call for cooling, saving energy and reducing demand by reducing operating power and run time (multispeed controls can also turn the motor off).

Additional savings come from the refrigeration interactive effects. Because fan controls reduce motor operating power and/or run time, they introduce less heat into the refrigerated space compared to uncontrolled motors and result in a reduction in cooling load on the refrigeration system.

Definition of Baseline Condition
In order for this characterization to apply, the baseline condition is assumed to be an evaporator fan powered by an uncontrolled ECM or SP motor that runs 24/7.

Definition of Efficient Condition
In order for this characterization to apply, the efficient equipment is assumed to be an evaporator fan powered by an ECM or SP motor utilizing either ON/OFF or multispeed controls.

Annual Energy Savings Algorithm

\[\Delta k\text{Wh} = kW_{hp} \times \text{HP} \times (\%\text{ON}_{UC} - \%\text{ON}_{CONTROL}) \times \text{HOURS} \times WHFe \]

Where:
\(kW_{hp} \) = connected load kW per horsepower of motor.
\(= \) If actual \(kW_{hp} \) is unknown, assume 0.758 kW/hp for ECM and 2.088 kW/hp for SP motor.\(^{1049}\)

\(HP \) = Horsepower of ECM or SP motor.
\(= \) Actual horsepower of ECM or SP motor.

\(\%ON_{UC} \) = Effective run time of uncontrolled motor
\(= \) If actual \(\%ON_{UC} \) is unknown, assume 97.8\%.\(^{1050}\)

\(\%ON_{CONTROL} \) = Effective run time of motor with controls.
\(= \) Assume 63.6\% for ON/OFF style controls and 69.2\% for multi-speed style controls.\(^{1051}\)

\(HOURS \) = Hours of operation.
\(= 8,760. \)

\(WHFe \) = Waste Heat Factor for Energy; represents the increased savings due to reduced waste heat from motors that must be rejected by the refrigeration equipment.
\(= \) assume 1.38 for cooler and 1.76 for freezer applications.\(^{1052}\)

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = kW_{hp} \times HP \times WHFd \times CF
\]

Where:

\(WHFd \) = Waste Heat Factor for Demand; represents the increased savings due to reduced waste heat from motors that must be rejected by the refrigeration equipment.
\(= \) assume 1.38 for cooler and 1.76 for freezer applications.\(^{1053}\)

\(CF \) = Summer Peak Coincidence Factor.
\(= \) If site specific CFs are unknown, use 0.26.\(^{1054}\)

Annual Fossil Fuel Savings Algorithm

\(n/a \)

\(^{1050}\) Ibid.

\(^{1051}\) Ibid.

\(^{1052}\) Ibid.

\(^{1053}\) Ibid.

\(^{1054}\) Ibid. Coincidence factors developed by dividing the PJM Peak Savings for EF Motors and Controls from Table 47 of the referenced report by the product of the average baseline motor wattage per rated horsepower (0.758 kW/hp for ECM and 2.088 kW/hp for SP) and the Waste Heat Factor for Demand.
Annual Water Savings Algorithm
n/a

Incremental Cost
The incremental capital cost is $532 for multispeed controls.1055 Value includes labor costs.

The actual measure installation cost for ON/OFF controls should be used (including materials and labor).1056

Measure Life
The expected measure life is assumed to be 10 years.1057

Operation and Maintenance Impacts
n/a
Hot Water End Use

C&I Heat Pump Water Heater

Unique Measure Code(s): CI_WT_TOS_HPCIHW_0614
Effective Date: June 2014
End Date: TBD

Measure Description

This measure relates to the installation of a Heat Pump water heater in place of a standard electric water heater. This measure applies to time of sale and new construction opportunities.

Definition of Baseline Condition

The baseline condition is a standard electric water heater.

Definition of Efficient Condition

The efficient condition is a heat pump water heater.

Annual Energy Savings Algorithm

\[\Delta k\text{W} = \left(\frac{k\text{BTU}_{\text{req}}}{3.413}\right) \times \left(\frac{1}{\text{EF}_{\text{base}}} - \frac{1}{\text{EF}_{\text{ee}}}\right) \]

Where:

- \[k\text{BTU}_{\text{req (Office)}} = \text{Required annual heating output of office (kBTU)} \]
 \[= 6,059 \] \[^{1058} \]

- \[k\text{BTU}_{\text{req (School)}} = \text{Required annual heating output of school (kBTU)} \]
 \[= 22,191 \] \[^{1059} \]

\(^{1058}\) Assumes an office with 25 employees; According to 2003 ASHRAE Handbook: HVAC Applications, Office typically uses 1.0 gal/person per day.
Assumes an 80F temperature rise based on a typical hot water holding tank temperature setpoint of 140F and 60F supply water. Actual supply water temperature will vary by season and source.

\(^{1059}\) Assumes an elementary school with 300 students; According to 2003 ASHRAE Handbook: HVAC Applications, Elementary School typically uses 0.6 gal/person per day of operation.
Assumes 37 weeks of operation.
Assumes an 80F temperature rise based on a typical hot water holding tank temperature setpoint of 140F and 60F supply water. Actual supply water temperature will vary by season and source.
$3.413 = \text{Conversion factor from kBTU to kWh.}$

$E_{Fee} = \text{Energy Factor of Heat Pump domestic water heater.}$

$= 2.0.$ \footnote{1060}

$E_{F_{\text{base}}} = \text{Energy Factor of baseline domestic water heater.}$

$= 0.904.$ \footnote{1061}

$\Delta_{\text{kWh Office}} = (6,059 / 3.413) * ((1/0.904) - (1/2.0)).$

$= 1076.2 \text{ kWh.}$

$\Delta_{\text{kWh School}} = (22,191 / 3.413) * ((1/0.904) - (1/2.0)).$

$= 3941.4 \text{ kWh.}$

If the deemed “kBTU_req” estimates are not applicable, the following equation can be used to estimate annual water heating energy requirements:

$k_{\text{BTU_req}} = \text{GPD} * 8.33 * 1.0 * \text{WaterTempRise} * 365 / 1000.$

Where:

$\text{GPD} = \text{Average daily hot water requirements (gallons/day).}$

$\text{= Actual usage (Note: days when the building is unoccupied must be included in the averaging calculation).}$

$8.33 = \text{Density of water (lb/gallon).}$

$1.0 = \text{Specific heat of water (BTU/lb-°F).}$

$\text{WaterTempRise} = \text{Difference between average temperature of water delivered to site and water heater setpoint (°F).}$

$365 = \text{Days per year.}$

Summer Coincident Peak kW Savings Algorithm

$\Delta{kW} = \Delta{\text{kWh}} / \text{Hours} \times \text{CF}$

Where:

\footnote{Water heating requirement equation adopted from FEMP Federal Technology Alert: Commercial Heat Pump Water Heater, 2000.}

\footnote{Ibid.}
Hours (Office) = Run hours in office.
 = 5885. ¹⁰⁶²

Hours (School) = Run hours in school.
 = 2218. ¹⁰⁶³

CF (Office) = Summer Peak Coincidence Factor for office measure.
 = 0.630. ¹⁰⁶⁴

CF (School) = Summer Peak Coincidence Factor for school measure.
 = 0.580. ¹⁰⁶⁵

ΔkW Office = (1076.2 / 5885) * 0.630.
 = 0.12 kW.

ΔkW School = (3941.4 / 3.413) * 0.580.
 = 1.03 kW.

If annual operating hours and CF estimates are unknown, use deemed HOURS and CF estimates above. Otherwise, use site specific values.

Annual Fossil Fuel Savings Algorithm
 n/a

Annual Water Savings Algorithm
 n/a

¹⁰⁶² Calculated from Itron eShapes, which is 8760 hourly data by end use for Upstate New York.
¹⁰⁶³ Ibid.
¹⁰⁶⁴ Ibid.
¹⁰⁶⁵ Ibid.
Incremental Cost
The lifecycle NPV incremental cost for this time of sale measure is provided below.1066

<table>
<thead>
<tr>
<th>Size</th>
<th>Efficiency Factor</th>
<th>Incremental Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 Gallons</td>
<td>2</td>
<td>$1,338</td>
</tr>
<tr>
<td>60 Gallons</td>
<td>2.2</td>
<td>$2,253</td>
</tr>
</tbody>
</table>

Measure Life
The measure life is assumed to be 10 years.1067

Operation and Maintenance Impacts
n/a

1066 Itron, \textit{Mid-Atlantic TRM Version 7.0 Incremental Costs Update}, 2017. Measure and baseline costs were calculated using hedonic models and data from Itron, \textit{2010 - 2012 WO017 Ex Ante Measure Cost Study}, conducted for the California Public Utility Commission in 2014. Results are adjusted for inflation and to reflect differences in Maryland labor rates. Calculations, data and sources are available at http://www.neep.org/file/5549/download?token=S3weM_MA.

Pre-Rinse Spray Valves

Unique Measure Code(s): CI_WT_EREP_PRSPRY_0615
Effective Date: June 2015
End Date: TBD

Measure Description
All pre-rinse valves use a spray of water to remove food waste from dishes prior to cleaning in a dishwasher. They reduce water consumption, water heating cost, and waste water (sewer) charges. Pre-rinse spray valves include a nozzle, squeeze lever, and dish guard bumper. The spray valves usually have a clip to lock the handle in the “on” position. Pre-rinse valves are inexpensive and easily interchangeable with different manufacturers’ assemblies. The primary impacts of this measure are water savings. Energy savings depend on the facility’s water heating fuel - if the facility does not have electric water heating, there are no electric savings for this measure; if the facility does not have fossil fuel water heating, there are no MMBTU savings for this measure.

Definition of Baseline Condition
The baseline equipment is assumed to be an existing spray valve with a flow rate of 3 gallons per minute.

Definition of Efficient Condition
The efficient equipment is assumed to be a pre-rinse spray valve with a flow rate of 1.6 gallons per minute, and with a cleanability performance of 26 seconds per plate or less.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = \Delta \text{Water} \times \text{HOT}\% \times 8.33 \times (\Delta T) \times (1/\text{EFF}) / 3413. \]

Where:
- \(\Delta \text{Water} \) = Water savings (gallons); see calculation in “Water Impact” section below.
- \(\text{HOT}\% \) = The percentage of water used by the pre-rinse spray valve that is heated.
 - \(\text{HOT}\% = 69\%^{1068} \)
- 8.33 = The energy content of heated water (BTU/gallon/°F).

\(^{1068}\) Measures and Assumptions for DSM Planning (2009). Navigant Consulting. Prepared for the Ontario Energy Board. This factor is a candidate for future improvement through evaluation.
ΔT = Temperature rise through water heater (°F).
 = 70.
\[\text{EFF} = \text{Water heater thermal efficiency.} \]
 = 0.97.
\[\text{3413} = \text{Factor to convert BTU to kwh.} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = 0 \]

Annual Fossil Fuel Savings Algorithm

\[\Delta \text{MMBTU} = \Delta \text{Water} \times \text{HOT\%} \times 8.33 \times (\Delta T) \times (1/\text{EFF}) \times 10^{-6} \]

Where:
\[\text{EFF} = \text{Water heater thermal efficiency.} \]
 = 0.75.
\[10^{-6} = \text{Factor to convert BTU to MMBTU.} \]

Annual Water Savings Algorithm

\[\Delta \text{Water} = (\text{FLO}_{\text{base}} - \text{FLO}_{\text{eff}}) \times 60 \times \text{HOURS}_{\text{day}} \times 365 \]

Where:
\[\Delta \text{Water} = \text{Annual water savings (gal).} \]
\[\text{FLO}_{\text{base}} = \text{The flow rate of the baseline spray nozzle.} \]
 = 3 gallons per minute.
\[\text{FLO}_{\text{eff}} = \text{The flow rate of the efficient equipment.} \]
 = 1.6 gallons per minute.
\[60 = \text{minutes per hour.} \]
\[365 = \text{days per year.} \]
\[\text{HOURS} = \text{Hours used per day – depends on facility type as below.} \]

1069 Engineering judgment; assumes typical supply water temperature of 70°F and a hot water storage tank temperature of 140°F.
1070 Federal Standards.
1072 Hours estimates based on PG&E savings estimates, algorithms, sources (2005). Food Service Pre-Rinse Spray Valves
<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Hours of Pre-Rinse Spray Valve Use per Day (HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Service Restaurant</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
</tr>
<tr>
<td>Limited Service (Fast Food) Restaurant</td>
<td>1</td>
</tr>
</tbody>
</table>

Incremental Cost

The actual measure installation cost should be used (including material and labor).

Measure Life

The measure life is assumed to be 5 years.\(^{1073}\)

Operation and Maintenance Impacts

n/a

Appliance End Use

Commercial Clothes Washer

Unique Measure Code(s): CI_LA_TOS_CCWASH_0516
Effective Date: May 2016
End Date: TBD

Measure Description
This measure relates to the purchase (time of sale) and installation of a commercial clothes washer (i.e., soft-mounted front-loading or soft-mounted top-loading clothes washer that is designed for use in applications in which the occupants of more than one household will be using the clothes washer, such as multi-family housing common areas and coin laundries) exceeding the ENERGY STAR minimum qualifying efficiency standards presented below.\(^\text{1074}\)

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Modified Energy Factor (MEF)</th>
<th>Water Factor (WF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY STAR</td>
<td>>= 2.2</td>
<td><= 4.5</td>
</tr>
</tbody>
</table>

The Modified Energy Factor (MEF) measures energy consumption of the total laundry cycle (washing and drying). It indicates how many cubic feet of laundry can be washed and dried with one kWh of electricity; the higher the number, the greater the efficiency.

The Water Factor (WF) is the number of gallons needed for each cubic foot of laundry. A lower number indicates lower consumption and more efficient use of water.

Definition of Baseline Condition
The baseline efficiency is determined according to the Modified Energy Factor (MEF) that takes into account the energy and water required per clothes washer cycle, including energy required by the clothes dryer per clothes washer cycle. The federal baseline MEF as of May 2016 is 1.60 for top loading units and 2.00 for front loading units. Beginning January 1, 2018, the federal standards increase to 1.35 for top loading units and remain 2.00 for front loading units.

Definition of Efficient Condition

\(^\text{1074}\) U.S. EPA. 2015. ENERGY STAR® Program Requirements Product Specification for Clothes Washers Eligibility Criteria Version 7.1
The efficient condition is a clothes washer meeting the ENERGY STAR efficiency criteria presented above.

Annual Energy Savings Algorithm

\[
\Delta \text{kWh} = \Delta \text{kWh}_{\text{CW}} + \Delta \text{kWh}_{\text{DHW}} + \Delta \text{kWh}_{\text{DRYER}}
\]

\[
\Delta \text{kWh}_{\text{CW}} = (\text{kWh}_{\text{UNIT, BASE}} - \text{kWh}_{\text{UNIT, EE}}) \times \%\text{CW}
\]

\[
\Delta \text{kWh}_{\text{DHW}} = (\text{kWh}_{\text{UNIT, BASE}} - \text{kWh}_{\text{UNIT, EE}}) \times \%\text{DHW} \times \text{DHW}_{ELEC}
\]

\[
\Delta \text{kWh}_{\text{DRYER}} = \left[\left(\text{kWh}_{\text{TOTAL, BASE}} - \text{kWh}_{\text{TOTAL, EE}}\right) - \left(\text{kWh}_{\text{UNIT, BASE}} - \text{kWh}_{\text{UNIT, EE}}\right)\right] \times \%	ext{LOADS}_{\text{DRYED}} / \text{DHW}_{\text{USAGE}} \times \text{DRYER}_{\text{USAGE_MOD}} \times \text{DRYER}_{ELEC}
\]

\[\text{kWh}_{\text{UNIT,i}} = \text{kWh}_{\text{UNIT,RATED,i}} \times \text{Ncycles} / \text{Ncycles}_{\text{ref}}\]

\[\text{kWh}_{\text{TOTAL,i}} = \text{Capacity} / \text{MEF}_i \times \text{Ncycles}\]

Where

- \(i\) = Subscript denoting either baseline (“BASE”) or efficient (“EE”) equipment.
- \(\Delta \text{kWh}_{\text{CW}}\) = Clothes washer machine electric energy savings.
- \(\Delta \text{kWh}_{\text{DHW}}\) = Water heating electric energy savings.
- \(\Delta \text{kWh}_{\text{DRYER}}\) = Dryer electric energy savings.
- \(\text{kWh}_{\text{UNIT, BASE}}\) = Conventional unit electricity consumption exclusive of required dryer energy.
- \(\text{kWh}_{\text{UNIT, EE}}\) = ENERGY STAR unit electricity consumption exclusive of required dryer energy.
- \(\text{kWh}_{\text{TOTAL, BASE}}\) = Conventional unit electricity consumption inclusive of required dryer energy (assuming electric dryer).
- \(\text{kWh}_{\text{TOTAL, EE}}\) = ENERGY STAR unit electricity consumption inclusive of required dryer energy (assuming electric dryer).
- \(\text{kWh}_{\text{UNIT,RATED, BASE}}\) = Conventional rated unit electricity consumption.
 - If actual value unknown, assume 241 kWh/yr.\(^{1075}\)
- \(\text{kWh}_{\text{UNIT,RATED, EE}}\) = Efficient rated unit electricity consumption.
 - If actual value unknown, assume 97 kWh/yr.\(^{1076}\)
- \(\%\text{CW}\) = Percentage of unit energy consumption used for clothes washer operation.

\(^{1076}\) Ibid.
\%DHW = Percentage of unit energy consumption used for water heating.

\= If unknown, assume 80\%1078

\(\text{DHW}_{\text{ELEC}}\) = 1 if electric water heating; 0 if gas water heating.

\(\text{MEF}_{\text{BASE}}\) = Modified Energy Factor of baseline unit.
\= Values provided in table below.

\(\text{MEF}_{\text{EE}}\) = Modified Energy Factor of efficient unit.
\= Actual. If unknown assume average values provided below.

Capacity = Clothes washer capacity (cubic feet).
\= Actual. If capacity is unknown assume average 3.43 cubic feet1079

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Modified Energy Factor (MEF)</th>
<th>Front Loading</th>
<th>Top Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Standard</td>
<td>Before January 1, 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\geq 2.00)</td>
<td>(\geq 1.60)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>On or After January 1, 2018</td>
<td>(\geq 2.00)</td>
<td>(\geq 1.35)</td>
</tr>
<tr>
<td>ENERGY STAR</td>
<td></td>
<td></td>
<td>(\geq 2.20)</td>
</tr>
</tbody>
</table>

\(N_{\text{cycles}}\) = Number of cycles per year.
\= If actual value unknown, assume 1,241 for multifamily applications and 2,190 for landromats1080

\(N_{\text{cycles ref}}\) = Reference number of cycles per year.
\= 3921081

\(\%\text{LOADS}_{\text{DRYED}}\) = Percentage of washer loads dried in machine.
\= If actual value unknown, assume 100\%.

\(\text{DRYER}_{\text{USAGE}}\) = Dryer usage factor.

1077 Ibid.
1078 Ibid.
1079 Based on the average commercial clothes washer volume of all units meeting ENERGY STAR V7.1 criteria listed in the ENERGY STAR database of certified products accessed on 03/07/2016. https://www.energystar.gov/productfinder/product/certified-commercial-clothes-washers/results.
1081 Ibid.
Note, utilities may consider whether it is appropriate to claim kWh savings from the reduction in water consumption arising from this measure. The kWh savings would be in relation to the pumping and wastewater treatment. See water savings for characterization.

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \Delta kWh/\text{Hours} \times CF
\]

Where:

- **Hours** = Assumed Run hours of Clothes Washer.
 - 265.1084
- **CF** = Summer Peak Coincidence Factor for measure
 - 0.029.1085

Annual Fossil Fuel Savings Algorithm

\[
\Delta \text{MMBTU} = \Delta \text{MMBTU}_{\text{DHW}} + \Delta \text{MMBTU}_{\text{DRYER}}
\]

\[
\Delta \text{MMBTU}_{\text{DHW}} = (\text{kWh}_{\text{UNIT, BASE}} - \text{kWh}_{\text{UNIT, EE}}) \times \%\text{DHW} / \text{DHW}_{\text{EFF}} \times \text{MMBTU }_{\text{convert}} \times \text{DHW}_{\text{GAS}}
\]

\[
\Delta \text{MMBTU}_{\text{DRYER}} = ([\text{kWh}_{\text{TOTAL,BASE}} - \text{kWh}_{\text{TOTAL,EE}}] - (\text{kWh}_{\text{UNIT, BASE}} - \text{kWh}_{\text{UNIT, EE}})) \times \text{MMBTU }_{\text{convert}} \times \%\text{LOADS}_{\text{DRYED}} / \text{DRYER}_{\text{USAGE}} \times \text{DRYER}_{\text{USAGE,MOD}} \times \text{DRYER}_{\text{GAS,CORR}} \times \text{DRYER}_{\text{GAS}}
\]

Where:

1082 Ibid.
1083 Ibid.
1084 Metered data from Navigant Consulting “EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 - May 31, 2013) Appliance Rebate Program.” March 21, 2014, page 36. This data applies to residential applications. In the absence of metered data specific to multifamily common area and commercial laundromat applications, this coincidence value is used as a proxy given consistency with the PJM peak definition; however, this value is likely conservatively low for commercial applications and is a candidate for update should more applicable data become available.
1085 Ibid.
\(\Delta \text{MMBTU}_{\text{DHW}} \) = Water heating gas energy savings
\(\Delta \text{MMBTU}_{\text{DRYER}} \) = Dryer gas energy savings
\(\text{DHW}_{\text{EFF}} \) = Gas water heater efficiency.
\(\text{MMBTU}_{\text{convert}} \) = Conversion factor from kWh to MMBTU.
\(= 0.003413 \).
\(\text{DHW}_{\text{GAS}} \) = 1 if gas water heating; 0 if electric water heating.
\(\text{DRYER}_{\text{GAS, CORR}} \) = Gas dryer correction factor; 1.12 1086.
\(\text{DRYER}_{\text{GAS}} \) = 1 if gas dryer; 0 if electric dryer.

Annual Water Savings Algorithm
\(\Delta \text{Water (CCF)} = \text{Capacity} \times (\text{WF}_{\text{BASE}} - \text{WF}_{\text{EE}}) \times \text{Ncycles} / 748 \)

Where
\(\text{WF}_{\text{BASE}} \) = Water Factor of baseline clothes washer.
\(\text{Values provided below.} \)
\(\text{WF}_{\text{EE}} \) = Water Factor of efficient clothes washer.
\(\text{Actual. If unknown assume value provided below.} \)
\(748 \) = Conversion factor from gallons to CCF.

<table>
<thead>
<tr>
<th>Efficiency Level</th>
<th>Water Factor (WF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Front Loading</td>
</tr>
<tr>
<td>Federal Standard</td>
<td></td>
</tr>
<tr>
<td>Before January 1, 2018</td>
<td></td>
</tr>
<tr>
<td><= 5.5</td>
<td></td>
</tr>
<tr>
<td>On or After January 1, 2018</td>
<td></td>
</tr>
<tr>
<td>ENERGY STAR</td>
<td></td>
</tr>
</tbody>
</table>

KWh Savings from Water Reduction

The kWh savings from the waste reduction characterized above is now estimated. Please note that utilities’ must be careful not to double count the monetary benefit of these savings within cost effectiveness testing if the avoided costs of water already include the associated electric benefit.

\[\Delta k\text{Wh}_{\text{water}} \cdot 1087 = 2.07 \text{ kWh/CCF} \cdot \Delta \text{Water (CCF)} \]

Incremental Cost

The lifecycle NPV incremental cost for this time of sale measure is $200.1088

Measure Life

The measure life is assumed to be 7 years.1089

Operation and Maintenance Impacts

n/a

Plug Load End Use

Tier 1 Advanced Power Strip

Unique Measure Code: CI_PL_TOS_APS_0614

Effective Date: June 2014

End Date: TBD

Measure Description

This measure relates to the installation of a Current-Sensing Master/Controlled Advanced Power Strip (APS) in place of a standard “power strip,” a device used to expand a single wall outlet into multiple outlets. This measure is assumed to be a time of sale installation.

Definition of Baseline Condition

The baseline condition is a standard “power strip”. This strip is simply a “plug multiplier” that allows the user to plug in multiple devices using a single wall outlet. Additionally, the baseline unit has no ability to control power flow to the connected devices.

Definition of Efficient Condition

1087 This savings estimate is based upon VEIC analysis of data gathered in audit of DC Water Facilities, MWH Global, “Energy Savings Plan, Prepared for DC Water.” Washington, D.C., 2010. See DC Water Conservation.xlxs for calculations and DC Water Conservation Energy Savings_Final.doc for write-up. This is believed to be a reasonably proxy for the entire region.

1088 Energy Star calculator accessed April 25, 2017, which cites “Cadmus research in available models, 2016,” which is based on Cadmus review in 2015 of 4 retailer websites - Sears, Home Depot, Lowes Best Buy.

1089 Ibid
The efficient condition is a Current-Sensing Master/Controlled Advanced Power Strip that functions as both a “plug multiplier” and also as a plug load controller. The efficient unit has the ability to essentially disconnect controlled devices from wall power when the APS detects that a controlling device, or master load, has been switched off. The efficient device effectively eliminates standby power consumption for all controlled devices when the master load is not in use.

Annual Energy Savings Algorithm

\[\Delta \text{kWh} = 26.9 \text{ kWh} \]

Summer Coincident Peak kW Savings Algorithm

\[\Delta \text{kW} = 0 \text{ kW} \]

Annual Fossil Fuel Savings Algorithm

n/a

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is assumed to be $18.

Measure Life

The measure life is assumed to be 4 years.

Notes:

1090 Most advanced power strips have one or more uncontrolled plugs that can be used for devices where a constant power connection is desired such as fax machines and wireless routers.

1091 Energy & Resource Solutions. 2013. Emerging Technologies Research Report; Advanced Power Strips for Office Environments prepared for the Regional Evaluation, Measurement, and Verification Forum facilitated by the Northeast Energy Efficiency Partnerships.” Assumes savings consistent with the 20W threshold setting for the field research site (of two) demonstrating higher energy savings. ERS noted that the 20 W threshold may be unreliable due to possible inaccuracy of the threshold setting in currently available units. It is assumed that future technology improvements will reduce the significance of this issue. Further, savings from the site with higher average savings was adopted (26.9 kWh versus 4.7 kWh) acknowledging that investigations of APS savings in other jurisdictions have found significantly higher savings. For example, Northwest Power and Conservation Council, Regional Technical Forum. 2011. “Smart Power Strip Energy Savings Evaluation” found average savings of 145 kWh.

Operation and Maintenance Impacts

n/a

Commercial Kitchen Equipment End Use

Commercial Fryers

Unique Measure Code(s): CI_KE_TOS_FRY_0516
Effective Date: May 2016
End Date: TBD

Measure Description
Commercial fryers that have earned the ENERGY STAR offer shorter cook times and higher production rates through advanced burner and heat exchanger designs. Frypot insulation reduces standby losses resulting in a lower idle energy rate. This measure applies to both standard sized fryers and large vat fryers. Standard sized fryers that have earned the ENERGY STAR are up to 30% more efficient than non-qualified models; large vat fryers are 35% more efficient. This measure applies to time of sale opportunities.

Definition of Baseline Condition
The baseline equipment is assumed to be a standard efficiency electric fryer with a heavy load efficiency of 75% for standard sized equipment and 70% for large vat equipment or a gas fryer with heavy load efficiency of 35% for both standard sized and large vat equipment.

Definition of Efficient Condition
The efficient equipment is assumed to be an ENERGY STAR qualified electric or gas fryer.

Annual Energy Savings Algorithm

\[\text{kWh}_{i} = (\text{kWh_Cooking}_{i} + \text{kWh_Idle}_{i}) \times \text{DAYS}\]

\[\text{kWh_Cooking}_{i} = \text{LB} \times \frac{\text{EFOOD}_i}{\text{EFF}_i}\]

\(^{1094}\) Standard fryers measures >12 inches and < 18 inches wide, and have shortening capacities > 25 pounds and < 65 pounds. Large vat fryers measure > 18 inches and < 24 inches wide, and have shortening capacities > 50 pounds.

\[kWh_{\text{Idle}} = \text{IDLE}_i \times (\text{HOURS}_{\text{DAY}} - \text{LB}/\text{PC}) \]

\[\text{kWh}_i = [\text{LB} \times \text{E}_{\text{FOOD}}/\text{EFF}_i + \text{IDLE}_i \times (\text{HOURS}_{\text{DAY}} - \text{LB}/\text{PC})] \times \text{DAYS} \]

\[\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}} \]

Where:

\[^{1096}i\] = either “base” or “eff” depending on whether the calculation of energy consumption is being performed for the baseline or efficient case, respectively.

\[\text{kWh}_{\text{Cooking}} = \text{daily cooking energy consumption (kWh)}. \]

\[\text{kWh}_{\text{Idle}} = \text{daily idle energy consumption (kWh)}. \]

\[\text{kWh}_{\text{base}} = \text{the annual energy usage of the baseline equipment calculated using baseline values}. \]

\[\text{kWh}_{\text{eff}} = \text{the annual energy usage of the efficient equipment calculated using efficient values}. \]

\[\text{HOURS}_{\text{DAY}} = \text{average daily operating hours}. \]

\[^{1096}\] = if average daily operating hours are unknown, assume default of 16 hours/day for standard fryers and 12 hours/day for large vat fryers.

\[\text{E}_{\text{FOOD}} = \text{ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food} = 0.167. \]

\[\text{LB} = \text{Pounds of food cooked per day (lb/day)}. \]

\[^{1096}\] = if average pounds of food cooked per day is unknown, assume default of 150 lbs/day.

\[\text{DAYS} = \text{annual days of operation}. \]

\[^{1096}\] = if annual days of operation are unknown, assume default of 365 days.

\[\text{EFF} = \text{Heavy load cooking energy efficiency (%).} \]

\[^{1096}\] = see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

\[\text{IDLE} = \text{idle energy rate (kW)}. \]

\[^{1096}\] = see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

\[\text{PC} = \text{Production capacity (lb/hr)}. \]

= see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

Electric Fryer Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard Size</th>
<th>Large Vat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline Model</td>
<td>Energy Efficient Model</td>
</tr>
<tr>
<td>IDLE (kW)</td>
<td>1.05</td>
<td>0.80</td>
</tr>
<tr>
<td>EFF</td>
<td>75%</td>
<td>83%</td>
</tr>
<tr>
<td>PC</td>
<td>65</td>
<td>70</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \Delta kWh / (\text{HOURS}_{\text{DAY}} \times \text{DAYS})
\]

Annual Fossil Fuel Savings Algorithm

\[
\text{MMBTU}_i = (\text{MMBTU}_\text{Cooking}_i + \text{MMBTU}_\text{Idle}_i) \times \text{DAYS}
\]

\[
\text{MMBTU}_\text{Cooking}_i = \text{LB} \times \frac{\text{E}_{\text{FOOD}}/\text{EFF}_i}{\text{LB}}
\]

\[
\text{MMBTU}_\text{Idle}_i = \text{IDLE}_i \times (\text{HOURS}_{\text{DAY}} - \text{LB/PC}_i)
\]

\[
\text{MMBTU}_i = [\text{LB} \times \frac{\text{E}_{\text{FOOD}}/\text{EFF}_i}{\text{LB}} + \text{IDLE}_i \times (\text{HOURS}_{\text{DAY}} - \text{LB/PC}_i)] \times \text{DAYS}
\]

\[
\Delta \text{MMBTU} = \text{MMBTU}_{\text{base}} - \text{MMBTU}_{\text{eff}}
\]

Where:

- \(\text{MMBTU}_\text{Cooking}_i\) = daily cooking energy consumption (MMBTU).
- \(\text{MMBTU}_\text{Idle}_i\) = daily idle energy consumption (MMBTU).
- \(\text{MMBTU}_{\text{base}}\) = the annual energy usage of the baseline equipment calculated using baseline values.

1097 No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

\(MMBTU_{\text{eff}} \) = the annual energy usage of the efficient equipment calculated using efficient values.

\(E_{\text{Food}} \) = ASTM Energy to Food (MMBTU/lb); the amount of energy absorbed by the food during cooking, per pound of food = 0.00057.

\(IDLE \) = idle energy rate (MMBTU/h).

= see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

Gas Fryer Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard Size</th>
<th>Large Vat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline Model</td>
<td>Energy Efficient Model</td>
</tr>
<tr>
<td>IDLE (MMBTU/h)</td>
<td>0.014</td>
<td>0.009</td>
</tr>
<tr>
<td>EFF</td>
<td>35%</td>
<td>50%</td>
</tr>
<tr>
<td>PC</td>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

n/a

Incremental Cost\(^{1099}\)

For electric fryers, the incremental cost for this time of sale measure is assumed to be $210 for standard sized equipment and $0 for large vat equipment. For gas fryers, the incremental cost is assumed to be $0 for standard sized equipment and $1,120 for large vat equipment.

Measure Life

12 years\(^{1100}\)

Operation and Maintenance Impacts

n/a

Commercial Steam Cookers
Unique Measure Code(s): CI KE TOS_STMR_0615
Effective Date: June 2015
End Date: TBD

Measure Description
Energy efficient steam cookers that have earned the ENERGY STAR label offer shorter cook times, higher production rates, and reduced heat loss due to better insulation and more efficient steam delivery system. This measure applies to time of sale opportunities.

Definition of Baseline Condition
The baseline condition assumes a standard efficiency electric or gas boiler-style steam cooker.

Definition of Efficient Condition
The efficient condition assumes the installation of an ENERGY STAR qualified electric or gas steam cooker.

Annual Energy Savings Algorithm

\[\text{kWh}_i = (\text{kWh}_\text{Cooking}_i + \text{kWh}_\text{Idle}_i) \times \text{DAYS} \]

\[\text{kWh}_\text{Cooking}_i = \text{LB} \times \text{E}_\text{FOOD/EFF}_i \]

\[\text{kWh}_\text{Idle}_i = [(1 - \text{PCT}_{\text{steam}}) \times \text{IDLE}_i + \text{PCT}_{\text{steam}} \times \text{PC}_i \times \text{PANS} \times \text{E}_\text{FOOD/EFF}_i] \times \text{TIME}_{\text{idle}} \]

\[\text{TIME}_{\text{idle}} = (\text{HOURS}_\text{DAY} - \text{LB}/(\text{PC}_i \times \text{PANS})) \]

\[\text{kWh}_i = [\text{LB} \times \text{E}_\text{FOOD/EFF}_i + ((1 - \text{PCT}_{\text{steam}}) \times \text{IDLE}_i + \text{PCT}_{\text{steam}} \times \text{PC}_i \times \text{PANS} \times \text{E}_\text{FOOD/EFF}_i) \times (\text{HOURS}_\text{DAY} - \text{LB}/(\text{PC}_i \times \text{PANS}))] \times \text{DAYS} \]

\[\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}} \]

Where: \(^{1102}\)

\(^{1101}\) US EPA. August 2003. ENERGY STAR® Program Requirements Product Specification for Commercial Steam Cookers Eligibility Criteria Version 1.2

i = either “base” or “eff” depending on whether the calculation of energy consumption is being performed for the baseline or efficient case, respectively.

$kWh_{Cooking_i}$ = daily cooking energy consumption (kWh).

kWh_{Idle_i} = daily idle energy consumption (kWh).

$Time_{idle}$ = daily idle time (h).

kWh_{base} = the annual energy usage of the baseline equipment calculated using baseline values.

kWh_{eff} = the annual energy usage of the efficient equipment calculated using efficient values.

$DAYS$ = annual days of operation.

LB = Pounds of food cooked per day (lb/day).

E_{FOOD} = ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food = 0.0308.

EFF = Heavy load cooking energy efficiency (%).

PCT_{steam} = percent of time in constant steam mode (%).

$IDLE$ = Idle energy rate (kW).

PC = Production capacity per pan (lb/hr).

$PANS$ = number of pans per unit.

$HOURS_{DAY}$ = average daily operating hours.

Electric Steam Cooker Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of Pans</th>
<th>Baseline Model Steam Generator</th>
<th>Boiler Based</th>
<th>Energy Efficient Model All</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE (kW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>0.400</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>0.530</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>0.670</td>
</tr>
<tr>
<td></td>
<td>6+</td>
<td></td>
<td></td>
<td>0.800</td>
</tr>
<tr>
<td>EFF</td>
<td>All</td>
<td>30%</td>
<td>26%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm 1103

\[
\Delta kW = \frac{\Delta kWh}{(\text{HOURS}_{\text{DAY}} \times \text{DAYS})}
\]

Annual Fossil Fuel Savings Algorithm

\[
\text{MMBTU}_i = (\text{MMBTU}_\text{Cooking}_i + \text{MMBTU}_\text{Idle}_i) \times \text{DAYS}
\]

\[
\text{MMBTU}_\text{Cooking}_i = \text{LB} \times \frac{E_{\text{FOOD/EFF}}_i}{PCT}\text{steam}_i
\]

\[
\text{MMBTU}_\text{Idle}_i = (\frac{[1 - PCT_{\text{steam}}] \times \text{IDLE}_i + PCT_{\text{steam}} \times PC_i \times \text{PANS} \times \frac{E_{\text{FOOD/EFF}}_i}{PCT}}{\text{TIME}_{\text{idle}}} \times \text{DAYS}
\]

\[
\text{TIME}_{\text{idle}} = (\text{HOURS}_{\text{DAY}} - \frac{\text{LB}}{\text{PC}_i \times \text{PANS}})
\]

\[
\text{MMBTU}_i = [\text{LB} \times \frac{E_{\text{FOOD/EFF}}_i}{PCT} + (\frac{[1 - PCT_{\text{steam}}] \times \text{IDLE}_i + PCT_{\text{steam}} \times PC_i \times \text{PANS} \times \frac{E_{\text{FOOD/EFF}}_i}{PCT}}{\text{TIME}_{\text{idle}}} \times (\text{HOURS}_{\text{DAY}} - \frac{\text{LB}}{\text{PC}_i \times \text{PANS}})] \times \text{DAYS}
\]

\[
\Delta \text{MMBTU} = \text{MMBTU}_{\text{base}} - \text{MMBTU}_{\text{eff}}
\]

Where: 1104

\[
\text{MMBTU}_{\text{base}} = \text{the annual energy usage of the baseline equipment calculated using baseline values.}
\]

1103 No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

\[\text{MMBTU}_{\text{eff}} = \text{the annual energy usage of the efficient equipment calculated using efficient values.} \]

\[\text{MMBTU}_{\text{Cooking}} = \text{daily cooking energy consumption (MMBTU).} \]

\[\text{MMBTU}_{\text{Idle}} = \text{daily idle energy consumption (MMBTU).} \]

\[E_{\text{FOOD}} = \text{ASTM Energy to Food (MMBTU/lb); the amount of energy absorbed by the food during cooking, per pound of food.} \]

\[E_{\text{FOOD}} = 0.000105. \]

\[\text{IDLE} = \text{Idle energy rate (MMBTU/h).} \]

\[\text{IDLE} = \text{see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.} \]

\[\text{PC} = \text{Production capacity per pan (lb/hr).} \]

\[\text{PC} = \text{default baseline production capacity per pan is 23.3. If actual efficient production capacity per pan is unknown, assume default of 20.} \]

Gas Steam Cooker Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of Pans</th>
<th>Baseline Model</th>
<th>Energy Efficient Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Steam Generator</td>
<td>Boiler Based</td>
</tr>
<tr>
<td>IDLE(^{\text{MMBTU}})</td>
<td>3</td>
<td>0.018</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFF</td>
<td>All</td>
<td>18%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

\[\Delta \text{Water} = (\text{GPH}_{\text{base}} - \text{GPH}_{\text{eff}}) \times \text{HOURS}_{\text{DAY}} \times \text{DAYS}. \]

Where: 1105

\[\text{GPH}_{\text{base}} = \text{Water consumption rate (gal/h) of baseline equipment.} \]

\[\text{GPH}_{\text{base}} = \text{if water consumption rate of baseline equipment is unknown, assume default values from table below.} \]

\[\text{GPH}_{\text{eff}} = \text{Water consumption rate (gal/h) of efficient equipment.} \]

= if water consumption rate of efficient equipment is unknown, assume default values from table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of Pans</th>
<th>Baseline Model</th>
<th>Energy Efficient Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All</td>
<td>Steam Generator</td>
</tr>
<tr>
<td>GPH</td>
<td>All</td>
<td>40</td>
<td>15</td>
</tr>
</tbody>
</table>

Incremental Cost

The incremental cost of a time of sale electric ENERGY STAR steam cooker is $630 for 3-pans, $1,210 for 4-pans, $0 for 5-pans, and $0 for 6-pans+. The incremental cost of a time of sale gas ENERGY STAR steam cooker is $260 for 3-pans, N/A for 4-pans, $0 for 5-pans, and $870 for 6-pans+.

Measure Life

12 years

Operation and Maintenance Impacts

n/a

1107 Ibid.
Commercial Hot Food Holding Cabinets

Unique Measure Code(s): CIKE_TOS_HFHC_0615
Effective Date: June 2015
End Date: TBD

Measure Description
Commercial insulated hot food holding cabinet models that meet ENERGY STAR requirements incorporate better insulation, reducing heat loss, and may also offer additional energy saving devices such as magnetic door gaskets, auto-door closures, or dutch doors. The insulation of the cabinet also offers better temperature uniformity within the cabinet from top to bottom. This means that qualified hot food holding cabinets are more efficient at maintaining food temperature while using less energy. This measure applies to time of sale opportunities.

Definition of Baseline Condition
The baseline equipment is assumed to be a standard efficiency hot food holding cabinet.

Definition of Efficient Condition
The efficient equipment is assumed to be an ENERGY STAR qualified hot food holding cabinet.¹¹⁰⁸

Annual Energy Savings Algorithm

\[\Delta k\text{Wh} = (\text{IDLE}_{\text{base}} - \text{IDLE}_{\text{eff}}) / 1000 \times \text{HOURS}_{\text{DAY}} \times \text{DAYS} \]

Where:¹¹⁰⁹

- \(\text{IDLE}_{\text{base}} \) = the idle energy rate of the baseline equipment (W). See table below for calculation of default values.
- \(\text{IDLE}_{\text{eff}} \) = the idle energy rate of the efficient equipment (W). If actual efficient values are unknown, assume default values from table below.
- \(1,000 \) = conversion of W to kW.
- \(\text{HOURS}_{\text{DAY}} \) = average daily operating hours.

if average daily operating hours are unknown, assume default of 15 hours/day.

\[\text{DAYS} = \text{annual days of operation.} \]

if annual days of operation are unknown, assume default of 365 days.

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \frac{\text{IDLE}_{\text{base}} - \text{IDLE}_{\text{eff}}}{1000} \]

Hot Food Holding Cabinet Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>VOLUME (Cubic Feet)</th>
<th>Product Idle Energy Consumption Rate (Watts)</th>
<th>Baseline Model (IDLE_{\text{base}})</th>
<th>Efficient Model (IDLE_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < VOLUME < 13</td>
<td>40 x VOLUME</td>
<td>21.5 x VOLUME</td>
<td></td>
</tr>
<tr>
<td>13 ≤ VOLUME < 28</td>
<td>40 x VOLUME</td>
<td>2.0 x VOLUME + 254.0</td>
<td></td>
</tr>
<tr>
<td>28 ≤ VOLUME</td>
<td>40 x VOLUME</td>
<td>3.8 x VOLUME + 203.5</td>
<td></td>
</tr>
</tbody>
</table>

Note: VOLUME = the internal volume of the holding cabinet (ft³).
* = actual volume of installed unit

Annual Fossil Fuel Savings Algorithm
n/a

Annual Water Savings Algorithm
n/a

Incremental Cost

The incremental cost for a for this time of sale measure ENERGY STAR hot food holding cabinets is assumed to be $0.

Measure Life

1110 No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

12 years

Operation and Maintenance Impacts

n/a

1112 **Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment.**

Commercial Griddles
Unique Measure Code(s): CI_KE_TOS_GRID_0615
Effective Date: June 2015
End Date: TBD

Measure Description
ENERGY STAR qualified commercial griddles have higher cooking energy efficiency and lower idle energy rates than standard equipment. The result is more energy being absorbed by the food compared with the total energy use, and less wasted energy when the griddle is in standby mode. This measure applies to time of sale opportunities.

Definition of Baseline Condition
The baseline equipment is assumed to be a standard efficiency electric griddle with a cooking energy efficiency of 65% or a gas griddle with a cooking efficiency of 32%.

Definition of Efficient Condition
The efficient equipment is assumed to be an ENERGY STAR qualified electric or gas griddle.\(^{1113}\)

Annual Energy Savings Algorithm
\[
\text{kWh}_i = (\text{kWh_Cooking}_i + \text{kWh_Idle}_i) \times \text{DAYS}
\]

\[
\text{kWh_Cooking}_i = \text{LB} \times \text{E}\text{FOOD/EFF}_i
\]

\[
\text{kWh_Idle}_i = \text{IDLE}_i \times \text{SIZE} \times \left[\text{HOURS_DAY} - \frac{\text{LB}}{\text{PC}_i \times \text{SIZE}}\right]
\]

\[
\text{kWh}_i = \left[\text{LB} \times \text{E}\text{FOOD/EFF}_i + \text{IDLE}_i \times \text{SIZE} \times \left(\text{HOURS_DAY} - \frac{\text{LB}}{\text{PC}_i \times \text{SIZE}}\right)\right] \times \text{DAYS}
\]

\[
\Delta \text{kWh} = \text{kWh_base} - \text{kWh_eff}
\]

Where:

\(i \) = either “base” or “eff” depending on whether the calculation of energy consumption is being performed for the baseline or efficient case, respectively.

\(kWh_{\text{Cooking}}^i \) = daily cooking energy consumption (kWh).

\(kWh_{\text{Idle}}^i \) = daily idle energy consumption (kWh).

\(kWh_{\text{base}} \) = the annual energy usage of the baseline equipment calculated using baseline values.

\(kWh_{\text{eff}} \) = the annual energy usage of the efficient equipment calculated using efficient values.

\(LB \) = Pounds of food cooked per day (lb/day).

\(= \) if average pounds of food cooked per day is unknown, assume default of 100 lbs/day.

\(E_{\text{FOOD}} \) = ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food.

\(= 0.139 \).

\(EFF \) = Heavy load cooking energy efficiency (%).

\(= \) see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

\(IDLE \) = Idle energy rate (kW/ft\(^2\)).

\(= \) see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

\(SIZE \) = size of the griddle surface (ft\(^2\)).

\(HOURS_{\text{DAY}} \) = average daily operating hours.

\(= \) if average daily operating hours are unknown, assume default of 12 hours/day.

\(PC \) = Production capacity (lb/hr/ft\(^2\)).

\(= \) see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

\(DAYS \) = annual days of operation.

\(= \) if annual days of operation are unknown, assume default of 365 days.

Efficient Griddle Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline Model</th>
<th>Efficient Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE (kW/ft²)</td>
<td>0.40</td>
<td>0.32</td>
</tr>
<tr>
<td>EFF</td>
<td>65%</td>
<td>70%</td>
</tr>
<tr>
<td>PC</td>
<td>5.83</td>
<td>6.67</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \Delta kWh / (\text{HOURS}_\text{DAY} \times \text{DAYS}) \]

Annual Fossil Fuel Savings Algorithm

\[\text{MMBTU}_i = (\text{MMBTU} _\text{Cooking}_i + \text{MMBTU} _\text{Idle}_i) \times \text{DAYS} \]

\[\text{MMBTU} _\text{Cooking}_i = \text{LB} \times E_{\text{FOOD}}/\text{EFF}_i \]

\[\text{MMBTU} _\text{Idle}_i = \text{IDLE}_i \times \text{SIZE} \times [\text{HOURS}_\text{DAY} - \text{LB}/(\text{PC}_i \times \text{SIZE})] \]

\[\text{MMBTU}_i = [\text{LB} \times E_{\text{FOOD}}/\text{EFF}_i + \text{IDLE}_i \times \text{SIZE} \times (\text{HOURS}_\text{DAY} - \text{LB}/(\text{PC}_i \times \text{SIZE})] \times \text{DAYS} \]

\[\Delta \text{MMBTU} = \text{MMBTU}_\text{base} - \text{MMBTU}_\text{eff} \]

Where:

\[\text{MMBTU} _\text{Cooking}_i = \text{daily cooking energy consumption (MMBTU)}. \]

\[\text{MMBTU} _\text{Idle}_i = \text{daily idle energy consumption (MMBTU)}. \]

\[\text{MMBTU}_\text{base} = \text{the annual energy usage of the baseline equipment calculated using baseline values}. \]

\[\text{MMBTU}_\text{eff} = \text{the annual energy usage of the efficient equipment calculated using efficient values}. \]

\[E_{\text{FOOD}} = \text{ASTM Energy to Food (MMBTU/lb); the amount of energy absorbed by the food during cooking, per pound of food.} \]

\[= 0.000475. \]

\[\text{IDLE} = \text{idle energy rate (MMBTU/h/ft}^2). \]

1115 No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

= see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.

Gas Griddle Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline Model</th>
<th>Efficient Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE (MMBTU/h/ft²)</td>
<td>0.00350</td>
<td>0.00265</td>
</tr>
<tr>
<td>EFF</td>
<td>32%</td>
<td>38%</td>
</tr>
<tr>
<td>PC</td>
<td>4.17</td>
<td>7.50</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost of a time of sale electric ENERGY STAR griddle is assumed to be $0. The incremental cost of a time of sale gas ENERGY STAR griddle is assumed to be $360.

Measure Life

12 years

Operation and Maintenance Impacts

n/a

1118 Ibid.
Commercial Convection Ovens

Unique Measure Code(s): CI_KE_TOS_CONOV_0615
Effective Date: June 2015
End Date: TBD

Measure Description
Commercial convection ovens that are ENERGY STAR certified have higher heavy load cooking efficiencies and lower idle energy rates making them on average about 20 percent more efficient than standard models. This measure applies to time of sale opportunities.

Definition of Baseline Condition
The baseline equipment is assumed to be a standard efficiency convection oven with a heavy load efficiency of 65% for full size (i.e., a convection oven this is capable of accommodating full-size sheet pans measuring 18 x 26 x 1-inch) electric ovens, 68% for half size (i.e., a convection oven that is capable of accommodating half-size sheet pans measuring 18 x 13 x 1-inch) electric ovens, and 30% for gas ovens.

Definition of Efficient Condition
The efficient equipment is assumed to be an ENERGY STAR qualified electric or gas convection oven.¹¹¹⁹

Annual Energy Savings Algorithm

\[kWh_i = (kWh_{Cooking_i} + kWh_{Idle_i}) \times DAYS \]

\[kWh_{Cooking_i} = LB \times E_{FOOD/EFF_i} \]
\[kWh_{Idle_i} = IDLE_i \times (HOURS_{DAY} - LB/PC_i) \]

\[kWh_i = [LB \times E_{FOOD/EFF_i} + IDLE_i \times (HOURS_{DAY} - LB/PC_i)] \times DAYS \]

\[\Delta kWh = kWh_{base} - kWh_{eff} \]

Where:\n\ni \quad = \text{either “base” or “eff” depending on whether the calculation of energy consumption is being performed for the baseline or efficient case, respectively.}
\n\text{kWh}_{\text{Cooking}}_i \quad = \text{daily cooking energy consumption (kWh).}
\n\text{kWh}_{\text{Idle}}_i \quad = \text{daily idle energy consumption (kWh).}
\n\text{kWh}_{\text{base}} \quad = \text{the annual energy usage of the baseline equipment calculated using baseline values.}
\n\text{kWh}_{\text{eff}} \quad = \text{the annual energy usage of the efficient equipment calculated using efficient values.}
\n\text{HOURS}_{\text{DAY}} \quad = \text{average daily operating hours.}
\quad = \text{if average daily operating hours are unknown, assume default of 12 hours/day.}
\n\text{DAYS} \quad = \text{annual days of operation.}
\quad = \text{if annual days of operation are unknown, assume default of 365 days.}
\n\text{E}_{\text{FOOD}} \quad = \text{ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during cooking, per pound of food}
\quad = 0.0732.
\n\text{LB} \quad = \text{Pounds of food cooked per day (lb/day).}
\quad = \text{if average pounds of food cooked per day is unknown, assume default of 100 lbs/day.}
\n\text{EFF} \quad = \text{Heavy load cooking energy efficiency (%).}
\quad = \text{see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.}
\n\text{IDLE} \quad = \text{Idle energy rate (kW).}
\quad = \text{see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.}
\n\text{PC} \quad = \text{Production capacity (lb/hr).}
\quad = \text{see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.}

Electric Convection Oven Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Half Size</th>
<th>Full Size</th>
<th>Half Size</th>
<th>Full Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline Model</td>
<td>Energy Efficient Model</td>
<td>Baseline Model</td>
<td>Energy Efficient Model</td>
</tr>
<tr>
<td>IDLE (kW)</td>
<td>1.03</td>
<td>1.00</td>
<td>2.00</td>
<td>1.60</td>
</tr>
<tr>
<td>EFF</td>
<td>68%</td>
<td>71%</td>
<td>65%</td>
<td>71%</td>
</tr>
<tr>
<td>PC</td>
<td>45</td>
<td>50</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

Summer Coincident Peak kW Savings Algorithm

\[\Delta kW = \Delta kWh / (\text{HOURS}_{\text{DAY}} \times \text{DAYS}) \]

Annual Fossil Fuel Savings Algorithm

\[
\begin{align*}
\text{MMBTU}_i &= \text{MMBTU}_{\text{Cooking},i} + \text{MMBTU}_{\text{Idle},i} \times \text{DAYS} \\
\text{MMBTU}_{\text{Cooking},i} &= \text{LB} \times E_{\text{FOOD}}/\text{EFF}_i \\
\text{MMBTU}_{\text{Idle},i} &= \text{IDLE}_i \times (\text{HOURS}_{\text{DAY}} - \text{LB}/\text{PC}_i) \\
\text{MMBTU}_i &= [\text{LB} \times E_{\text{FOOD}}/\text{EFF}_i + \text{IDLE}_i \times (\text{HOURS}_{\text{DAY}} - \text{LB}/\text{PC}_i)] \times \text{DAYS} \\
\Delta \text{MMBTU} &= \text{MMBTU}_{\text{base}} - \text{MMBTU}_{\text{eff}}
\end{align*}
\]

Where:

- \(\text{MMBTU}_{\text{Cooking},i} \): daily cooking energy consumption (MMBTU).
- \(\text{MMBTU}_{\text{Idle},i} \): daily idle energy consumption (MMBTU).
- \(\text{MMBTU}_{\text{base}} \): the annual energy usage of the baseline equipment calculated using baseline values.
- \(\text{MMBTU}_{\text{eff}} \): the annual energy usage of the efficient equipment calculated using efficient values.
- \(E_{\text{FOOD}} \): ASTM Energy to Food (MMBTU/lb); the amount of energy absorbed by the food during cooking, per pound of food.

1122 No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.

\[IDLE = 0.000250. \]

\[
IDLE = \text{Idle energy rate (MMBTU/h)}. \\
= \text{see table below for default baseline values. If actual efficient values are unknown, assume default values from table below.}
\]

Gas Convection Oven Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Baseline Model</th>
<th>Energy Efficient Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDLE (MMBTU/h)</td>
<td>0.0151</td>
<td>0.0120</td>
</tr>
<tr>
<td>EFF</td>
<td>44%</td>
<td>46%</td>
</tr>
<tr>
<td>PC</td>
<td>83</td>
<td>86</td>
</tr>
</tbody>
</table>

Annual Water Savings Algorithm

n/a

Incremental Cost

The incremental cost for this time of sale measure is assumed to be $0.1124

Measure Life

12 years1125

Operation and Maintenance Impacts

n/a

1124 Savings Calculator for ENERGY STAR Certified Commercial Kitchen Equipment accessed April 25, 2017, which cites “EPA research using AutoQuotes, 2013.”

Commercial Combination Ovens

Unique Measure Code(s): CI KE TOS COMOV 0615
Effective Date: June 2015
End Date: TBD

Measure Description
A combination oven is a convection oven that includes the added capability to inject steam into the oven cavity and typically offers at least three distinct cooking modes. This measure applies to time of sale opportunities.

Definition of Baseline Condition
The baseline equipment is assumed to be a typical standard efficiency electric or gas combination oven.

Definition of Efficient Condition
The efficient equipment is assumed to be an ENERGY STAR qualified electric or gas combination oven.1126

Annual Energy Savings Algorithm

\[
\text{kWh}_{i,j} = (\text{kWh}_{\text{Cooking},i,j} + \text{kWh}_{\text{Idle},i,j}) \times \text{DAYS}
\]

\[
\text{kWh}_{\text{Cooking},i,j} = \text{LB} \times \frac{\text{EFOOD}_{i,j}}{\text{EFF}_{i,j}} \times \text{PCT}_{j}
\]

\[
\text{kWh}_{\text{Idle},i,j} = \text{IDLE}_{i,j} \times (\text{HOURS}_{\text{DAY}} - \text{LB/PC}_{i,j}) \times \text{PCT}_{j}
\]

\[
\text{kWh}_{i,j} = [\text{LB} \times \frac{\text{EFOOD}_{i,j}}{\text{EFF}_{i,j}} + \text{IDLE}_{i,j} \times (\text{HOURS}_{\text{DAY}} - \text{LB/PC}_{i,j})] \times \text{PCT}_{j} \times \text{DAYS}
\]

\[
\text{kWh}_{\text{base}} = \text{kWh}_{\text{base,conv}} + \text{kWh}_{\text{base,steam}}
\]

\[
\text{kWh}_{\text{eff}} = \text{kWh}_{\text{eff,conv}} + \text{kWh}_{\text{eff,steam}}
\]

\[
\Delta \text{kWh} = \text{kWh}_{\text{base}} - \text{kWh}_{\text{eff}}
\]

1126 US EPA. January 2014. ENERGY STAR® Program Requirements Product Specification for Commercial Ovens Eligibility Criteria Version 2.1
Where:

\(i \) = either “base” or “eff” depending on whether the calculation of energy consumption is being performed for the baseline or efficient case, respectively.

\(j \) = cooking mode; either “conv” (i.e., convection) or “steam”.

\(kWh_{Cooking_{ij}} \) = daily cooking energy consumption (kWh).

\(kWh_{Idle_{ij}} \) = daily idle energy consumption (kWh).

\(kWh_{base} \) = the annual energy usage of the baseline equipment calculated using baseline values.

\(kWh_{eff} \) = the annual energy usage of the efficient equipment calculated using efficient values.

\(HOURS_{DAY} \) = average daily operating hours.

\(DAYS \) = annual days of operation.

\(E_{FOOD,conv} \) = ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during convention mode cooking, per pound of food.

\(E_{FOOD,steam} \) = ASTM Energy to Food (kWh/lb); the amount of energy absorbed by the food during steam mode cooking, per pound of food.

\(LB \) = Pounds of food cooked per day (lb/day).

\(EFF \) = Heavy load cooking energy efficiency (%).

\(IDLE \) = Idle energy rate (kW).

\(PC \) = Production capacity (lb/hr).

PCT_j = percent of food cooked in cooking mode j. Note: PCT_{conv} + PCT_{steam} must equal 100%.
= if percent of food cooked in cooking mode j is unknown, assume default of $PCT_{conv} = PCT_{steam} = 50%$.

Electric Combination Oven Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of Pans</th>
<th>Baseline Model</th>
<th>Energy Efficient Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Convection Mode</td>
<td>Steam Mode</td>
</tr>
<tr>
<td>IDLE (kW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 15</td>
<td>1.320</td>
<td>5.260</td>
<td>0.08 x PANS + 0.4989</td>
</tr>
<tr>
<td>>= 15</td>
<td>2.280</td>
<td>8.710</td>
<td>76%</td>
</tr>
<tr>
<td>EFF</td>
<td>All</td>
<td>72%</td>
<td>69%</td>
</tr>
<tr>
<td>PC</td>
<td>< 15</td>
<td>79</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>>= 15</td>
<td>166</td>
<td>201</td>
</tr>
</tbody>
</table>

Note: $PANS = \text{The number of steam table pans the combination oven is able to accommodate as per the ASTM F-1495-05 standard specification}.$

Summer Coincident Peak kW Savings Algorithm

\[
\Delta kW = \Delta kWh / (\text{HOURS}_{\text{DAY}} \times \text{DAYS})
\]

Annual Fossil Fuel Savings

\[
\text{MMBTU}_i = [\text{LB} \times E_{\text{FOOD}}/\text{EFF}_i + \text{IDLE}_i \times (\text{HOURS}_{\text{DAY}} - \text{LB}/\text{PC}_i)] \times \text{DAYS}
\]

\[
\text{MMBTU}_\text{Cooking}_{ij} = \text{LB} \times E_{\text{FOOD},j}/\text{EFF}_{ij} \times \text{PCT}_j
\]

\[
\text{MMBTU}_\text{Idle}_{ij} = \text{IDLE}_{ij} \times (\text{HOURS}_{\text{DAY}} - \text{LB}/\text{PC}_{ij}) \times \text{PCT}_j
\]

\[
\text{MMBTU}_{ij} = [\text{LB} \times E_{\text{FOOD},ij}/\text{EFF}_{ij} + \text{IDLE}_{ij} \times (\text{HOURS}_{\text{DAY}} - \text{LB}/\text{PC}_{ij})] \times \text{PCT}_j \times \text{DAYS}
\]

\[
\text{MMBTU}_{\text{base}} = \text{kWh}_{\text{base,conv}} + \text{kWh}_{\text{base,steam}}
\]

\[
\text{MMBTU}_{\text{eff}} = \text{kWh}_{\text{eff,conv}} + \text{kWh}_{\text{eff,steam}}
\]

\[
\Delta \text{MMBTU} = \text{MMBTU}_{\text{base}} - \text{MMBTU}_{\text{eff}}
\]

1128 No specific study of commercial kitchen equipment coincident peak demand savings is available. In the absence of this information, a simple average demand value is used: Annual energy savings divided by the total annual hours of operation.
Where:

\[\text{MMBTU} \text{_Cooking}_i = \text{daily cooking energy consumption (MMBTU)}. \]
\[\text{MMBTU} \text{_Idle}_i = \text{daily idle energy consumption (MMBTU)}. \]
\[\text{MMBTU}_\text{base} = \text{the annual energy usage of the baseline equipment calculated using baseline values.} \]
\[\text{MMBTU}_\text{eff} = \text{the annual energy usage of the efficient equipment calculated using efficient values.} \]
\[E_{\text{FOOD},\text{conv}} = \text{ASTM Energy to Food (MMBTU/lb); the amount of energy absorbed by the food during convention mode cooking, per pound of food.} \]
\[E_{\text{FOOD},\text{steam}} = \text{ASTM Energy to Food (MMBTU/lb); the amount of energy absorbed by the food during steam mode cooking, per pound of food.} \]
\[\text{LB} = \text{Pounds of food cooked per day (lb/day).} \]
\[\text{IDLE} = \text{Idle energy rate (MMBTU/h).} \]

Gas Combination Oven Performance Metrics: Baseline and Efficient Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of Pans</th>
<th>Baseline Model</th>
<th>Energy Efficient Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Convection Mode</td>
<td>Steam Mode</td>
</tr>
<tr>
<td>IDLE (MMBTU/h)</td>
<td>< 15</td>
<td>0.008747</td>
<td>0.018656</td>
</tr>
<tr>
<td></td>
<td>>= 15 and < 30</td>
<td>0.007823</td>
<td>0.024562</td>
</tr>
<tr>
<td></td>
<td>>= 30</td>
<td>0.013000</td>
<td>0.043300</td>
</tr>
<tr>
<td>EFF</td>
<td>All</td>
<td>52%</td>
<td>39%</td>
</tr>
<tr>
<td>PC</td>
<td>< 15</td>
<td>125</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>>= 15 and < 30</td>
<td>176</td>
<td>211</td>
</tr>
</tbody>
</table>

Parameter | No. of Pans | Baseline Model | Energy Efficient Model |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Convection Mode</td>
<td>Steam Mode</td>
</tr>
<tr>
<td>>= 30</td>
<td></td>
<td>392</td>
<td>579</td>
</tr>
</tbody>
</table>

Note: PANS = The number of steam table pans the combination oven is able to accommodate as per the ASTM F-1495-05 standard specification.

Annual Water Savings Algorithm
n/a

Incremental Cost
The incremental cost for this time of sale measure commercial combination ovens is assumed to be $0.1130

Measure Life
12 years1131

Operation and Maintenance Impacts
n/a

1131 Ibid.
APPENDIX

A. RETIRED

B. Description of Unique Measure Codes

C. RETIRED

D. Commercial & Industrial Lighting Operating Hours, Coincidence Factors, and Waste Heat Factors
A. RETIRED
Verification.
Coordination with Other Savings Assessment Activities

Although the TRM will be a critically important tool for both DSM planning and estimation of actual savings, it will not, by itself, ensure that reported savings are the same as actual savings. There are two principal reasons for this:

1. **The TRM itself does not ensure appropriate estimation of savings.** One of the responsibilities of the Independent Program Evaluators will be to assess that the TRM has been used appropriately in the calculation of savings.

2. **The TRM may have assumptions or protocols that new information suggests are outdated.** New information that could inform the reasonableness of TRM assumptions or protocols can surface at any time, but they are particularly common as local evaluations or annual savings verification processes are completed. Obviously, the TRM should be updated to reflect such new information. However, it is highly likely that some such adjustments will be made too late to affect the annual savings estimate of a program administrator for the previous year. Thus, there may be a difference between savings estimates in annual compliance reports and the “actual savings” that may be considered acceptable from a regulatory perspective. However, such updates should be captured in as timely a fashion as possible.

These two issues highlight the fact that the TRM needs to be integrated into a broader process that has two other key components: an annual savings verification process and on-going evaluation.

In our view, an annual savings verification process should have several key features.

1. It should include a review of data tracking systems used to record information on efficiency measures that have been installed. Among other things, this review should assess whether data appear to have been appropriately and accurately entered into the system.

2. It should include a review of all deemed savings assumptions underlying the program administrators’ savings claims to ensure that they are consistent with the TRM.

3. It should include a detailed review of a statistically valid, random sample of custom commercial and industrial projects to ensure that custom savings protocols were appropriately applied. At a minimum, engineering reviews should be conducted; ideally, custom project reviews should involve some on-site assessments as well.

4. These reviews should be conducted by an independent organization with appropriate expertise.
5. The participants will need to have a process in place for quickly resolving any disputes between the utilities or program administrators on the one hand and the independent reviewer on the other.

6. The results of the independent review and the resolution of any disagreements should ideally be very transparent to stakeholders.

Such verification ensures that information is being tracked accurately and in a manner consistent with the TRM. However, as important as it is, verification does not ensure that reported savings are “actual savings”. TRMs are never and can never be perfect. Even when the verification process documents that assumptions have been appropriately applied, it can also highlight questions that warrant future analysis that may lead to changes to the TRM. Put another way, evaluation studies are and always will be necessary to identify changes that need to be made to the TRM. Therefore, in addition to annual savings verification processes, evaluations will periodically be made to assess or update the underlying assumption values for critical components of important measure characterizations.

In summary, there should be a strong, sometimes cyclical relationship between the TRM development and update process, annual compliance reports, savings verification processes, and evaluations. As such, we recommend coordinating these activities.
B. Description of Unique Measure Codes

Each measure included in the TRM has been assigned a unique identification code. The code consists of a string of five descriptive categories connected by underscores, in the following format:
Sector_End Use_Program Type_Measure_MonthYear

A description of the abbreviations used in the codes is provided in the tables below:

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>END USE</th>
<th>PROGRAM TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS</td>
<td>Residential</td>
<td>TOS</td>
</tr>
<tr>
<td>CI</td>
<td>Commercial & Industrial</td>
<td>NC</td>
</tr>
<tr>
<td>LT</td>
<td>Lighting</td>
<td>RF</td>
</tr>
<tr>
<td>RF</td>
<td>Refrigeration</td>
<td>EREP</td>
</tr>
<tr>
<td>HV</td>
<td>Heating, Ventilation, Air Conditioning</td>
<td>ERET</td>
</tr>
<tr>
<td>WT</td>
<td>Hot Water</td>
<td>DI</td>
</tr>
<tr>
<td>LA</td>
<td>Laundry</td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>Shell (Building)</td>
<td></td>
</tr>
<tr>
<td>MO</td>
<td>Motors and Drives</td>
<td></td>
</tr>
<tr>
<td>KE</td>
<td>Commercial Kitchen Equipment</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>Plug Load</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C. RETIRED
D. Commercial & Industrial Lighting Operating Hours and Coincidence Factors

Downstream Programs1132

If both building type and space type are available, hours of use and coincidence factors are broken out by building type, then by space type using the following logic:

- Does the building fit into one of the listed building types in Table D-1?
 - Yes: Does the space fit into one of the building type and space type pairs in Table D-1?
 - Yes: Use data from the matching building and space type in Table D-1.
 - No: Does the space fit into one of the space types in Table D-2?
 - Yes: Use data from the matching space type in Table D-2.
 - No: Use data from the matching building type and space type = “Other” in Table D-1.
 - No: Does the space fit into one of the space types in Table D-2?
 - Yes: Use data from the matching space type in Table D-2.
 - No: Use data from building type = “All” and space type = “Other” in Table D-2.

If the Building Type is known, but the Space Type is unknown, the matching Building Type and “Other” Space Type should be used.

If Building Type is unknown, Building Type “All” and “Other” Space Type should be used.

Table D-1: C&I Downstream Lighting Parameters by Building and Space Type1133

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Space Type</th>
<th>HOURS</th>
<th>CF\textsubscript{UPeak}</th>
<th>CF\textsubscript{PJM-S}</th>
<th>CF\textsubscript{PJM-W}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>Classroom/Lecture</td>
<td>1,505</td>
<td>0.21</td>
<td>0.22</td>
<td>0.20</td>
</tr>
<tr>
<td>Education</td>
<td>Corridor/Hallways</td>
<td>5,052</td>
<td>0.77</td>
<td>0.78</td>
<td>0.75</td>
</tr>
<tr>
<td>Education</td>
<td>Office (Executive/Private)</td>
<td>2,084</td>
<td>0.42</td>
<td>0.57</td>
<td>0.26</td>
</tr>
<tr>
<td>Education</td>
<td>Office (General)</td>
<td>4,252</td>
<td>0.66</td>
<td>0.67</td>
<td>0.46</td>
</tr>
</tbody>
</table>

1132 Downstream programs are programs where the efficiency program’s influence is at the end user level such as prescriptive, custom, or new construction programs.

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Space Type</th>
<th>HOURS</th>
<th>CF_{UPeak}</th>
<th>CF_{PJM-S}</th>
<th>CF_{PJM-W}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>Office (Open Plan)</td>
<td>2,888</td>
<td>0.62</td>
<td>0.70</td>
<td>0.54</td>
</tr>
<tr>
<td>Education</td>
<td>Other</td>
<td>2,032</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>Grocery</td>
<td>Other</td>
<td>6,027</td>
<td>0.84</td>
<td>0.84</td>
<td>0.82</td>
</tr>
<tr>
<td>Grocery</td>
<td>Retail Sales/Showroom</td>
<td>7,374</td>
<td>0.98</td>
<td>0.98</td>
<td>0.93</td>
</tr>
<tr>
<td>Grocery</td>
<td>Storage (Conditioned & Walk-In Refrigerator/Freezer)</td>
<td>5,851</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>Health</td>
<td>Corridor/Hallways</td>
<td>6,191</td>
<td>0.90</td>
<td>0.90</td>
<td>0.77</td>
</tr>
<tr>
<td>Health</td>
<td>Other</td>
<td>2,964</td>
<td>0.59</td>
<td>0.61</td>
<td>0.41</td>
</tr>
<tr>
<td>Office</td>
<td>Corridor/Hallways</td>
<td>4,092</td>
<td>0.65</td>
<td>0.64</td>
<td>0.71</td>
</tr>
<tr>
<td>Office</td>
<td>Lobby (Main Entry and Assembly)</td>
<td>6,569</td>
<td>0.93</td>
<td>0.91</td>
<td>0.80</td>
</tr>
<tr>
<td>Office</td>
<td>Office (General)</td>
<td>3,009</td>
<td>0.70</td>
<td>0.70</td>
<td>0.48</td>
</tr>
<tr>
<td>Office</td>
<td>Other</td>
<td>2,897</td>
<td>0.70</td>
<td>0.69</td>
<td>0.48</td>
</tr>
<tr>
<td>Retail</td>
<td>Lobby (Main Entry and Assembly)</td>
<td>6,417</td>
<td>0.99</td>
<td>0.99</td>
<td>0.63</td>
</tr>
<tr>
<td>Retail</td>
<td>Office (General)</td>
<td>3,175</td>
<td>0.72</td>
<td>0.73</td>
<td>0.40</td>
</tr>
<tr>
<td>Retail</td>
<td>Other</td>
<td>6,679</td>
<td>0.88</td>
<td>0.88</td>
<td>0.65</td>
</tr>
<tr>
<td>Retail</td>
<td>Restrooms</td>
<td>5,816</td>
<td>0.94</td>
<td>0.94</td>
<td>0.70</td>
</tr>
<tr>
<td>Retail</td>
<td>Retail Sales/Showroom</td>
<td>5,192</td>
<td>0.98</td>
<td>0.98</td>
<td>0.64</td>
</tr>
<tr>
<td>Warehouse/Industrial</td>
<td>Auto Repair Workshop</td>
<td>5,482</td>
<td>0.94</td>
<td>0.93</td>
<td>0.49</td>
</tr>
<tr>
<td>Warehouse/Industrial</td>
<td>Comm/Ind Work (General High Bay)</td>
<td>5,103</td>
<td>0.92</td>
<td>0.94</td>
<td>0.86</td>
</tr>
<tr>
<td>Warehouse/Industrial</td>
<td>Comm/Ind Work (General Low Bay)</td>
<td>7,110</td>
<td>0.98</td>
<td>0.98</td>
<td>0.78</td>
</tr>
<tr>
<td>Building Type</td>
<td>Space Type</td>
<td>HOURS</td>
<td>CF<sub>U</sub>Peak</td>
<td>CF<sub>PJM-S</sub></td>
<td>CF<sub>PJM-W</sub></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Warehouse/Industrial</td>
<td>Office (General)</td>
<td>2,868</td>
<td>0.74</td>
<td>0.74</td>
<td>0.36</td>
</tr>
<tr>
<td>Warehouse/Industrial</td>
<td>Other</td>
<td>3,338</td>
<td>0.71</td>
<td>0.69</td>
<td>0.44</td>
</tr>
<tr>
<td>Warehouse/Industrial</td>
<td>Restrooms</td>
<td>4,213</td>
<td>0.53</td>
<td>0.53</td>
<td>0.47</td>
</tr>
<tr>
<td>Warehouse/Industrial</td>
<td>Storage (Conditioned & Walk-In Refrigerator/Freezer)</td>
<td>4,530</td>
<td>0.81</td>
<td>0.82</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Table D-2: C&I Downstream Lighting Parameters by Space Type for Unknown or Unmatched Building Types\(^{1134}\)

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Space Type</th>
<th>HOURS</th>
<th>CF(_{UPeak})</th>
<th>CF(_{PJM-S})</th>
<th>CF(_{PJM-W})</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Auto Repair Workshop</td>
<td>6,189</td>
<td>0.88</td>
<td>0.89</td>
<td>0.61</td>
</tr>
<tr>
<td>All</td>
<td>Classroom/Lecture</td>
<td>1,584</td>
<td>0.24</td>
<td>0.24</td>
<td>0.20</td>
</tr>
<tr>
<td>All</td>
<td>Comm/Ind Work (General High Bay)</td>
<td>4,790</td>
<td>0.90</td>
<td>0.91</td>
<td>0.82</td>
</tr>
<tr>
<td>All</td>
<td>Comm/Ind Work (General Low Bay)</td>
<td>6,775</td>
<td>0.95</td>
<td>0.95</td>
<td>0.77</td>
</tr>
<tr>
<td>All</td>
<td>Conference Room</td>
<td>1,201</td>
<td>0.28</td>
<td>0.30</td>
<td>0.16</td>
</tr>
<tr>
<td>All</td>
<td>Corridor/Hallways</td>
<td>5,670</td>
<td>0.86</td>
<td>0.86</td>
<td>0.73</td>
</tr>
<tr>
<td>All</td>
<td>Dining Area</td>
<td>2,962</td>
<td>0.48</td>
<td>0.53</td>
<td>0.51</td>
</tr>
<tr>
<td>All</td>
<td>Exercise Centers/Gymnasium</td>
<td>4,833</td>
<td>0.81</td>
<td>0.82</td>
<td>0.60</td>
</tr>
<tr>
<td>All</td>
<td>Kitchen/Break room & Food Prep</td>
<td>3,522</td>
<td>0.79</td>
<td>0.74</td>
<td>0.42</td>
</tr>
<tr>
<td>All</td>
<td>Library</td>
<td>1,957</td>
<td>0.44</td>
<td>0.46</td>
<td>0.31</td>
</tr>
<tr>
<td>All</td>
<td>Loading Dock</td>
<td>7,358</td>
<td>0.97</td>
<td>0.97</td>
<td>0.62</td>
</tr>
<tr>
<td>All</td>
<td>Lobby (Main Entry and Assembly)</td>
<td>5,947</td>
<td>0.83</td>
<td>0.82</td>
<td>0.71</td>
</tr>
<tr>
<td>All</td>
<td>Lobby (Office Reception/Waiting)</td>
<td>3,425</td>
<td>0.84</td>
<td>0.87</td>
<td>0.49</td>
</tr>
<tr>
<td>All</td>
<td>Mechanical/Electrical Room</td>
<td>5,026</td>
<td>0.73</td>
<td>0.74</td>
<td>0.46</td>
</tr>
<tr>
<td>All</td>
<td>Office (Executive/Private)</td>
<td>1,753</td>
<td>0.42</td>
<td>0.44</td>
<td>0.20</td>
</tr>
<tr>
<td>All</td>
<td>Office (General)</td>
<td>3,001</td>
<td>0.67</td>
<td>0.67</td>
<td>0.43</td>
</tr>
<tr>
<td>All</td>
<td>Office (Open Plan)</td>
<td>3,159</td>
<td>0.81</td>
<td>0.82</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Table D-3: C&I Interior Midstream Lighting Parameters by Building Type

<table>
<thead>
<tr>
<th>Building Type</th>
<th>HOURS</th>
<th>CF_{UPeak}</th>
<th>CF_{PJM-S}</th>
<th>CF_{PJM-W}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>2,233</td>
<td>0.35</td>
<td>0.36</td>
<td>0.33</td>
</tr>
<tr>
<td>Grocery</td>
<td>7,272</td>
<td>0.97</td>
<td>0.97</td>
<td>0.93</td>
</tr>
<tr>
<td>Health</td>
<td>3,817</td>
<td>0.67</td>
<td>0.68</td>
<td>0.51</td>
</tr>
<tr>
<td>Office</td>
<td>3,044</td>
<td>0.70</td>
<td>0.69</td>
<td>0.49</td>
</tr>
<tr>
<td>Other</td>
<td>4,058</td>
<td>0.62</td>
<td>0.61</td>
<td>0.46</td>
</tr>
<tr>
<td>Retail</td>
<td>4,696</td>
<td>0.83</td>
<td>0.83</td>
<td>0.56</td>
</tr>
<tr>
<td>Warehouse/Industrial</td>
<td>4,361</td>
<td>0.80</td>
<td>0.80</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Hours of use and coincidence factors are taken from the matching building type in Table D-3. If the building type is unknown or unmatched, “Other” building type should be used.

Table D-3: C&I Interior Midstream Lighting Parameters by Building Type

<table>
<thead>
<tr>
<th>Building Type</th>
<th>HOURS</th>
<th>CF_{UPeak}</th>
<th>CF_{PJM-S}</th>
<th>CF_{PJM-W}</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Other</td>
<td>3,438</td>
<td>0.65</td>
<td>0.64</td>
<td>0.40</td>
</tr>
<tr>
<td>All Parking Garage</td>
<td>8,678</td>
<td>0.98</td>
<td>0.98</td>
<td>0.99</td>
</tr>
<tr>
<td>All Outside/Outdoor Area</td>
<td>3,604</td>
<td>0.11</td>
<td>0.11</td>
<td>0.58</td>
</tr>
<tr>
<td>All Restrooms</td>
<td>2,521</td>
<td>0.48</td>
<td>0.42</td>
<td>0.30</td>
</tr>
<tr>
<td>All Retail Sales/Showroom</td>
<td>6,152</td>
<td>0.97</td>
<td>0.97</td>
<td>0.78</td>
</tr>
<tr>
<td>All Storage (Conditioned & Walk-In Refrigerator/Freezer)</td>
<td>4,672</td>
<td>0.81</td>
<td>0.81</td>
<td>0.44</td>
</tr>
<tr>
<td>All Storage (Unconditioned)</td>
<td>2,930</td>
<td>0.66</td>
<td>0.64</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Hours of use and coincidence factors are taken from the matching building type in Table D-3. If the building type is unknown or unmatched, “Other” building type should be used.
E. Commercial & Industrial Lighting Waste Heat Factors

Waste Heat Factors for C&I Lighting – Known HVAC Types

<table>
<thead>
<tr>
<th>State, Utility</th>
<th>Building Type</th>
<th>Demand Waste Heat Factor (WHFd)</th>
<th>Annual Energy Waste Heat Factor by Cooling/Heating Type (WHFe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AC (Utility)</td>
<td>AC (PJM)</td>
</tr>
<tr>
<td>Maryland, BGE</td>
<td>Office</td>
<td>1.36</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>Retail</td>
<td>1.27</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>School</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>Warehouse</td>
<td>1.23</td>
<td>1.24</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.35</td>
<td>1.33</td>
</tr>
<tr>
<td>Maryland, SMECO</td>
<td>Office</td>
<td>1.36</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>Retail</td>
<td>1.27</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>School</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>Warehouse</td>
<td>1.23</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.35</td>
<td>1.33</td>
</tr>
<tr>
<td>Maryland, Pepco</td>
<td>Office</td>
<td>1.36</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>Retail</td>
<td>1.27</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>School</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>Warehouse</td>
<td>1.23</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.35</td>
<td>1.33</td>
</tr>
<tr>
<td>Maryland, DPL</td>
<td>Office</td>
<td>1.35</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>Retail</td>
<td>1.27</td>
<td>1.26</td>
</tr>
</tbody>
</table>

1136 Waste Heat Factors for “NoAC/ElecRes” estimated as at difference between “AC/ElecRes” and “AC/NonElec” plus one.
<table>
<thead>
<tr>
<th>State, Utility</th>
<th>Building Type</th>
<th>Demand Waste Heat Factor (WHFd)</th>
<th>Annual Energy Waste Heat Factor by Cooling/Heating Type (WHFe)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AC (Utility)</td>
<td>AC (PJM)</td>
<td>AC/ NonElec</td>
</tr>
<tr>
<td>Maryland, Potomac Edison</td>
<td>School</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>Warehouse</td>
<td>1.22</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.34</td>
<td>1.32</td>
</tr>
<tr>
<td>Washington, D.C., All</td>
<td>Office</td>
<td>1.34</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>Retail</td>
<td>1.27</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>School</td>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>Warehouse</td>
<td>1.2</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.33</td>
<td>1.31</td>
</tr>
<tr>
<td>Delaware, All</td>
<td>Office</td>
<td>1.35</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>Retail</td>
<td>1.27</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>School</td>
<td>1.44</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td>Warehouse</td>
<td>1.23</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1.35</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Note(s): The “Other” building type should be used when the building type is known but not explicitly listed above. A description of the actual building type should be recorded in the project documentation. If cooling and heating equipment types are unknown or the space is unconditioned, assume WHFd = WHFe = 1.0.
F. Commercial & Industrial Full Load Cooling and Heating Hours

Full load cooling hours and full load heating hours are broken out by building type and geographic location. The building types and locations are indicated in the following tables.

Full Load Cooling Hours by Location and Building Type (HOURS\textsubscript{Cool})*

<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>937</td>
<td>922</td>
<td>945</td>
<td>861</td>
<td>1,103</td>
<td>909</td>
<td>1,143</td>
</tr>
<tr>
<td>Education - Community College</td>
<td>713</td>
<td>701</td>
<td>718</td>
<td>655</td>
<td>839</td>
<td>691</td>
<td>869</td>
</tr>
<tr>
<td>Education - Primary School</td>
<td>293</td>
<td>288</td>
<td>295</td>
<td>269</td>
<td>344</td>
<td>284</td>
<td>357</td>
</tr>
<tr>
<td>Education - Relocatable Classroom</td>
<td>348</td>
<td>342</td>
<td>351</td>
<td>319</td>
<td>409</td>
<td>337</td>
<td>424</td>
</tr>
<tr>
<td>Education - Secondary School</td>
<td>337</td>
<td>331</td>
<td>340</td>
<td>309</td>
<td>396</td>
<td>327</td>
<td>411</td>
</tr>
<tr>
<td>Education - University</td>
<td>787</td>
<td>774</td>
<td>793</td>
<td>723</td>
<td>926</td>
<td>763</td>
<td>960</td>
</tr>
<tr>
<td>Grocery</td>
<td>672</td>
<td>662</td>
<td>678</td>
<td>618</td>
<td>791</td>
<td>652</td>
<td>820</td>
</tr>
<tr>
<td>Health/Medical - Hospital</td>
<td>1,213</td>
<td>1,194</td>
<td>1,223</td>
<td>1,114</td>
<td>1,427</td>
<td>1,176</td>
<td>1,480</td>
</tr>
<tr>
<td>Health/Medical - Nursing Home</td>
<td>645</td>
<td>634</td>
<td>650</td>
<td>592</td>
<td>758</td>
<td>625</td>
<td>786</td>
</tr>
<tr>
<td>Lodging - Hotel</td>
<td>1,816</td>
<td>1,787</td>
<td>1,831</td>
<td>1,668</td>
<td>2,137</td>
<td>1,760</td>
<td>2,215</td>
</tr>
<tr>
<td>Manufacturing – Bio Tech/High Tech</td>
<td>867</td>
<td>853</td>
<td>874</td>
<td>796</td>
<td>1,020</td>
<td>840</td>
<td>1,057</td>
</tr>
<tr>
<td>Manufacturing – 1 Shift/Light Industrial</td>
<td>456</td>
<td>449</td>
<td>460</td>
<td>419</td>
<td>537</td>
<td>442</td>
<td>557</td>
</tr>
<tr>
<td>Multi-Family (Common Areas)</td>
<td>1,509</td>
<td>1,485</td>
<td>1,521</td>
<td>1,386</td>
<td>1,776</td>
<td>1,463</td>
<td>1,841</td>
</tr>
<tr>
<td>Office - Large</td>
<td>727</td>
<td>716</td>
<td>733</td>
<td>668</td>
<td>856</td>
<td>705</td>
<td>887</td>
</tr>
<tr>
<td>Office - Small</td>
<td>629</td>
<td>619</td>
<td>634</td>
<td>577</td>
<td>740</td>
<td>609</td>
<td>767</td>
</tr>
<tr>
<td>Restaurant - Fast-Food</td>
<td>724</td>
<td>712</td>
<td>730</td>
<td>665</td>
<td>851</td>
<td>701</td>
<td>883</td>
</tr>
<tr>
<td>Restaurant - Sit-Down</td>
<td>762</td>
<td>750</td>
<td>768</td>
<td>700</td>
<td>897</td>
<td>739</td>
<td>930</td>
</tr>
<tr>
<td>Retail - Multistory Large</td>
<td>880</td>
<td>866</td>
<td>887</td>
<td>808</td>
<td>1,035</td>
<td>853</td>
<td>1,074</td>
</tr>
<tr>
<td>Retail - Single-Story Large</td>
<td>904</td>
<td>890</td>
<td>911</td>
<td>830</td>
<td>1,064</td>
<td>876</td>
<td>1,103</td>
</tr>
<tr>
<td>Retail - Small</td>
<td>915</td>
<td>901</td>
<td>923</td>
<td>840</td>
<td>1,077</td>
<td>887</td>
<td>1,116</td>
</tr>
<tr>
<td>Storage - Condioned</td>
<td>243</td>
<td>239</td>
<td>245</td>
<td>223</td>
<td>286</td>
<td>235</td>
<td>296</td>
</tr>
<tr>
<td>Warehouse - Refrigerated</td>
<td>3,886</td>
<td>3,824</td>
<td>3,917</td>
<td>3,569</td>
<td>4,572</td>
<td>3,767</td>
<td>4,740</td>
</tr>
</tbody>
</table>

Full Load Heating Hours by Location and Building Type ($HOURS_{HEAT}$)1138

<table>
<thead>
<tr>
<th>Space and/or Building Type</th>
<th>Dover, DE</th>
<th>Wilmington, DE</th>
<th>Baltimore, MD</th>
<th>Hagerstown, MD</th>
<th>Patuxent River, MD</th>
<th>Salisbury, MD</th>
<th>Washington D.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly</td>
<td>1,114</td>
<td>1,150</td>
<td>1,114</td>
<td>1,168</td>
<td>1,064</td>
<td>1,079</td>
<td>1,040</td>
</tr>
<tr>
<td>Education - Community College</td>
<td>713</td>
<td>736</td>
<td>713</td>
<td>747</td>
<td>681</td>
<td>691</td>
<td>666</td>
</tr>
<tr>
<td>Education - Primary School</td>
<td>668</td>
<td>689</td>
<td>668</td>
<td>700</td>
<td>638</td>
<td>647</td>
<td>623</td>
</tr>
<tr>
<td>Education - Relocatable Classroom</td>
<td>647</td>
<td>668</td>
<td>647</td>
<td>679</td>
<td>618</td>
<td>627</td>
<td>604</td>
</tr>
<tr>
<td>Education - Secondary School</td>
<td>719</td>
<td>742</td>
<td>719</td>
<td>754</td>
<td>687</td>
<td>697</td>
<td>671</td>
</tr>
<tr>
<td>Education - University</td>
<td>530</td>
<td>546</td>
<td>530</td>
<td>555</td>
<td>506</td>
<td>513</td>
<td>494</td>
</tr>
<tr>
<td>Grocery</td>
<td>984</td>
<td>1,015</td>
<td>984</td>
<td>1,031</td>
<td>939</td>
<td>953</td>
<td>918</td>
</tr>
<tr>
<td>Health/Medical - Hospital</td>
<td>214</td>
<td>221</td>
<td>214</td>
<td>224</td>
<td>204</td>
<td>207</td>
<td>200</td>
</tr>
<tr>
<td>Health/Medical - Nursing Home</td>
<td>932</td>
<td>962</td>
<td>932</td>
<td>977</td>
<td>890</td>
<td>903</td>
<td>870</td>
</tr>
<tr>
<td>Lodging - Hotel</td>
<td>2,242</td>
<td>2,313</td>
<td>2,242</td>
<td>2,350</td>
<td>2,140</td>
<td>2,172</td>
<td>2,092</td>
</tr>
<tr>
<td>Manufacturing – Bio Tech/High Tech</td>
<td>146</td>
<td>151</td>
<td>146</td>
<td>153</td>
<td>139</td>
<td>141</td>
<td>136</td>
</tr>
<tr>
<td>Manufacturing – 1 Shift/Light Industrial</td>
<td>585</td>
<td>603</td>
<td>585</td>
<td>613</td>
<td>558</td>
<td>567</td>
<td>546</td>
</tr>
<tr>
<td>Multi-Family (Common Areas)</td>
<td>256</td>
<td>264</td>
<td>256</td>
<td>268</td>
<td>244</td>
<td>248</td>
<td>239</td>
</tr>
<tr>
<td>Office - Large</td>
<td>221</td>
<td>228</td>
<td>221</td>
<td>231</td>
<td>211</td>
<td>214</td>
<td>206</td>
</tr>
<tr>
<td>Office - Small</td>
<td>440</td>
<td>454</td>
<td>440</td>
<td>461</td>
<td>420</td>
<td>426</td>
<td>411</td>
</tr>
<tr>
<td>Restaurant - Fast-Food</td>
<td>1,226</td>
<td>1,265</td>
<td>1,226</td>
<td>1,285</td>
<td>1,170</td>
<td>1,188</td>
<td>1,144</td>
</tr>
<tr>
<td>Restaurant - Sit-Down</td>
<td>1,131</td>
<td>1,167</td>
<td>1,131</td>
<td>1,185</td>
<td>1,079</td>
<td>1,096</td>
<td>1,055</td>
</tr>
<tr>
<td>Retail - Multistory Large</td>
<td>591</td>
<td>609</td>
<td>591</td>
<td>619</td>
<td>564</td>
<td>572</td>
<td>551</td>
</tr>
<tr>
<td>Retail - Single-Story Large</td>
<td>739</td>
<td>762</td>
<td>739</td>
<td>774</td>
<td>705</td>
<td>716</td>
<td>689</td>
</tr>
<tr>
<td>Retail - Small</td>
<td>622</td>
<td>642</td>
<td>623</td>
<td>652</td>
<td>594</td>
<td>603</td>
<td>581</td>
</tr>
<tr>
<td>Storage - Conditioned</td>
<td>854</td>
<td>881</td>
<td>854</td>
<td>895</td>
<td>815</td>
<td>828</td>
<td>797</td>
</tr>
<tr>
<td>Warehouse - Refrigerated</td>
<td>342</td>
<td>353</td>
<td>343</td>
<td>359</td>
<td>327</td>
<td>332</td>
<td>320</td>
</tr>
</tbody>
</table>